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It is a challenging task to design an airspace with the required levels of safety, capacity,
flexibility, responsiveness, and environmental performance. Airspace must be continuously
analyzed and adapted in order to meet the increased demand of air traffic. The goal of this
research is to study the temporal evolution of the European air transportation system. We
analyze two network layers: the air navigation route network and the airport network. For
each network layer, we analyze the temporal evolution of seven centrality measures: degree,
weighted degree, clustering coefficient, betweenness centrality, closeness centrality, weighted
betweenness centrality, and weighted closeness centrality. We quantify the seasonal and weekly
variation patterns by the coefficient of variation. We find that the air navigation route network
is dominated by the summer/winter seasonal variations; while the airport network shows
both summer/winter seasonal variations and peak/off-peak weekly patterns. Furthermore,
the air navigation points are more clustered and have shorter distance in summer than in
winter; while the airports are more clustered and have shorter distance during the weekdays
than the weekend. From the distributions of the metrics, we find that hub nodes existing
in both network layers are potentially bottlenecks of the network. Our research helps the
stakeholders in the air transportation systems to monitor the network performance over time
and to better understand the network dynamics. According to the identified summer/winter
seasonal variations and peak/off-peak weekly patterns, the airspace configurations could be
adapted in time in order to meet the changed demands.

Keywords: temporal evolution analysis; air navigation route system; air transportation
systems; complex network

1. Introduction

With continuously growing travel demand, it is much harder to achieve a strong sustain-
ability in the transportation systems, taking into account the high costs of oil, carbon
emissions reduction, and the additional requirement on gaining public acceptability (Ban-
ister 2007). The European air transportation system is directly facing new challenges
regarding its competitiveness, performance, and sustainability (European Commission
2011). In order to understand the nature of traffic and transportation deeply, it is nec-
essary to analyze and manage transportation systems as dynamic phenomena and pro-
cesses (Lo and Sumalee 2013).

Complex network theory provides powerful tools to analyze the structure and dynam-
ics of air transportation systems. Most research focused on airport networks, where each
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Figure 1.: An illustration of the air navigation route network

node represents one airport, and an edge exists if there is a flight between two air-
ports (Holmes and Scott 2004; Newman 2004; Barrat et al. 2004; Kurant and Thiran
2006; Bonnefoy 2008; Reggiani, Nijkamp, and Cento 2010). Guimera et al. analyzed the
worldwide air transportation network with nodes as cities and found that the most con-
nected cities are not necessarily the most central ones (Guimera et al. 2005). DeLaurentis
et al. examined the U.S. domestic air transportation network in terms of structural prop-
erties and scheduled/nonscheduled subnetworks (DeLaurentis, Han, and Kotegawa 2008).
Yang proposed two models with different capacity constraints to determine the hub loca-
tion and service network (Yang 2008). In his follow-up work, Yang proposed a two-stage
stochastic model to address airline network design problems with stochastic demand,
where the first-stage problem corresponds to hub location decision; and the second-stage
corresponds to flight route determination and flow allocation (Yang 2010). Further, Zhang
et al. proposed a dynamic fluctuation model for the airport networks (Zhang et al. 2014).
Wei et al. formulated the flight routes addition/deletion problem to maximize the alge-
braic connectivity, with the airport network of Virgin America as a case study (Wei,
Chen, and Sun 2014).

However, the airport network is only one perspective of the air transportation systems.
Another perspective is to consider how aircraft actually fly through the airspace. Aircraft
have to follow air routes, just like highways on the ground. Air routes are designed to
channel the flow of air traffic in a predictable manner to ensure safety (Cordell 2006).
A route is composed of several route segments, where one route segment consists of two
consecutive significant points. Aircraft flying from the origin airport to the destination
airport have to fly along the air route.

In the air navigation route network, a node is an air navigation point and an edge exists
if there is a flight directly flying through two air navigation points. Figure 1 illustrates the
air navigation route network: the left-hand side shows the European air navigation route
network; the middle shows the air navigation route network in Germany; the right-hand
side shows one example of an air route from Hamburg (EDDH) to Frankfurt (EDDF)
in Germany. Aircraft from Hamburg to Frankfurt have to fly along the air route rather
than a straight line.

