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Abstract—In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision
histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA
sequences at an ever increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA
sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a
key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a
to-be-compressed input and a known reference sequence, gained a lot of interest in this field.
In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called
FRESCO, Framework for REferential Sequence COmpression. Our basic compression algorithm is shown to be 1-2 orders of
magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques
to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence and
2) rewriting a reference sequence to allow for better compression. In addition, we propose a new way of further boosting the
compression ratios by applying referential compression to already referentially compressed files (second-order compression).
This technique allows for compression ratios way beyond state-of-the-art, for instance, 4000:1 and higher for human genomes.
We evaluate our algorithms on a large data set from three different species (more than 1000 genomes, more than 3 TB) and
on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly-similar sequences at high
compression ratios is possible on modern hardware.

Index Terms—Sequences, referential compression, second-order compression, compression heuristics
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1 INTRODUCTION
Since the release of the first human genome [1], the
cost for sequencing has rapidly decreased. As of now,
the price is at approximately 2,000 USD per genome
and is expected to fall further once third genera-
tion sequencing techniques become available [2]. In
contrast to previous years, where typically only one
individual of a species was sequenced (like humans,
mice, E.coli, etc.), the decrease in costs makes it possi-
ble to sequence large samples of a given population.
Such studies, especially on humans, are interesting
from many perspectives, such as correlation of specific
mutations to the risk of developing a disease, to fine-
tuned dosages of therapies, or simply to better under-
stand the relationship between genotype and pheno-
type. Examples are the 1000-Genomes project [3]; ac-
tivities of the international cancer sequencing consor-
tium [4]; and the UK10K project [5]. These large-scale
projects are generating comprehensive surveys of the
genomic landscape of various diseases by sequencing
thousands of genomes [6]. Managing, storing and
analyzing this quickly growing amount of data is chal-
lenging [7]. It requires large disk arrays for storage,
and large compute clusters for analysis. A recent sug-
gestion is to use cloud infrastructures for this purpose
[8]–[10]. However, before being analyzed in a cloud,
data first has to be shipped to the cloud, making
bandwidth in file transfer one of the major bottlenecks
in cloud-based DNA analysis [11]. Accordingly, se-
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quence compression is a key technology to cope with
the increasing flood of DNA sequences [12], [13].

To store a complete genome of a human being,
one needs roughly 3 GB of space, using 1 Byte per
nucleotide. Since 8 Bits can encode 256 different sym-
bols in total, this space can be reduced by encod-
ing each nucleotide with less than 8 Bits. Substitu-
tional or statistic compression schemes can reduce
the space requirements by up to 6:1 (one base is
encoded with up to 1.3 Bits) [14], [15]. However,
in many projects only genomes from one species
are considered. This means that projects often deal
with hundreds of highly similar genomes; for in-
stance, two randomly selected human genomes are
identical to an estimated 99.9%. Similarity between
biological sequences can be exploited using so-called
referential compression schemes [16], which encode
the differences of an input sequence with respect to
a reference sequence. Using space-efficient encoding
of differences and clever algorithms for finding long
stretches of DNA without differences, the best current
referential compression algorithm we are aware of
reports a compression ratios between 500:1 and 1000:1
for human genomes [17].

In this paper, we propose FRESCO, a Framework
for REferential Sequence COmpression. It builds on a
fast referential compression algorithm and its source
code is released for free extension by the community.
Our implementation achieves similar compression
rates as existing referential compression implemen-
tations, while being at least one order of magnitude
faster. In addition, we discuss three methods on how
to increase compression ratios in FRESCO:

• Selection of a reference: We show that the choice
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of the reference has an impact on the compression
ratio. Our new approach is to analyze already
referentially compressed sequences for choosing
a good reference. This can decrease the size of
compressed sequences by up to 12 percent.

• Rewriting a reference: Our new approach is to an-
alyze already referentially compressed sequences
and extract frequently occurring mismatches with
respect to the reference. In a second step, the
reference is rewritten based on most often oc-
curring mismatches. This can decrease the size
of compressed sequences by up to 35 percent.

• Second-order compression: We apply referential
compression to referentially compressed files.
This can further decrease the size of compressed
sequences by up to 75 percent, achieving com-
pression rates of 4000:1 and more for human
genomes, while still being more than 5 times
faster than existing algorithms.

We evaluate our algorithms on datasets from three
species: 1092 human genomes, 180 genomes of Ara-
bidopsis thaliana, and 38 yeast genomes.

In addition, we show how our compression al-
gorithm can be used to compress non-biological
datasets. Highly-similar documents are often found
in version control systems, which have to store mul-
tiple versions of the same document. For instance,
Wikipedia stores the history of each page with up to
several thousand versions per page. The differences
between two consecutive versions are often quite
small, e.g. removing typos or adding a new single
paragraph. In our evaluation, we show how FRESCO
can be applied directly for compressing different ver-
sions of a Wikipedia-page against the base page.

The remaining part of this paper is structured as
follows. We discuss related work on compression of
sequences in Section 2. We motivate and formally de-
fine our data structures and algorithm for referential
compression in Section 3. In Section 4, we discuss
two heuristics for increasing compression ratio. First,
we propose a method to select a very good reference
sequence from a set of candidate sequences, and
second, we discuss how to rewrite a fixed reference to
allow encoding of longer matches into the reference
for most of the to-be-compressed sequences. A third
new method for increasing compression ratio is pre-
sented in Section 5, called second-order compression.
We evaluate all our methods in Section 6. Section 7
describes the open-source release of FRESCO and the
paper is concluded in Section 8.

2 RELATED WORK

Naive bit encoding algorithms exploit encodings of two
or more symbols into one byte, using fixed-length
encodings [18]. A straight-forward technique is the
encoding of one base with two Bits via bit encoding.
In this case, the compression ratio is fixed at 4:1.
Dictionary-based algorithms replace repeated substrings
by references to a dictionary (a set of previously
seen or predefined common strings), which is built

at runtime or offline [19]–[21]. Lempel-Ziv-based com-
pression algorithms, such as LZ77 or LZ78, are promi-
nent examples of dictionary-based algorithms [22].
These methods achieve compression ratios between
4:1 and 6:1 depending on the frequency of repeats in
the genomes being compressed. Statistical compression
algorithms derive a probabilistic model from the input.
Based on partial matches of subsets of the input, this
model predicts the next symbols in the sequence. High
compression ratios are possible if the model always
indicates high probabilities for the next symbol, i.e.
if the prediction is reliable [23]–[25]. One of the most
commonly used and best understood statistical encod-
ings is Huffman encoding [26]. The compression ratio
of statistical algorithms is usually between 4:1 and 8:1.

Referential compression algorithms recently emerged
as a fourth type of sequence compression algo-
rithm. Similar to dictionary-based techniques, these
algorithms replace long substrings of the to-be-
compressed input with references to another string.
However, these references point to external sequences,
which are not part of the to-be-compressed input data.
Furthermore, the reference is usually static, while
dictionaries are being extended during compression
phase. During the last years several referential com-
pression algorithms emerged [17], [27]–[30].

In [27], RLZ, an approach based on self-indexing
is described. It works as follows: the algorithm com-
presses input sequences with LZ77 encoding relative
to the suffix-array of a reference sequence. Raw se-
quences are never stored; even very short matches to
the reference are encoded. In [28], RLZopt is presented
as an extension of RLZ. The key aspect is longest
increasing subsequence computation that allows to
efficiently encode positions. It incorporates several
improvements, including local look-ahead optimiza-
tion. An LZ77-style compression scheme, called GDC,
based on RLZopt was recently proposed in [17]. The
main difference is that more than one reference se-
quence is taken into account and a way for encoding
approximate matches is introduced. Also, the Lempel-
Ziv parsing scheme originally based on hashing is
slightly altered in that the algorithm considers trade-
offs between the length of matches and distance be-
tween matches. Compression is performed on input
blocks with shared Huffman codes, enabling random
access. Another LZ77-style compression scheme with
random access is proposed in [30].