The goal of this research is to study the temporal evolution of the European air trans-
portation system. We analyze two network layers: the air navigation route network and
the airport network. For each layer, we analyze seven network centrality measures: de-
gree, weighted degree, clustering coefficient, betweenness centrality, closeness centrality,
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weighted betweenness centrality, and weighted closeness centrality. We use the coefficient
of variation to quantitatively assess the seasonal and weekly variation patterns.

The main contributions of this paper are: 1) We find out that the air navigation route
network is dominated by summer/winter seasonal variations; while the airport network
shows both summer/winter seasonal variations and peak/off-peak weekly patterns. 2)
The air navigation points are more clustered and have shorter distance in summer than
in winter; while the airports are more clustered and have shorter distance during the
weekdays than the weekend. 3) From the distributions of the metrics, we find that there
are hub nodes existing in both network layers. These hub nodes are potentially bottle-
necks and should be paid more attention in the network design of the air transportation
systems in future.

This paper is organized as follows. Section 2 provides the literature review. Section 3
presents the Demand Data Repository (DDR) dataset. Section 4 presents the temporal
evolution of the European air transportation system. Finally, the paper is concluded in
Section 5.

2. Literature review

This section provides the literature review of the network evolution analysis and the air
navigation route network in air transportation systems.

Most research on network evolution focused on airport network, with airports as nodes
and edges exist if there are flight connections between two airports. Burghouwt and
Hakfoort analyzed the evolution of the European air traffic according to different air-
port groups, based on a weekly Official Airline Guide (OAG) data for the years 1990-
1998 (Burghouwt and Hakfoort 2001). The authors showed that there is no clear trend of
concentration of intra-European traffic on the primary hubs and a type of hub-and-spoke
route structure has been developed. Da Rocha analyzed the evolution of the Brazilian air-
port network between 1995 and 2006 with the data by the Brazilian National Agency of
Civil Aviation (da Rocha 2009). He found that the number of airports decreased over this
time span and the average shortest path length dropped slightly; the degree distribution
decayed faster over time; and the Brazilian airport network became increasingly sparse in
spite of more than doubled number of passengers. Gautreau et al. studied the evolution
of the US airport network between 1990 and 2000 with the Bureau of Transportation
Statistics data by the department of transportation (Gautreau, Barrat, and Barthlemy
2009). The authors showed that although statistical distributions of most indicators are
stationary, there exist several dynamics at the microscopic level, with many appear-
ing/disappearing connections between airports. Zhang et al. investigated the evolution
of the Chinese airport network between 1950 and 2008, with the data provided by Civil
Aviation Administration of China (Zhang et al. 2010). The authors found that although
the topology of the Chinese airport network is stationary, there exist network dynamics
and the air traffic grows at an exponential rate with seasonal fluctuations. Azzam et al.
studied the evolution of the worldwide airport network using historical, worldwide Offi-
cial Airline Guide (OAG) flight schedules data between 1979 and 2007 (Azzam, Klingauf,
and Zock 2013). The authors found that the degree distribution is non-stationary and
is subject to accelerated growth; the average degree increases while the average short-
est path length decreases; the average clustering coefficient decreases for growing node
degrees; and the average degree of nearest neighbors is constant over the time span 1979-
2007. However, these works analyzed the evolution of the single layer airport network,
the evolution of other network layers such as the air navigation route network has not
been investigated.
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Only a few researches have been conducted on the air navigation route network
(see (Zanin and Lillo 2013) for a review). Cai et al. investigated the Chinese air naviga-
tion route network and compared its topological characteristics with the Chinese airline
network (Cai et al. 2012). The authors found that the topological structure of the air
navigation route network is more homogeneous than the airline network, while traffic flow
on the air navigation route network is rather heterogeneous with exponential strength
distribution. Vitali et al. analyzed the Italian air navigation route network and observed
that the number of air navigation nodes in the planned trajectories is usually smaller
than the number of those in the actual trajectories (Vitali et al. 2012).

Recently, there is a new trend of applying multi-layer networks in air transportation
systems. Multi-layer networks are widely used in social networks (see (Kivel et al. 2013)
for a review). Cardillo et al. analyzed the resilience of the European air transport net-
work against flight cancellations from a multi-layer point of view, with each airline as an
independent network layer (Cardillo et al. 2013). In total, the authors considered fifteen
undirected layers of airline flight networks. The results indicated that the multi-layer
structure strongly reduces the resilience of the system against perturbations. Gurtner et
al. applied three community detection algorithms to European airspace (Gurtner et al.
2013). The results showed that unsupervised community detection algorithms can pro-
vide more meaningful partitions of the airspace than the existing expert partitioning of
the airspace. Lehner investigated the structure-function networks of European air trans-
port, with airline flight network representing the structure and passenger flow network
characterizing the function (Lehner 2013). The airline flight network reflects how air-
lines operate aircraft between airports; while the passenger flow network reflects how
passengers travel from their origin airports to destination airports.

In this research, we investigate the multi-layer structure-function from the airlines’ per-
spectives (Newman 2003): The air navigation route network represents the structure and
the airport network represents the function. The air navigation route network provides
the structure for the airlines to operate the aircraft between airports; while the airport
network offers the function for the airlines to transport passengers between their origin
and destination airports. For each network layer, we analyze the temporal evolution of
seven network centrality measures, as summarized in Table 1.

3. Database

We obtain the Demand Data Repository (DDR) dataset for 2011, 2012, and 2013, pro-
vided by EUROCONTROL1. The DDR is the central repository of air traffic demand
for European Civil Aviation Conference (ECAC) airspace with flight intentions. There
are two types of flight information in DDR: M1 (Model 1) is the last filed flight plan,
and M3 (Model 3) is the actual flight plan updated with available radar tracks.

Each calendar year has thirteen AIRAC (Aeronautical Information Regulation And
Control) cycles. An AIRAC cycle defines a series of common dates and an associated stan-
dard aeronautical information publication procedure. There are 28 days in each AIRAC
cycle and the effective days are always on a Thursday. The AIRAC cycles for 2011, 2012,
and 2013 are presented in Table 2.

In this research, we analyze the first week in the thirteen AIRAC cycles for 2011, 2012,
and 2013, respectively2. In total, we have 217 days in our dataset: five first weeks of the

1http://www.eurocontrol.int/ddr
2Note that we only analyze the second half year of 2011, because the DDR dataset for the first half year of 2011
is not available.
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Table 1.: Network centrality measures for the European air transportation system

Metrics Equation Interpretation

Degree ki =
∑
j aij where aij is the connection between node i and node j:

aij = 1 if there is a connection existing; aij = 0 otherwise.
This metric refers to the number of connections with other
nodes in the network.

Weighted
degree

kwi =
∑
j wij where wij is the weight between node i and node j. The

weight could be the number of flights, the number of avail-
able seats, distance, and cost etc.

Clustering
coefficient

Ci =
∑

j,k aijaikajk
ki(ki−1) where aik is the connection between node i and node k, ajk

is the connection between node j and node k. This metric
gives an overall indication of how nodes are embedded in
their neighborhood.

Weighted
between-
ness
centrality

Bwi =
∑
s6=t

σst(i)
σst

where σst is the number of shortest paths going from node
s to node t; σst(i) is the number of shortest paths going
from node s to node t and passing through node i. This
metric is proposed by Freeman (Freeman 1978) and it indi-
cates the number of shortest paths going through a node.
The weight is defined the same as in the weighted degree.
When the weight is one, this definition is equivalent with
the betweenness centrality.

Weighted
closeness
centrality

Cwi =
∑

j∈N,j 6=i σij

(n−1) where N is the set of all nodes in the network, n is the
number of nodes, σij is the shortest path between node i
and node j. This metric is the average distance from a given
starting node to all other nodes in the network (Freeman
1978). The weight is defined the same as in the weighted
degree. When the weight is one, this definition is equivalent
with the closeness centrality.

AIRAC cycles in 2011 (from I to M ), thirteen first weeks of the AIRAC cycles in 2012
(from A to M ), and thirteen first weeks of the AIRAC cycles in 2013 (from A to M ).