[31] presented a compression scheme inspired by
image compression techniques based on controlled
loss of precision. GRS [32], is another tool for referen-
tially compressing whole genome sequences against
a user-selected reference. Depending on a sequence
similarity score, the to-be-compressed sequence is
optionally cut into blocks first. Then, for each block
(or the whole input sequence) the longest shared se-
quence with the reference is extracted. The remaining
differences against the reference are encoded with
Huffman coding. The authors report compression
times of around half an hour for small human chro-
mosomes. GReEn, an expert-based reference compres-
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Algorithm 1 Referential Compression Algorithm

Input: to-be-compressed string s and reference string
ref
Output: referential compression comp(s, ref) of s with
respect to ref

1: Let comp(s, ref) be an empty list
2: while |s| 6= 0 do
3: Let pre be the longest prefix of s occurring in ref ,

and let i be a position of an occurrence of pre in ref
4: if s 6= pre then
5: Add 〈i, |pre|, s(|pre|)〉 to the end of comp(s, ref)
6: Remove the first |pre|+ 1 symbols from s
7: else
8: Add 〈i, |pre| − 1, s(|pre| − 1)〉 to the end of

comp(s, ref)
9: Remove the prefix pre from s

10: end if
11: end while

sion scheme, was recently proposed in [29]. Inspired
by compression scheme XM [24] and the work on
GRS, GReEn features a copy expert, which tries to
find matching k-mers between input and reference
sequences. Raw characters in the form of arbitrary
ASCII characters are encoded with arithmetic encod-
ing. The authors report compression rates for human
genomes similar to GRS, while being ten times faster
on average.

Compression of entire genomes is mostly applied in
projects where genomes are first assembled and then
stored in assembled form. However, in re-sequencing
projects the step of assembly is often omitted, also due
to the rather short reads in current next generation
sequencing devices. Therefore, compressing read sets
is an important topic as well [33]–[37].

3 REFERENTIAL COMPRESSION
In the following, we describe our referential com-
pression algorithm. First, we discuss three different
approaches for storing reference entries and second,
we describe the compression algorithm.

3.1 Representation of Matches into a Reference
A string s is a finite sequence over an alphabet Σ.
Below we use the terms string and sequence as syn-
onyms. The length of a string s is denoted with |s|
and the substring starting at position i with length
n is denoted s(i, n). s(i) is an abbreviation for s(i, 1).
All positions in a string are zero-based, i.e. the first
character is accessed by s(0). The concatenation of two
strings s and t is denoted with s◦t. A string t is a prefix
of a string s, if s = t ◦ u, for some string u. A string
s is a substring of string t, if there exist two strings u
and v (possibly of length 0), such that t = u ◦ s ◦ v.

Referentially compressing a string means to encode
the string as a concatenation of substrings from a
given reference string. There exist several options for
choosing a representation of matches to a reference
sequence. One obvious choice is to encode a sequence
as a set of pairs, where each pair is composed of the
position of a match and a length of a match [17],
[27]. Another option is to encode parts of a sequence
with original text entries instead of matches into the

reference [28], [38]. This approach is advantageous
if the referential match entries are often very short
and therefore a compact representation of the text
uses less space than a referential match entry. A third
option is to encode each match into a reference as a
triple, composed of the start position of a match, the
length of a match, and the first character following
the match. This approach shows very good results, if
to-be-compressed sequence and reference are highly
similar and often only differ by single nucleotide
polymorphisms (SNPs).

Example 1: Given a reference ref =
ATGCGAGCT , sequence s = ATTCGAGACT
could be represented as

• Option 1: [〈0, 2〉, 〈1, 1〉, 〈3, 4〉, 〈0, 1〉, 〈7, 2〉]
• Option 2: [〈0, 2〉, T, 〈3, 4〉, A, 〈7, 2〉]
• Option 3: [〈0, 2, T 〉, 〈3, 4, A〉, 〈7, 1, T 〉]
The strings ref and s have an edit distance of 2

(replacing one G with a T , inserting an A). Although
both strings are quite similar, we have already 5
entries for Option 1 and Option 2. Entry (0, 1) is an
example for a spurious reference match in Option 1,
which can be avoided. In this work, we pick the third
option for representing matches into a reference, since
many differences of biological sequences belonging
to the same species are often caused by SNPs. We
have chosen the following definition of a match into
a reference:

Definition 1: A referential match entry (RME) is a
triple 〈start, length,mismatch〉, where start is a num-
ber indicating the start of a match within the refer-
ence, length denotes the match length, and mismatch
denotes a symbol. The length of a referential match
entry rme, denoted |rme|, is length + 1.

Definition 2: Given strings s and ref , a referential
compression of s with respect to ref , is a list of ref-
erential match entries,

comp(s, ref) = [〈start1, length1,mismatch1〉, ...,
〈startn, lengthn,mismatchn〉],

such that
(ref(start1, length1) ◦mismatch1)◦
(ref(start2, length2) ◦mismatch2) ◦ ...◦
(ref(startn, lengthn) ◦mismatchn) = s.

Sometimes we use rc instead of comp(s, ref), if
s and ref are known from the context. The offset
of a referential match entry rme in a referential
compression comp(s, ref) = [rme1, ..., rmen]
corresponds to the position of the entry in
the uncompressed string and is denoted with
offset(comp(s, ref), rmei). Given a referential
match entry 〈start, length,mismatch〉, we write the
expression (start, length,mismatch) ∈ comp(s, ref),
if and only if 〈start, length,mismatch〉 is an element
in the referential compression comp(s, ref).
The inverse of a referential compression is the decom-
pression of a referential compression with respect to
the reference, such that we obtain the original input
string.

Example 2: An example referential compression
for the string CGGACAAACTGACGTTCGACG
with respect to the reference
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

G A C G A T C G A C G A C G G A C A A A C A

C A A A C T G A C G T

C G G A C A A A C T G A C G T T C G A C G

C G G A C A A A C T G A C G T T C G A C G

C G G A C A A A C T

G A C G T

T C G A C G

C G G A C A A A C T G A C G T T C A A C G

A A A C C A A A C T G A C G T T C G A C G

G A C G A T C G A C G A C G G A C A A A C A

C G G A C A A A C T G A C G T T C G A C G

C G G A C A A A C T

G A C G T

T C G A C G

C G G A C A A A C T G A C G T T C A A C G

A A A C C A A A C T G A C G T T C G A C G

<12,9,T> <10,4,T> <5,5,G> 

Reference 

Input for compression 

Referential match entries 

(12,9,T) (10,4,T) (5,5,G) 

Input for compression 

Referential match entries 

Match 3 Match 1 
Match 2 

(4+2-1) symbols (4+2-1) symbols 

Overlap: 2*(4+2-1)+1 symbols 

Match 4 

Fig. 1: Example for one referential compression

GACGATCGACGACGGACAAACA is shown
in Figure 1. The input is compressed into three
referential match entries. The first referential match
entry is 〈12, 9, T 〉, which describes a match for the
string CGGACAAACT at position 12 of the reference.
The mismatch character is T (in the reference an A
is found instead of a T ). Although the string of the
last RME can be completely found in the reference,
we only encode the first five symbols as a link to
the reference and add G as a mismatch symbol.
Alternatively, the last RME could also be encoded as
〈5, 6, 〉, where is a special symbol not occurring in
the input alphabet. We think that algorithms working
with compressed representations (for instance when
searching compressed sequences) are slightly easier
to implement without the introduction of such a
special mismatch symbol. The offset of referential
match entry 〈5, 5, G〉 is |〈12, 9, T 〉|+ |〈10, 4, T 〉| = 15.