We extract the flight trajectories for the passenger airlines flying within the ECAC
airspace using the last filed flight plan (M1). The data we extracted include aircraft
type, callsign, departing and destination airports, starting and ending dates and times
of the flights, and route points used by the flights. We analyze two network layers for the
European air transportation system: the air navigation route network and the airport
network. We consider both layers as directed and weighted networks. In the air navigation
route network we use the number of flights as weight; in the airport network, we use the
number of available seats to weight the edge.

In the current research, we analyze the planned flight trajectories. However, several
disturbances, such as adverse weather conditions (thunderstorm) or technical problems
(conflict alert system, flight data processing system, and radio failure, etc.), might lead
to the deviation of the flight trajectories or in the worst case the cancellation of the
flights (Eurocontrol 2013). In future research, it would be interesting to investigate the
robustness of the networks against these disturbances.

4. Temporal evolution of the European air transportation system

In this section, we analyze the temporal evolution for two network layers of the Eu-
ropean air transportation system. Subsection 4.1 provides an overview of the temporal
evolution of seven network centrality measures. These network centrality measures were
summarized in Table 1. In subsection 4.2, we analyze the network centrality measures
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Table 2.: The AIRAC cycles in 2011, 2012, and 2013 (Eurocontrol 03/12/2013)

Season AIRAC cycle 2011 2012 2013

A 1 13-Jan 12-Jan 10-Jan
B 2 10-Feb 9-Feb 7-Feb
C 3 10-Mar 8-Mar 7-Mar
D 4 7-Apr 5-Apr 4-Apr
E 5 5-May 3-May 2-May
F 6 2-Jun 31-May 30-May
G 7 30-Jun 28-Jun 27-Jun
H 8 28-Jul 26-Jul 25-Jul
I 9 25-Aug 23-Aug 22-Aug
J 10 22-Sep 20-Sep 19-Sep
K 11 20-Oct 18-Oct 17-Oct
L 12 17-Nov 15-Nov 14-Nov
M 13 15-Dec 13-Dec 12-Dec

in two dimensions: per AIRAC season and per week. In subsection 4.3, we quantify the
seasonal and weekly variation patterns using the coefficient of variation. We generate the
distributions of the metrics in order to find out whether there exist any distributional
properties in subsection 4.4.

4.1. Temporal evolution overview

As discussed in Section 3, we have 217 days in our dataset. We consider each of the 217
days as one network. For each day, we compute the seven network centrality measures.
The results for the two network layers are shown in Figure 2 and Figure 3, where the
horizontal coordinate represents the time interval under investigation: the first seven days
for each AIRAC cycle, and the vertical coordinate shows the values for the seven network
centrality measures. An AIRAC cycle always starts on Thursday, the first seven days are
represented by Arabic numbers (1-Thursday, 2-Friday, 3-Saturday, 4-Sunday, 5-Monday,
6-Tuesday, and 7-Wednesday). The thirteen AIRAC cycles in each year are represented
by Alphabetical letters, as summarized in Table 2 in Section 3. For example, the label
12A1 stands for the first day (1-Thursday) in the first AIRAC cycle (A) in 2012.

In the air navigation route network, the first three metrics (degree, degree weighted
by the number of flights, and clustering coefficient) show strong summer peaks during
the year. This indicates that air navigation nodes are more connected in summer than in
winter. One reason is that in summer there are more passengers traveling for vacations,
the airlines need to provide more capacity (either increase the number of flights or adjust
the aircraft size) in order to meet the increased demand of passengers. When the airlines
choosing to increase the number of flights, these flights need to follow the air routes in the
airspace. Thus, there are more connections among the air navigation nodes in summer
than in winter.

Note that the air navigation route network provides the infrastructure for airlines to
operate their aircraft, it does not change significantly in different AIRAC cycles. When
building the air navigation route network, we add an edge between two air navigation
points if there is a flight directly flying through them. Therefore, it is these individual
flights leading to the dynamics of the air navigation route network.

In the airport network, we find that the airports are also more connected in summer
than in winter. We can explain the summer peak of the airports similarly as in the air
navigation route network. On the other hand, the betweenness centrality and weighted
betweenness centrality of the airports decrease in summer. One explanation could be
that in summer there are more connections between the airports, the increased number
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Figure 2.: Temporal evolution of the seven metrics in the air navigation route network

of connections provides more alternative paths in the network. Therefore, the probability
that one airport is on the shortest paths between other airports is decreased in summer.
Further, the clustering coefficient, closeness centrality, and weighted closeness centrality
show strong weekly periodicity in the airport network.

Similar as the case of the air navigation route network, the airport network serves as the
infrastructure for passengers to travel between their origin and destination airports. The
decreased number of airports at weekends is because there are less passengers traveling
at weekends than during the weekdays: Figure 4 shows the number of passengers traveled
in the world during the first week of the 10th AIRAC cycle in 2013 (from 19 September
to 25 September)3.

Moreover, we summarize the mean and standard deviation (SD) of the seven network
metrics in Table 4. We find that the air navigation route network is rather sparsely
connected comparing to the airport network. The air navigation nodes are less clustered
than the airport nodes. Our finding verifies the previous work on the comparison of
the Chinese air navigation route network and the Chinese airport network on a large
scale (Cai et al. 2012).

4.2. Temporal evolution per AIRAC season and per week

In this subsection, we analyze the network metrics in two dimensions: per AIRAC season
(from A to M ) and per week (from Thursday to next Wednesday). Table 3 takes the

3The data comes from the Sabre Aviation Data Intelligence (ADI): http://www.airdi.net
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Figure 3.: Temporal evolution of the seven metrics in the airport network

weighted degree as an example to illustrate how to aggregate the network metrics per
season and per week. In the first step, we compute the average weighted degree for season
A in 2012 and 20134. In this example, the average weighted degree for season A is 85.
In the second step, we compute its relative change based on the mean value (102) in the

thirteen AIRAC cycles: (85−102)
102 ∗ 100% = −16.67%. In a similar way, we compute the

average weighted degree for all Thursdays in 2011, 2012, and 2013. Then we calculate
its relative change based on the mean value in a week. The relative changes of the seven
metrics for the two network layers are presented in Figure 5 and in Figure 6, respectively.

In the air navigation route network, the general trend is that seasonal variation is
larger than weekly variation. The larger seasonal variation indicates that the air naviga-
tion route network is dominated by summer/winter seasonal dynamics. Especially, the
weighted degree shows the strongest seasonal variation among the seven metrics. The
increased number of flights in summer leads to the strongest seasonal variation of the
weighted degree in the air navigation route network.

The degree, clustering coefficient, and closeness centrality in the air navigation route
network show slight peaks in summer. This indicates that air navigation nodes are more
connected and have shorter distance in summer than in winter. One explanation is that
in summer there are more flights passing through air navigation nodes.

Further, the betweenness centrality, weighted betweenness centrality, and weighted
closeness centrality show slight minimums in summer. One explanation would be the

4Note that only the DDR dataset for the second half year of 2011 is available, e.g., from I to M. Thus, the season
A in 2011 is not considered in the current study.

8



March 29, 2014 Transportmetrica B: Transport Dynamics NetworkEvolutionV3

10,000,000

10,500,000

11,000,000

11,500,000

12,000,000

12,500,000

13,000,000

THU FRI SAT SUN MON TUE WED

N
u
m

b
er

 o
f 

p
as

se
n
g
er

s 

 The first week in the 10th AIRAC cycle in 2013 (19-25 September)  

Figure 4.: Number of passengers traveled in the world during the first week of the 10th
AIRAC cycle in 2013 (from 19 September to 25 September)

Table 3.: An example of the aggregation of the network metrics in two dimensions: per
AIRAC season and per week

Season W-Degree Variation Week W-Degree Variation

A 85 -16.67% THU 101 -0.79%
B 85 -16.14% FRI 105 3.43%
C 89 -12.93% SAT 102 0.41%
D 98 -3.85% SUN 104 2.05%
E 105 3.02% MON 103 0.94%
F 111 8.90% TUE 99 -2.94%
G 118 15.93% WED 99 -3.10%
H 118 15.92%
I 119 16.94%
J 113 11.11%
K 106 4.26%
L 88 -13.84%
M 87 -14.52%

increased number of flights in summer provides more alternative paths between air navi-
gation nodes in the network. The likelihood that an air navigation node is on the shortest
paths between all other nodes is decreased in summer.