3.2 Compression Algorithm
The less referential match entries we require, the
longer the matches (i.e. the shared substrings).
Therein, for long matches, it does not matter, at which
position of the reference these matches lie; because
the gain from compressing a long match as a ref-
erential match entry easily outweighs the space for
representing the position of a match. We exploit this
observation in Algorithm 1. To create a referential
compression of input string s with respect to ref , the
algorithm matches prefixes of s with substrings of ref
using a compressed suffix tree on ref . The longest
such prefix is removed from s, encoded as a RME
and added to comp(s, ref). The algorithm terminates
once s contains no more symbols. Please note that a
referential compression of a string with respect to a
reference is not unique. A simple example for a non-
unique referential compression with respect to the
reference ref = ATA is comp(AA, ref) = [〈0, 1, A〉]
and comp(AA, ref) = [〈2, 1, A〉].

Algorithm 1 is a greedy algorithm, i.e. it always
takes the longest prefix of the to-be-compressed se-
quence which can be found in the reference. The
compression algorithm runs in O(n), where n is the
maximum length of the strings (reference and to-
be-compressed). Any greedy algorithm computes a
minimal representation, if the dictionary is fixed and
the size of a dictionary entry is constant [39]. Since we
apply a kind of delta-encoding for storing positions,
the algorithm is not optimal. In delta-encoding the
position of a RME is encoded as the difference to
the position of the previous RME plus its length
plus 1, for instance, [〈5, 5, G〉〈12, 5, G〉] is stored as
[〈5, 5, G〉〈1, 5, G〉], since 12 − (5 + 5 + 1) = 1. If to-
be-compressed string and reference string are highly

similar, this delta-encoding reduces space require-
ments for compressed representations by up to 4

5 in
our experiments for human genomes. Experiments
for small strings show that the results of greedy
compression algorithms are fairly close to non-greedy
algorithms [40]. Note that Algorithm 1 is lossless, i.e.
we can recreate the original string completely from
the compressed representation. The decompression
of a single RME is the substring of the reference
string with the mismatch character concatenated to
the end. For decompression of a referentially com-
pressed string, we traverse the referential compression
from left to right and replace each RME with its
decompressed string.

4 IMPROVING COMPRESSION RATIOS

The reference sequence is the main factor determining
compression ratios, given a fixed encoding of referen-
tial match entries. For instance, if a human genome
is referentially compressed against a mouse genome,
the ’compressed’ output is actually larger than the
human input genome. This is caused by many very
short referential match entries (around 12 bases long);
for each entry we have to encode a position, length,
and mismatch character.

Even inside a species, the reference sequence has
a significant impact on the compression ratio, for
instance, if the reference and to-be-compressed input
are closely related by ancestral relationships. With
increasing similarity between reference and to-be-
compressed sequence, longer referential match entries
can be found and the compression ratio is increasing.

Definition 3: Let sersize(s, ref) be the serialized size
of comp(s, ref). For a collection S = {s1, ..., sn}, let
sersize(S, ref) =

∑
i≤n sersize(si, ref). The problem

of finding an optimal reference for S is defined as
follows: Find a reference ref1, such that there does
not exist a reference ref2 with sersize(S, ref2) <
sersize(S, ref1).

Note that we leave the definition of serialized size
open: it could be the number of referential match
entries or the number of bytes necessary for storage.
Finding an optimal reference for a collection of se-
quences is a hard problem: there are 4n (5n, including
N ) possible references of length n. Since the length of
a chromosome is up to several hundred megabases, an
exhaustive enumeration of all reference sequences is
impossible. In the following, we describe two heuris-
tics for the problem of finding an optimal reference.
The first technique, reference selection, restricts the
set of reference candidates. The second technique,
reference rewriting, improves an existing reference by
rewriting it based on the to-be-compressed sequences.

4.1 Selecting a good Reference
First, we discuss the selection of a best reference
sequence for a single to-be-compressed sequence.

Definition 4: Given a sequence s and a set of candi-
date references {ref1, ..., refm}, refi is called a best
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Algorithm 2 Reference Selection RSbitX

Input: set of to-be-compressed sequences s1, ..., sn, set
of candidate reference sequences ref1, ..., refm, a base
reference sequence refbase, and a speedup value X
Output: index b for best reference

1: Compute comp(refi, refbase) for all 1 ≤ i ≤ m
2: for 1 ≤ j ≤ n do
3: Split sj into 1000 blocks b1, ..., b1000 of equal length
4: Let sxj be the concatenation of each X-th block of

b1, ..., b1000
1

5: end for
6: Compute comp(sxj , refbase) for all 1 ≤ j ≤ n
7: for 1 ≤ i ≤ m do
8: Let vali = 0
9: for 1 ≤ j ≤ n do

10: vali = vali +
|rsim(comp(sxj , refbase), comp(refi, refbase))|

11: end for
12: end for
13: Find the smallest valmin from val1, ..., valm and let b =

min

reference iff there does not exists a j 6= i with
|comp(s, refj)| < |comp(s, refi)|, where |X| denotes
the size of a referentially compressed sequences X .

Note that there can exist more than one best refer-
ence, in which case we would randomly choose one.
In our experiments this case never occurred.
A naive strategy to find the best reference sequence
is to compress all the to-be-compressed sequences
against all possible reference sequences and select the
reference that yields the least number of referential
match entries, named RSbest. If sequences are long,
as in our case, this is a highly time consuming un-
dertaking as we need to compute n ∗ m referential
compressions, where m is the number of candidate
reference sequences and n is the number of to-be-
compressed sequences. If one wants to compress 1000
sequences, choosing the best reference following this
strategy would take several weeks; however, we shall
use this strategy on a sample to evaluate the heuristics
described next.

Our approach to solving the problem is as follows:
Instead of compressing a to-be-compressed sequence
against all candidate references, we compare the ref-
erential compression of the sequence and the refer-
ential compression of the reference candidates with
respect to one randomly chosen initial reference. This
heuristic only needs to compress each sequence one
time with respect to the initial reference, independent
of the number of candidate references. The candidate
references are chosen randomly. Before introducing
our selection heuristics in detail, we first define the
similarity of two referential compressions. The idea
is that two referential compressions are defined to
be more similar if they share more referential match
entries.

Definition 5: The referential similarity of two referen-
tial compressions rc1 and rc2, denoted rsim(rc1, rc2),
is defined as rsim(rc1, rc2) = |rc1 ∪ rc2| − |rc1 ∩ rc2|.

Please note that a lower rsim-value indicates higher
similarity. Two identical referential compressions will
have a rsim-value of 0. We propose a heuristic for
reference selection named RSbitX, which is shown in
Algorithm 2. The heuristic follows the same pattern

as RSbest, with two differences:
1) We compress to-be-compressed input sequences

not against each candidate reference, but only
against one chosen base reference sequence
refbase. Therefore, the referential compressions
used in the inner loop for rsim-computation, i.e.
comp(sj , refbase) and comp(refi, refbase) do not
have to be recomputed on each iteration.

2) We only partially compress each sequence, hop-
ing that the similarity of partial compressions
is representative for the complete sequences. X
determines how much of each sequence is used
for partial compression. Each sequence is broken
up into 1000 blocks of equal length and then 1

X
of the blocks are used for partial compression (all
blocks are taken in case of X = 1). We distribute
the blocks for partial compression equally over
the whole input sequence.