In the airport network, there exist both strong seasonal variation and weekly variation.
In particular, the weighted closeness centrality shows the strongest peak at weekends;
while the degree and weighted degree show the second strongest peaks in summer.

Note that we use the reciprocal of the number of available seats to weight the airport
network, with the argumentation that larger number of available seats corresponds to
a smaller effective distance between two nodes (Dall’Asta et al. 2006; Rozenblat et al.
2013). Since there are less passengers traveling at weekends, the values of the weighted
closeness centrality are higher at weekends.

The strong summer peak of the degree can be explained by the increased number of
flights in summer. The weighted degree is calculated by the sum of the available seats
provided by one airport. In general, more flights could provide more capacity (more
available seats). Thus, the weighted degree has a peak in summer.

The clustering coefficient and the betweenness centrality in the airport network keep
stable during the season; while the betweenness centrality and the weighted betweenness
centrality have slight minimums in summer. The reason is similar as the case in the
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Degree W-Degree Clustering Betweeness Closeness W-Betweeness W-Closeness day Degree W-Degree Clustering BetweenessCloseness W-BetweenessW-Closeness

A -2.82% -16.76% -5.60% 5.42% -3.83% 3.73% 4.22% THU 0.15% -0.79% 2.03% 0.06% -0.77% -0.86% 0.48%

B -2.68% -16.14% -5.29% 5.63% -4.12% 3.76% 6.44% FRI 1.31% 3.43% 2.74% -1.93% 0.62% -1.91% -0.14%

C -2.45% -12.93% -5.88% 4.25% -4.08% 2.73% 4.04% SAT -0.71% 0.41% -3.92% 0.75% 0.94% 2.22% -0.40%

D -0.92% -3.85% -1.35% 0.31% -1.89% -1.30% 3.61% SUN -0.09% 2.05% -1.70% -0.66% 1.45% 1.61% -3.16%

E 0.20% 3.02% 0.80% -1.66% 0.22% -2.38% 0.64% MON 0.17% 0.94% 0.55% -0.48% 0.16% -0.72% 0.41%

F 1.46% 8.90% 2.56% -3.62% 1.02% -3.26% -1.56% TUE -0.18% -2.94% -0.25% 0.99% -1.04% -0.82% 1.50%

G 2.99% 15.93% 4.67% -6.26% 3.23% -5.27% -4.07% WED -0.65% -3.10% 0.54% 1.27% -1.36% 0.48% 1.31%

H 3.11% 15.92% 4.12% -6.81% 3.87% -4.90% -3.33%

I 3.05% 16.94% 6.85% -2.24% 2.11% 1.37% -7.15%

J 1.69% 11.11% 3.82% -0.92% 1.16% 1.21% -6.38%

K 0.32% 4.26% 1.72% 0.12% 1.20% 0.54% -3.86%

L -2.27% -13.84% -3.98% 3.46% -0.82% 1.74% 5.10%

M -2.05% -14.52% -4.43% 1.41% 0.07% -0.26% 5.62%
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Figure 5.: Variations of the seven metrics in the air navigation route network
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Figure 6.: Variations of the seven metrics in the airport network

air navigation route network: There are more connections between airports in summer,
the increased number of connections provides more alternative paths in the network.
Thus, the probability that one airport is on the shortest paths between other airports is
decreased in summer.

4.3. Coefficient of variation per AIRAC season and per week

In this subsection, we quantify the temporal evolution of seven metrics in the two network
layers. Coefficient of Variation (CoV) is one widely used statistic for the comparison
between different data series with different scales (Hallgrâimsson and Hall 2005). The
CoV is defined as the ratio of the standard deviation to the mean. A higher CoV indicates
a larger variation when comparing one data series to another.

We compute the seasonal CoV and weekly CoV for the two network layers and the
results are presented in Table 4. For each network metric, the one with a higher CoV
dominates the temporal evolution of the network. For example, in the air navigation
route network, the seasonal CoV for weighted degree is 13.40%; while its weekly CoV is
2.45%. Here, 13.40% means that the standard deviation of the weighted degree is 13.40%
of its mean. Higher value of seasonal CoV indicates that the air navigation route network
is dominated by the summer/winter seasonal variations.