While RSbest needs to compute m ∗ n referential
compressions, RSbitX only needs to compute m+n ref-
erential compressions, and if X > 1, then we (roughly)
only need to compute m+ n

X referential compressions.
The time is reduced by a factor of m∗n

m+ n
X

, compared
to the selection of the best reference. This assumes
that the process of compressing a sequence has linear
time complexity and neglects possible overhead for
setting up the data structures for the compression of
a sequence.

In our experiments with different numbers of blocks
we obtained very similar results. If the block size is
small (smaller than 10,000 Bytes), then, for human
genomes, the reference selection yields similar results
like a random selection strategy. We think that this
is caused by larger indels in the datasets (similar
regions between two sequences do not end up in
the same block). If the number of blocks is smaller
than 1000, then the gain in compression speed is lost.
For our datasets 1000 blocks turned out to be a good
compromise.

4.2 Reference Rewriting

One other approach we investigate is to rewrite a
reference sequence in a way that it represents a most
likely path through all sequences in the collection
of to-be-compressed sequences. In this scenario the
number of candidate reference sequences is fixed to
one. Rewriting sequences has a biological motivation:
different SNPs in a population occur with different
frequencies. With reference rewriting we try to iden-
tify and apply most-frequent SNPs to the reference.
We consider an example first.

Example 3: Referentially compressing the sequences
s1 = AAAACGGACAATCTGA
s2 = AAAACGGACAATCTGT
s3 = AAAACGACAATCTGT

with respect to the reference
AAAACGCACAATCTGC, we obtain the following
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three referential compressions:
rc1 = {〈0, 6, G〉, 〈7, 8, A〉}
rc2 = {〈0, 6, G〉, 〈7, 8, T 〉}
rc3 = {〈0, 6, A〉, 〈8, 7, T 〉}.

If the seventh position of the reference string con-
tained a G instead of a C, then it would be possible
to compress rc1 and rc2 using only one entry each:
rcnew1 = {〈0, 15, A〉}, rcnew2 = {〈0, 15, T 〉}.
As can be seen from simple Example 3, it can be
beneficial to rewrite the reference sequence in order
to reduce the number of referential match entries
and thus increase compression ratios. Rewriting steps
need to be carefully considered. With a large set of
strings, it is highly unlikely that all sequences agree on
particular base replacements/inserts/deletions with
respect to a reference. However, even if the majority
of sequences share the same base deviations from the
reference, compression ratios can be improved. Exam-
ple 3 shows further that we cannot blindly rewrite a
reference, since not all sequences agree on the seventh
position.

In the following we describe a heuristic for rewrit-
ing reference sequences. Our evaluation will show
that this rewriting can indeed save up to 20 per-
cent of space on real-life sequences. We identify a
set of replacement candidates from a given (set of)
compressed sequences. In the remaining part of the
work, we will focus on single base rewritings which
are either base replacements, base insertions, or base
deletions; longer changes are left for future work.
Since referential match entries store the mismatches
with respect to the reference, replacement candidates
are easy to find. The formal criteria for a replacement
rewrite candidate is the existence of two consecutive
referential match entries, for instance (0, 6, C) and
(7, 8, A) in Example 3, such that a replacement with
the mismatch character in the reference will yield one
combined long interval, instead of two short ones.

Definition 6: A tuple (repl, p, c) is called a replace-
ment candidate for a referential compression rc, if there
exists two consecutive RME [〈p1, l1, c〉, 〈p2, l2, c2〉] ∈ rc
with p1 + l1 + 1 = p2 ∧ p = p1 + l1. A tuple
(ins, p, c) is called an insert candidate for a referential
compression rc, if there exists two consecutive RME
[〈p1, l1, c〉, 〈p2, l2, c2〉] ∈ rc with p1+l1 = p2∧p = p1+l1.
A tuple (del, p, ) is called a deletion candidate for a
referential compression rc, if there exists two consec-
utive RME [〈p1, l1, c〉, 〈p2, l2, c2〉] ∈ rc with p1+ l1+2 =
p2 ∧ p = p1 + l1. The rewrite candidates of a referen-
tial compression rc with respect to a reference ref ,
denoted rewr(rc), are the union of all replacement
candidates, insert candidates, and deletion candidates
of rc.

Definition 7: Given a set of referential compressions
S = {rc1, ..., rcn} with respect to a reference ref ,
the relative frequency of a rewrite candidate (X, p, c)
is defined as

freq((X, p, c), S) =
|{rci | rci ∈ S ∧ (X, p, c) ∈ rewr(rci)}|

|S|
.

Given a position p, the most frequent rewrite can-
didate for p in S is (X, p, c), if there does not exist a
X∗ ∈ {repl, ins, del} and c∗ with freq((X∗, p, c∗), S) >

Algorithm 3 Reference Rewriting Algorithm

Input: set of referential compressions S = {rc1, ..., rcn},
a reference string ref , and a threshold t
Output: rewritten reference result

1: Let result be an empty string
2: for 1 ≤ p ≤ |ref | do
3: if there exists a most frequent rewrite candidate

(X, p, c) for p in S, with freq((X, p, c), S) ≥ t then
4: if X=REPL then
5: Append c to result
6: else if X=INS then
7: Append c to result
8: Append ref(p) to result
9: else if X=DEL then

10: do nothing
11: end if
12: else
13: Append ref(p) to result
14: end if
15: end for

freq((X, p, c), S). In case of two equally frequent
rewrite candidates, one is chosen randomly.

Example 4: Given Example 3, we have that
rewr(rc1) = {(repl, 6, G)}, rewr(rc2) = {(repl, 6, G)},
and rewr(rc3) = {(del, 6, )}.

The frequency of (repl, 6, G) is 2
3 , i.e. the replace-

ment occurs in two of three compressed strings. The
frequency of (del, 6, ) is 1

3 . The most frequent rewrite
candidate for position 6 is therefore (repl, 6, G).
The most frequent rewrite candidates for each posi-
tion in the reference are used to rewrite the reference
sequence. Our reference rewriting algorithm is shown
in Algorithm 3. The input of the algorithm is a set of
referential compressions S, a to-be-rewritten reference
sequence ref , and a threshold t. The threshold is
used to only select rewrite candidates, which have at
least a given relative frequency in S. The algorithm
iterates over the reference sequence and checks for
each position in the reference, to determine if a most-
frequent rewrite candidate exists whose relative fre-
quency is higher than the given threshold t. If such
a rewrite candidate exists, characters are added to
the output of the algorithm result, depending on the
rewriting kind (replacement, insertion, deletion). If
no such rewrite candidate exists for position p, the
algorithm just appends the original base from position
p of the reference to result. After the execution of
the algorithm, result contains the rewritten reference
sequence. Note that the choice of the initial reference
sequence has only a small impact on the compression
ratio in our experiments. Furthermore, in our exper-
iments we recompute each referential compression
for the rewritten reference sequence. It is an inter-
esting direction of future work to update referential
compressions to reflect the changes in the rewritten
reference, without the need of recompression.

Example 5: If we apply Algorithm 3 to Example 4
with threshold t = 0.6, we obtain the rewritten refer-
ence sequence AAAACGCACAATCTGC, since there
exists only one rewrite candidate with a relative fre-
quency larger than 0.6: rewrite candidate (repl, 6, C).
If we set t = 0.8, then the algorithm will not change
the reference sequence at all. Please note that the
rewrite candidate (del, 6, ) will never be used during
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Algorithm 4 Second-order Compression Algorithm

Input: referentially compressed sequence rc and a
set of referentially compressed sequences REF =
{rcref1, ..., rcrefn}
Output: second-order referential compression rcso

1: Let rcso = ∅
2: while |rc| 6= 0 do
3: Let pre be the longest prefix of rc occurring in

a referentially compressed sequence in REF , and let
rcrefm be the matching compressed reference and p be
a position of an occurrence of pre in ref

4: if |pre| ≥ 2 then
5: Add 〈p, |pre|〉rcrefm to the end of rcso
6: Remove the first |pre| referential match entries

from rc
7: else
8: Add rc(0) to the end of rcso
9: Remove rc(0) from rc

10: end if
11: end while

the execution of the algorithm, independent from the
threshold, since (del, 6, ) is dominated by (repl, 6, C)
for position 6.
It can be seen from Example 5, that the choice of
threshold t has a great impact on the outcome of the
rewriting algorithm: too large thresholds will ignore
even relatively frequent rewrite candidates, which are
shared by many referential compressions. Therefore,
we analyse the effectiveness of reference rewriting
depending on the threshold t in Section 6.

The complexity for computing rewritings is linear
in the number of sequences and length of the se-
quences. The algorithm has to look at each consec-
utive pair of RMEs and check, whether it is a rewrite
candidate for position p. If yes, then we add an entry
annotating position p in the reference sequence. In the
end, we look at each position of the reference, select
the most frequent rewriting candidate associated to
that position, and rewrite the reference in case the
candidates frequency is above threshold t. Thus, the
analysis of all sequences takes linear time and the
actual rewriting can be done in linear time as well. It is
an interesting direction for future work to investigate
the rewriting of longer strings, i.e. to identify frequent
indels with respect to the reference.

Note that in order to compute the referential com-
pressions against the rewritten reference, we recom-
press all sequences from the scratch. Given fast com-
pression times of FRESCO, we think that in most cases
a recompression is tolerable. However, for frequently
changing sequence sets, one should avoid recompres-
sion.

5 SECOND-ORDER COMPRESSION
An important part of each compression algorithm is
the serialization of matches in the reference. Naive
approaches can easily deteriorate any benefits of ref-
erential compression. One strategy for decreasing the
size of serializations is to apply delta-encoding [41].
Our experiments indicate that this modification alone
can often increase compression ratios by a factor
of 2-4. We also compressed referentially compressed
files with gzip, but delta-encoding alone can already

outperform gzip significantly. We think that gzip
fails to identify the different elements (position, size,
mismatch) in referential match entries and therefore
the compression ratio is not as high as with delta-
encoding.

In the following, we present a new method for
increasing the compression ratio of referentially com-
pressed sequences. Our idea is to take referentially
compressed sequences as input for a simplified refer-
ential compression algorithm: now the alphabet is not
{A,C,G, T,N} any more, but each referential match
entry is a symbol of the alphabet.

Example 6: Given the following four referential
compressions:

rc1 = [〈0, 4, T 〉, 〈5, 3, A〉, 〈9, 4, T 〉, 〈15, 3, G〉]
rc2 = [〈0, 4, A〉, 〈5, 3, A〉, 〈9, 4, T 〉, 〈15, 3, G〉]
rc3 = [〈0, 4, T 〉, 〈5, 3, G〉, 〈9, 4, T 〉, 〈15, 3, G〉]
rc4 = [〈0, 4, T 〉, 〈5, 3, A〉, 〈8, 3, T 〉, 〈15, 3, G〉]

we can view rc1 as a reference and denote the other
three sequences with a mix of standard referential
match entries and new entries encoding second-order
matches:

rc2 = [〈0, 4, A〉, 〈1, 3〉rc1 ]
rc3 = [〈0, 4, T 〉, 〈5, 3, G〉, 〈2, 3〉rc1 ]
rc4 = [〈0, 2〉rc1 , 〈8, 3, T 〉, 〈15, 3, G〉],

where 〈p, l〉rci denotes that the referential match en-
tries p to p+l−1 are taken from compressed sequence
rci.

Our evaluation will show that our method can
boost the compression ratio impressively. An informal
description of our second-order compression algo-
rithm is shown in Algorithm 4. It is very challenging
to find an index structure for sets of compressed
sequences for implementation of Algorithm 4. The
problem is the sheer size of the alphabet. Most suffix-
tree implementations we are aware of can only handle
28 symbols or 216 symbols at most. The number
of unique referential match entries is in worst case
quadratic in the length of the sequence and thus,
for biological datasets there exists no practical, fixed
bound.

Therefore we have implemented our own data
structure for looking up prefixes of suffixes in ref-
erentially compressed sequences: for each referential
match entry we store a hash value. The idea is very
similar to a q-gram based index for q=1 (Note that
a small q is sufficient in practice because of the al-
phabet size). For each compressed sequence we store
its RMEs using double-hashing with a fill-degree of
roughly 75 percent. Using double-hashing, we can
look up a given RME from one compressed sequence
in another compressed sequence in constant time. In
order to find the matches between two compressed
sequences we iterate over all RMEs from one sequence
and try to find these seeds in the second sequence.
Once such a seed is found we try to extend matches
to the right until we find different RMEs in both
sequences. The match between two sequences is then
encoded as a second-order entry. Afterwards, the
search is continued right of the previously checked
RME in the first sequence. In our implementation,
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Fig. 2: Standard compression algorithms for five sequences.

the complexity of finding (a subset of) all matching
substrings between two sequences is quadratic in the
length of the compressed sequences. We think that
using a similar idea as in the KMP-string matching
algorithm (prefix analysis), the run time complexity
can be reduced to linear time.

We evaluate our second-order referential compres-
sion algorithms for different dataset and different
numbers of reference sequences in Section 6. Addi-
tional sequences were selected randomly. Our exper-
iments indicate that selecting a particular candidate
set will likely not improve compression ratio, com-
pared to random selection (using the same number of
additional sequences).

6 EVALUATION
In the following section, we evaluate our proposed
compression scheme. All experiments have been run
on a Acer Aspire 5950G with 16 GB RAM and Intel
Core i7-2670QM, on Fedora 16 (64-Bit, Linux kernel
3.1). All size measures are in byte, e.g. 1 MB means
1,000,000 bytes. Below, the term compression factor is
used to denote the inverse of compression ratio, e.g. a
compression factor of 100 means a compression ratio
of 100:1.

We have evaluated our algorithms for refer-
ential compression, reference selection/rewriting,
and second-order compression on three biological
datasets: a collection of human genomes, a collection
of genomes from Arabidopsis thaliana, and a collec-
tion of yeast genomes. We have chosen these species
since there sequences have different degrees of inner-
species similarity caused by levels of repeats and vari-
ations. While human genomes are highly-similar to
each other, yeast genomes often only have a small de-
gree of similarity. Two Arabidopsis thaliana genomes
are considered similar to a degree in between humans
and yeast. Therefore, our three datasets cover a whole
range of different similarities.
Our first dataset of human genomes was created from
1092 genomes of the 1000 Genome project [3]. The
1000 Genome project group provides all sequenced
genomes in Variant Call Format (VCF) [42] for down-
load2. The Variant Call Format describes differences of
genomes with respect to a reference sequence, based
on SNPs and indels. We have extracted one consensus
sequence each for a total of 1092 genomes. We use H-
# to represent the set of all 1092 sequences for human

2. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/

Chromosome #, e.g. H-1 for human Chromosome 1.
Grouping by chromosome makes sense, since usually
sequences from the same chromosome have much
higher similarities than sequences from different chro-
mosomes. The union of all 23 human datasets (H-1 to
H-22, H-X) is denoted with H-*. The largest human
dataset is H-1 at 272.1 GB, the smallest dataset is H-
22 at 55.9 GB, and the size of H-* is 3.3 TB.