In the airport network, the weighted closeness centrality has the maximum weekly CoV
(13.07%), while its seasonal CoV is 2.59%. Larger value of weekly CoV indicates that the
airport network is dominated by the peak/off-peak weekly patterns. Furthermore, the
degree has the second highest seasonal CoV (10.33%) and the weighted degree has the
third highest seasonal CoV (9.28%). These two higher values of seasonal CoV indicate
that the airport network also shows the summer/winter seasonal variations.
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Figure 7.: Daily distributions of the metrics in the air navigation route network

4.4. Distributional properties of the network metrics

In order to find out whether there exist any distributional properties of the network
metrics, the distributions of the metrics for the two network layers are generated as
follows. At first, based on Figure 5 and in Figure 6, we select four extreme days for
each metric: the maximum value per season with the maximum value per week and
the minimum value per season with the minimum value per week for 2012 and 2013,
respectively. For instance, in the air navigation route network (Figure 5), for the metric
degree, season H has the maximum value (increased by 3.11% relative to the mean value
5.16) and season A has the minimum one (decreased by by 2.82% relative to the mean
value 5.16); while Friday (indexed by 2) has maximum degree and Saturday (indexed by
3) has the minimum one during a week. Thus, we select the Friday in season H (labeled
by H2 ) and the Saturday in season A (labeled by A3 ) for the year 2012 and the year
2013. We present the cumulative degree distributions for these four days (2012 H2, 2013
H2, 2012 A3, and 2013 A3 ) in Figure 7 (a).

In both network layers, the distributions of the degree and the weighted degree for
the four selected extreme days almost coincide with each other. This is because most
nodes have only a few connections with other nodes and a few hub nodes have large
number of connections. For instance, in the air navigation route network, 90% of the
nodes have a degree less than 10 (Figure 7 (a)) in these four selected extreme days. The
difference between the distributions of these four days becomes slightly obvious when
using the number of flights to as the edge weight. This finding confirms the results of the
daily distributions for the degree and the weighted degree within a week for the Chinese
airport network (Li and Cai 2004).

The distributions of the betweenness centrality and the weighted betweenness centrality
for the four selected extreme days also coincide with each other. This is also because
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Figure 8.: Daily distributions of the metrics in the airport network

in both network layers, most nodes have rather small betweenness centralities. Small
betweenness centrality indicates that most nodes are not part of the shortest paths within
the network. Any removal of these nodes would not easily collapse the whole network.

The distributions of the closeness centrality and the weighted closeness centrality for
the four selected extreme days still coincide with each other regarding most nodes with
small values, but they are distinguishable from each other regarding a few nodes with
high values. The difference between the distributions of these four days becomes more
obvious when taking into account the traffic in the network.

In summary, from the distributions of the metrics for the four selected extreme days,
we discover that there exist hub nodes in both network layers. These hub nodes have
large number of connections with other nodes, they are on many shortest paths within
the network, and they have ease of assess to all other nodes in the network. These hub
nodes are potentially bottlenecks in the air transportation systems. For instance, a node
with high degree or betweenness centrality is most likely to be congested (Cook et al.
2012). It is crucial to validate this proposition with empirical data in further research.

5. Conclusions

The goal of this research was to study the temporal evolution of the European air trans-
portation system. We analyzed two network layers between 2011 and 2013: the air nav-
igation route network and the airport network. For each network layer, we investigated
the temporal evolution in two dimensions: per season and per week. We quantified the
seasonal and weekly variation patterns by the coefficient of variation. Our main findings
are summarized in Table 4.

We found out that the air navigation route network is the dominated by summer/winter

12



March 29, 2014 Transportmetrica B: Transport Dynamics NetworkEvolutionV3

Table 4.: Summary for the temporal evolution of the European air transportation system

Metrics Mean SD Seasonal Weekly Variation pattern

CoV CoV

Air navigation route network

Degree 5.16 0.12 2.32% 0.67% Seasonal (peak in summer)

Weighted degree 102 14 13.40% 2.45% Seasonal (peak in summer)
Clustering coefficient 0.0713 0.0040 4.49% 2.26% Seasonal (peak in summer)

Betweenness centrality 0.0015 0.0001 4.09% 1.12% Seasonal (peak in winter)
Closeness centrality 0.0630 0.0027 2.68% 1.07% Seasonal (peak in summer)