Our datasets for Arabidopsis thaliana are taken
from the 1001 Genomes project [43] from release GMI-
Nordborg2010.3. For each strain, a file with SNPs with
respect to the reference TAIR9 is provided. We have
extracted 180 genomes for each of the 5 chromosomes.
The Arabidopsis thaliana datasets are prefixed with
AT, e.g. AT-1 stands for 180 Chromosome 1 sequences
of Arabidopsis thaliana. The union of all 5 Arabidop-
sis thaliana datasets is denoted with AT-*. The largest
Arabidopsis thaliana dataset is AT-1 at 5.4 GB, the
smallest dataset is AT-4 at 3.3 GB, and the size of AT-
* is 21.4 GB

The last dataset is a collection of yeast genomes [44].
In total, we have downloaded 38 yeast strains, each
of them was provided in FASTA format. The yeast
dataset is denoted with Y-WG. The size of Y-WG is
0.4 GB.

6.1 Existing standard compression algorithms
We used three standard compression programs with
default parameters to create initial statistics about self-
referential compression: gzip, bzip2, and zip. For each
species and each chromosome, we randomly selected
five sequences and applied each of the compression
algorithms. The results are shown in Figure 2. bzip2 is
the best compression program among the three tested
programs. The best average compression ratio is ob-
tained by bzip2 for all three species and bzip2 is the
fastest compression program as well, outperforming
the other two programs by a factor of two on average.
Using bzip2, it should be possible to compress H-
* down to 0.7 TB, but the run time is expected to
be around 126 hours. AT-* can be compressed down
to 5.6 GB in 48 minutes. The compression factor is
relatively stable within species for H-*(min: 3.91 for
H-3, max: 5.82 for H-22) and AT-*(min: 3.74 for AT-2,
max: 3.80 for AT-1). For Y-WG there is only one type
of sequence (the whole genome).

6.2 Referential compression algorithms
We compare existing implementations of referential
compression algorithms with FRESCO. The two com-
petitors of FRESCO are GDC [17] and RLZ [28]. RLZ
can be seen as one of the pioneers in referential
compression, while GDC is the best existing program,
when it comes to compression speed and compression
ratio.

Our initial comparison is as follows: for each species
and each chromosome, we randomly selected ten

3. http://1001genomes.org/data/GMI/GMINordborg2010/
releases/current/
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Dataset GDC RLZ FRESCO GDC RLZ FRESCO GDC RLZ FRESCO GDC RLZ FRESCO
H-1 3.7 15.5 4.2 495.2 224.0 20.0 680.0 160.8 590.6 5.0 11.1 124.3
H-2 3.9 15.9 4.5 454.9 199.4 19.4 625.5 152.9 542.8 5.3 12.2 125.5
H-3 3.3 13.4 3.8 314.6 165.5 14.9 593.6 147.5 513.9 6.3 11.9 132.4
H-4 3.5 13.8 4.1 247.0 159.4 15.0 543.8 138.4 466.1 7.7 12.0 127.1
H-5 3.0 12.0 3.4 243.4 144.0 13.9 608.2 150.6 526.3 7.4 12.6 130.2
H-6 3.0 11.9 3.6 248.0 143.8 15.3 566.1 143.7 475.1 6.9 11.9 112.0
H-7 2.7 10.7 3.1 403.1 121.1 12.8 591.2 148.7 508.8 3.9 13.1 124.7
H-8 2.5 10.1 2.9 171.8 122.9 11.6 577.5 144.8 500.5 8.5 11.9 126.3
H-9 2.0 8.4 2.3 130.0 102.2 11.0 714.3 168.0 618.2 10.9 13.8 128.8

H-10 2.4 9.4 2.7 183.6 109.8 10.9 572.2 144.1 493.4 7.4 12.3 124.7
H-11 2.5 9.6 2.8 153.6 118.3 11.0 548.3 140.5 474.3 8.8 11.4 122.2
H-12 2.3 8.9 2.6 199.2 113.5 10.0 593.0 150.4 514.1 6.7 11.8 133.5
H-13 1.9 7.5 2.2 65.5 90.9 9.2 602.5 153.4 532.2 17.6 12.7 124.5
H-14 1.6 6.4 1.8 68.5 77.0 8.6 664.7 167.6 591.1 15.7 13.9 124.2
H-15 1.4 5.9 1.6 72.2 70.7 8.1 710.1 173.7 636.9 14.2 14.5 126.9
H-16 1.4 5.4 1.6 103.1 68.9 6.9 638.5 167.1 552.5 8.8 13.1 131.4
H-17 1.3 5.1 1.5 140.3 68.9 6.5 635.3 159.1 552.8 5.8 11.8 125.4
H-18 1.4 4.8 1.6 44.6 66.7 6.6 565.2 162.5 487.0 17.5 11.7 118.3
H-19 1.1 4.0 1.3 116.8 50.8 5.3 546.7 147.8 468.0 5.1 11.6 111.1
H-20 1.0 4.0 1.2 43.8 49.5 4.5 623.7 157.4 542.5 14.4 12.7 139.3
H-21 0.7 2.8 0.9 12.3 33.3 3.5 684.3 171.8 553.0 39.1 14.5 138.2
H-22 0.6 2.7 0.7 19.3 32.0 3.7 816.9 189.7 735.9 26.5 16.0 137.1
H-X 1.7 7.7 2.0 168.2 96.3 12.1 903.6 201.6 789.0 9.2 16.1 128.0
AT-1 2.0 6.5 2.3 8.3 41.3 2.5 154.2 105.3 133.2 36.7 7.4 123.1
AT-2 1.4 4.5 1.7 4.2 25.4 1.4 145.0 98.5 119.0 46.9 7.8 136.8
AT-3 1.7 5.5 2.0 5.5 32.1 1.6 139.8 96.0 117.2 42.7 7.3 145.1
AT-4 1.3 4.3 1.6 3.7 24.4 1.5 139.5 97.2 116.7 50.2 7.6 126.5
AT-5 1.9 6.1 2.2 6.3 37.5 1.9 144.6 99.5 121.3 42.8 7.2 141.2
Y-WG 1.0 86.8 1.4 2.8 47.6 1.0 127.3 1.4 89.0 44.5 2.6 124.7
AVG 2.0 10.7 2.3 142.4 90.9 8.6 532.9 142.8 460.7 18.0 11.5 128.0

Sequence sizeGDC RLZ FRESCO

Compressed size (in MB) Runtime (in s) Compression factor Compression speed (MB/s)
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Fig. 3: Compression statistics for 10 random sequences against a fixed reference (best values bold).

sequences and applied each of the referential com-
pression algorithms. Please note that GDC applies
a kind of reference preselection for a set of input
sequences. The time spent on reference selection is
not included in our measurements: we have measured
solely compression time. RLZ uses suffix arrays for
the reference sequence. The time of building the suffix
arrays is not included in our measurements (building
the suffix array for the reference of HG-1 took around
2 minutes). FRESCO uses a k-mer index (with k = 34)
for the reference sequence and options LO MD and
COMPACT (local matching together with binary en-
coding of RMEs, see Section 7). The choice of k has
a big impact on compression speed, but almost no
impact on compression ratio. With a value of k smaller
than 14, the compression is recognizably slower, be-
cause FRESCO has to check a lot of spurious matches,
which are not relevant for referential compression,
because they do not yield long matches. For values of
k between 14 and 34 compression speed significantly
increased (by a factor of 2-3), while compression ratio
did not change recognizably. Increasing the value of
k beyond 34 did not change the speed recognizably.
The time for constructing the k-mer index for each
reference sequence is around 1 minute for the largest
sequence and not included in the measurements. The
results for compressing ten sequences each are shown
in Figure 3.