Weighted betweenness centrality 0.0027 0.0002 3.06% 1.49% Seasonal (peak in winter)

Weighted closeness centrality 0.0104 0.0007 4.84% 1.56% Seasonal (peak in winter)

Airport network

Degree 24.21 2.61 10.33% 4.11% Seasonal (peak in summer)
Weighted degree 9,648 944 9.28% 4.09% Seasonal (peak in summer)

Clustering coefficient 0.3931 0.0149 1.22% 2.95% Weekly (peak at weekends)

Betweenness centrality 0.0021 0.0001 5.30% 1.99% Seasonal (peak in winter)
Closeness centrality 0.3440 0.0083 1.47% 1.84% Weekly (peak at weekends)

Weighted betweenness centrality 0.0034 0.0002 4.57% 1.79% Seasonal (peak in winter)

Weighted closeness centrality 61 9 2.59% 13.07% Weekly (peak at weekends)

seasonal variations; while the airport network shows both summer/winter seasonal varia-
tions and peak/off-peak weekly patterns. Furthermore, the air navigation points are more
clustered and have shorter distance in summer than in winter; while the airports are more
clustered and have shorter distance during the weekdays than the weekend. From the
distributions of the metrics, we found that there are hub nodes existing in both network
layers. These hub nodes are potentially bottlenecks of the air transportation systems and
should draw more attention in the network design in the future.

The temporal evolution analysis can help the stakeholders in the air transportation sys-
tems to monitor the network performance over time and to better understand the network
dynamics. Based on the detected summer/winter seasonal variations and peak/off-peak
weekly patterns, the airspace configurations could be adapted in time in order to meet
the changed demands.

Future research could focus on the interdependence among the multi-layer structure-
function networks in the air transportation systems: passenger flow network, airport
network, and air navigation route network. Especially, the robustness of the interdepen-
dent networks against cascading failures: How the failure of the nodes or edges in one
network leads to the failure of dependent nodes in the other networks (Buldyrev et al.
2010).
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Rozenblat, Céline, Guy Melançon, Romain Bourqui, and David Auber. 2013. “Comparing Mul-

tilevel Clustering Methods on Weighted Graphs: The Case of Worldwide Air Passenger Traffic
2000–2004.” In Methods for Multilevel Analysis and Visualisation of Geographical Networks,
141–154. Springer.

Vitali, S., M. Cipolla, G. Gurtner, F. Lillo, V. Beato, and S. Pozzi. 2012. “Statistical regularities
in ATM: Network properties, trajectory deviations and delays.” In Second SESAR Innovation
Days, .

Wei, P., L. Chen, and D. Sun. 2014. “Algebraic connectivity maximization of an air transportation
network: The flight routes addition/deletion problem.” Transportation Research Part E: Lo-
gistics and Transportation Review 61 (0): 13–27. http://www.sciencedirect.com/science/

article/pii/S1366554513001750.
Yang, Ta-Hui. 2008. “Airline network design problem with different airport capacity con-

straints.” Transportmetrica 4 (1): 33–49. http://www.tandfonline.com/doi/abs/10.1080/

18128600808685680.
Yang, Ta-Hui. 2010. “A two-stage stochastic model for airline network design with uncertain de-

mand.” Transportmetrica 6 (3): 187–213. http://www.tandfonline.com/doi/abs/10.1080/

18128600902906755.
Zanin, Massimiliano, and Fabrizio Lillo. 2013. “Modelling the air transport with complex net-

works: A short review.” European Physical Journal Special Topics 215: 5–21.
Zhang, Hai-Tian, Tao Yu, Jian-Ping Sang, and Xian-Wu Zou. 2014. “Dynamic fluctuation

model of complex networks with weight scaling behavior and its application to airport net-
works.” Physica A: Statistical Mechanics and its Applications 393 (0): 590–599. http:

//www.sciencedirect.com/science/article/pii/S0378437113008352.
Zhang, Jun, Xian-Bin Cao, Wen-Bo Du, and Kai-Quan Cai. 2010. “Evolution of Chinese airport

network.” Physica A: Statistical Mechanics and its Applications 389 (18): 3922–3931.

15