GDC achieves the best compression for each dataset
in our evaluation (on average 2.0 MB for ten se-
quences). We guess that this is due to sophisticated
encoding techniques for the serialization format and
the reference selection mechanism. GDC also tries

to find and encode approximate matches into the
reference. This idea seems to work well for highly
different species. FRESCO achieves the second best
compression (on average 2.3 MB for 10 sequences),
while RLZ needs most space for each dataset (more
than 5 times as much as GDC). The low compression
factor of RLZ for Y-WG is likely due to limited
optimization techniques in RLZ (especially for short
machtes). The average compression factors for H-* are:
GDC=635, RLZ=158, and FRESCO=551. The compres-
sion factors for AT-* and Y-WG are considerably lower
due to decreased similarity among sequences in the
collections.

FRESCO has the shortest compression times (on
average 8.6 seconds for 10 sequences), while RLZ is
around 10 times and GDC around 16 times slower.
The compression speeds for H-* are as follows:
GDC=11.2 MB/s, RLZ=12.8 MB/s, FRESCO=126.8
MB/s. The average compression speed of GDC for
all species is 18.0 MB/s. It seems that GDC is highly
optimized for compression of short sequences (or in
particular Yeast species): the compression speed of
GDC for AT-* and Y-WG is almost 5 times higher
than for H-*. We think that FRESCO is much faster
than GDC for three reasons. First, GDC tries to extend
the reference sequence with additional small reference
parts during compression, while basic FRESCO uses
a fixed reference for initial compression. Keeping
additional index structures (or update them on the
fly) is expensive. Second, GDC encoded approximate
matches. While this allows for higher compression
rates than basic FRESCO, it seems to be more com-
putationally expensive to identify these matches with
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Fig. 4: Storage requirements for all against all for H-22.

small errors. Third, we use a fast k-mer index which
uses more memory than GDC, but allows for faster
lookups.

For RLZ the average compression speed is at 11.5
MB/s, and for FRESCO the compression speed is
roughly constant among all species as well: 128.0
MB/s. Both, RLZ and FRESCO, are slightly slower for
Y-WG than for the other species. It can be seen that all
three programs have a stable compression speed (with
the exception of GDC, which is probably related to the
species, and not to the length of the sequence).

We have run experiments with GReEn [29] and a
10-sequence sample of H-1. GReEn needs 183 seconds
pure compression time for all 10 sequences (without
creating the index structure for the reference). This
is almost 10 times slower than FRESCO. The com-
pression ratio is around 250:1. FRESCO-basic (590:1)
and GDC (680:1) obtain at least doubled compression
ratios. After all, the compression results of GReEn are
very similar to those obtained by RLZ.

Note that the maximum read speed of the hard disk
in our evaluation was measured at around 145 MB/s.
Compression with FRESCO seems to be I/O-bound:
we performed additional experiments with sequences
in main memory. For H-* , we obtained an average
compression speed of 729 MB/s and a maximum
compression speed of 1 GB/s with FRESCO. This
is up to two orders of magnitudes more than exist-
ing compression schemes. Even state-of-the-art SSDs
often do not provide such a high throughput. For
the other two species, the main memory compression
speed is not recognizably higher than from an external
hard disk. In our tests (data not shown), referentially
compressed files can be decompressed at around 500
MB/s to main memory.

The main memory usage for FRESCO is around
8-10 times the size of the reference sequence, for
representing the k-mer index in main memory. In our
experiments with compressed suffix trees, the main
memory consumption can be reduced down to 2 times
the size of the reference plus the size of the to-be-
compressed sequence, while compression times are
increased slightly (plus 30 percent for H-*).

It is interesting to note that the ranking between
the three programs is indeed consistent not only for
different chromosomes but even for different species
with respect to the two evaluation criteria. In sum-
mary, GDC always achieves the best compression,
while FRESCO is one order of magnitude faster than
RLZ and GDC.

6.3 Reference Selection in FRESCO
In order to show the impact of the reference sequence
on the compression ratio, we used each chromosome
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Fig. 5: Compression speed for selection heuristics.
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Fig. 6: Compression factors for selection heuristics.

Dataset C. factor Total time (s) C. speed (MB/s) C. factor increase
H-1 637.5 3,581.1 76.0 +7.3%
H-2 578.6 3,207.5 82.8 +5.5%
H-3 557.0 2,663.8 81.0 +6.2%
H-4 519.2 2,616.5 79.7 +8.7%
H-5 547.5 2,392.4 82.5 +0.3%
H-6 512.9 2,585.0 72.2 +3.3%
H-7 536.1 2,251.9 77.2 +3.8%
H-8 527.0 1,944.2 82.2 +2.7%
H-9 636.7 1,822.0 84.6 +1.4%

H-10 528.6 1,862.3 79.4 +4.4%
H-11 547.0 1,823.0 80.8 +11.2%
H-12 550.4 1,738.6 84.0 +5.7%
H-13 630.1 1,454.6 86.4 +14.8%
H-14 651.3 1,394.4 84.0 +7.6%
H-15 681.4 1,317.4 85.0 +5.5%
H-16 558.9 1,262.7 78.1 -1.3%
H-17 607.4 1,153.5 76.8 +7.6%
H-18 542.9 1,055.1 80.7 +9.9%
H-19 498.1 991.1 65.1 +0.8%
H-20 571.7 766.5 89.7 +3.6%
H-21 663.3 594.4 88.4 +12.8%
H-22 736.0 645.8 86.6 +3.1%
H-X 859.5 2,028.5 83.6 +8.7%
AT-1 138.4 112.2 48.8 +4.3%
AT-2 129.3 61.4 57.8 +7.8%
AT-3 120.8 70.9 59.6 0.0%
AT-4 120.8 60.5 55.3 +1.5%
AT-5 125.1 81.1 59.8 -0.3%
Y-WG 91.9 22.4 21.1 0.0%
AVG 496.7 1,433.1 74.8 +5.1%

Fig. 7: Selecting references in FRESCO.

in H-22 as a reference sequence, and referentially com-
pressed all 1092 Chromosome 22 against the chosen
reference. Figure 4 shows the the distribution of stor-
age ranging from 97 MB to 124 MB. Thus, the choice
of a reference sequence has a considerable impact
on the compression factor. The exhaustive compres-
sion against all 1092 reference candidates of small
human Chromosome 22, including index generation,
took almost six days; this shows that the exhaustive
computation is not feasible when dealing with large
sets of complete genomes.

In Figure 5 and Figure 6 we compare the com-
pression factors and compression speed for differ-
ent reference selection heuristics. RSbit1 and RS-
bit5 always achieve higher compression factors than
RSrand. RSBit1/RSBit5 increases the compression fac-
tor by around 10 percent on average for our hu-
man genome dataset, compared to a random selec-
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tion strategy. Base reference and candidate references
were selected randomly; all results were averaged. In
our experiments we compressed all 1092 sequences.
RSrand is the fastest selection heuristic, followed by
RSbit5. For most of the sequences RSbit1 and RSbit5
yields similar compression factors to each other. In
the following experiments we have used RSbit1 as a
selection heuristic.

In Figure 7 we show the results of reference selec-
tion with respect to the base reference used before
(in Figure 3). This time we have used the complete
datasets for evaluation, e.g. all 1092 genomes in H-
*. The total run time includes the following steps:
initial referential compression against base reference,
selecting the best reference with RSbit1 with respect
to compressed sequences, and recompression of all
sequences against the chosen reference. The effect of
reference selection is different for each species. While
for H-* the average increase of compression factor
is 5.8 percent, it is 2.7 percent for A-*. Selecting a
best reference for Y-* did not have any effect on the
compression ratio, since these genomes share only few
similarities.

Compression is clearly slower when using reference
selection (including basic initial referential compres-
sion): on average we obtain 74.8 MB/s. However, this
is still 4-5 times higher than for GDC and RLZ, and
we obtain almost the same compression ratio as GDC.

6.4 Reference Rewriting in FRESCO
We analyse the impact of reference rewriting in Fig-
ure 8 with rewriting threshold as a parameter. The
figure shows the impact of the threshold value on
the storage requirements for 1092 Chromosome 19
sequences with two randomly chosen base references.
With a threshold value of 47 percent, the necessary
storage is reduced to a minimum. In other experi-
ments with human chromosomes (data not shown)
values of 47-49 percent always yielded the minimum
storage as well. The value of the threshold did not
have a measurable effect on compression speed.

In Figure 9 we show the results of reference rewrit-
ing with respect to the base reference used before
(in Figure 3). We have used complete datasets for
evaluation, e.g. all 1092 genomes in H-*. The total
run time includes the following steps: initial referen-
tial compression against base reference, rewriting the
reference with respect to compressed sequences, and
recompression of all sequences against the rewritten
reference. The average compression factor is increased
by roughly 25 percent for all datasets. Reference
rewriting works clearly better for H-* (average in-
crease 33.2 percent) than for AT-* and Y-*. This is again
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Fig. 8: Finding a threshold for rewriting sequences.

Dataset C. factor Total time (s) C. speed (MB/s) C. factor increase
H-1 804.3 3,334.8 81.6 +35.4%
H-2 736.4 3,033.3 87.5 +34.2%
H-3 697.6 2,520.7 85.6 +33.0%
H-4 651.0 2,340.8 89.1 +36.3%
H-5 704.9 2,138.6 92.3 +29.1%
H-6 643.7 2,311.6 80.8 +29.6%
H-7 675.1 1,994.4 87.1 +30.7%
H-8 674.3 1,737.2 92.0 +31.4%
H-9 834.1 1,612.7 95.5 +32.8%

H-10 676.1 1,655.1 89.4 +33.5%
H-11 673.7 1,659.9 88.8 +36.9%
H-12 698.2 1,586.9 92.1 +34.0%
H-13 765.9 1,350.8 93.0 +39.5%
H-14 806.1 1,266.1 92.5 +33.2%
H-15 864.1 1,190.6 94.0 +33.8%
H-16 753.6 1,024.3 96.2 +33.1%
H-17 729.8 1,030.2 86.0 +29.3%
H-18 671.2 946.6 90.0 +35.9%
H-19 619.8 846.5 76.2 +25.5%
H-20 703.1 670.3 102.6 +27.5%
H-21 769.0 508.2 103.4 +30.8%
H-22 904.5 548.3 102.0 +26.8%
H-X 1,018.0 1,993.8 85.0 +28.8%
AT-1 132.7 104.7 52.3 0.0%
AT-2 119.9 56.6 62.6 0.0%
AT-3 120.9 65.8 64.2 +0.1%
AT-4 119.0 56.1 59.6 0.0%
AT-5 125.5 75.8 64.1 0.0%
Y-WG 91.9 22.0 21.5 0.0%
AVG 613.3 1,299.4 83.0 +25.6%

Fig. 9: Rewriting references in FRESCO.

caused by high level of similarities among human
genomes, where rewriting even a single SNP, can
largely increase the match length. For large parts
of the compressed sequences of AT-* and Y-* our
algorithm cannot find many reference matches with
more than 3-4 symbols. The compression factor after
rewriting is clearly better than the compression factor
for GDC (613.3 vs. 532.9). During reference rewriting
we measured main memory usage of 14-16 times
the size of the reference sequence. This is caused by
management of the rewrite candidates.

In total we need around 10 hours to compress all
datasets, starting from raw sequences. This yields an
overall compression speed of 88.5 MB/s, which is
around 4 times higher than for GDC (18.0 MB/s).
If we only look at H-*, than the improvement is
the difference in compression speed is even bigger
between reference rewriting in FRESCO (88.8 MB/s)
and GDC (11.2 MB/s). Please note that GDC performs
some kind of hash-based preselection of a reference,
whose time was not taken into account. Otherwise the
average compression speed of GDC would be reduced
to around 5-6 MB/s. We have also run experiments
with GDC and our rewritten reference sequence, and
the compression ratio did not improve.

6.5 Second-Order Compression in FRESCO
In the following, we evaluate second-order compres-
sion for H-1, H-22, and AT-1 with a different number
of additional compressed references (we obtained sim-
ilar results for the other datasets). The base reference
for each dataset is obtained by rewriting a fixed
reference with a threshold of 47 percent. We did not
evaluate second-order compression for Y-*, because
the number of sequences (38) is too small.

In Figure 10, the compression factors for 5-70 addi-
tional references are shown. Please note that we have
only compressed sequences which are not included
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- Algorithm: 1) In a first step rerentially compress all sequences with respect to one base reference (our AMB paper)

2) Randomly pick a number of 5-70 compressed sequences as additional compressed references

3) Apply a simplified kind of referential compression to each (non-reference) referentially compressed file with respect to the 5-70 additional (compressed) references

- Experiment data: 1000 human Chromosome1, 1000 human Chromosome 22, 180 Arabidopsis thaliana Chromosome 1

- Results Compression ratio can be increased by factors between 1.5 and up to 7; second-order compression overhead in time is 1-2 times the simple referential compression (AMB paper)

- Explanation Compression times and ratio for the baseline (AMB paper) can be read off at "Number of additional references=0"

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression ratio: MIN 571 697 761 869 933 904 994 960 1,010 988 1,140 1,087 1,147 1,146 1,235

MAX 785 1,543 1,990 2,233 2,903 2,977 2,964 2,944 3,116 3,399 3,444 3,437 3,632 3,768 4,011

AVG 716 1,116 1,426 1,665 1,877 2,173 2,258 2,301 2,453 2,586 2,505 2,602 2,664 2,782 2,937

Compression time MIN 1,198 1,293 1,354 1,423 1,458 1,524 1,579 1,634 1,681 1,697 1,918 1,848 2,038 2,215 1,963

MAX 1,788 2,058 2,343 2,503 3,681 3,094 3,317 3,669 3,828 4,071 4,114 4,587 4,742 5,104 5,115

AVG 1,377 1,705 1,796 1,798 1,977 1,993 2,069 2,243 2,341 2,356 2,638 2,687 2,829 2,909 2,895

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression factor: MIN 638 791 851 864 900 958 1,025 1,150 1,114 1,178 1,213 1,115 1,210 1,133 1,412

MAX 930 1,754 2,099 2,444 2,895 2,958 3,235 3,667 3,657 3,661 3,821 3,906 4,306 4,421 4,106

AVG 825 1,290 1,644 1,872 2,094 2,243 2,257 2,599 2,596 2,708 2,917 2,842 2,944 2,913 3,131

Compression time MIN 243 258 328 282 286 298 300 318 314 324 339 423 423 439 449

MAX 377 426 484 519 585 616 640 673 715 755 794 906 903 1,003 901

AVG 293 294 374 354 372 395 432 428 439 449 469 531 539 577 554

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Compression ratio: MIN 90 141 162 188 194 196 201 205 200 218 218 209 224 230 235

MAX 139 292 566 561 465 594 540 575 677 693 643 666 708 674 716

AVG 105 186 227 264 270 301 316 328 344 381 364 397 415 396 416

Compression time MIN 2,055 2,125 2,206 2,353 2,116 2,101 2,546 2,718 2,864 2,667 2,912 3,320 2,761 2,799 2,816

MAX 3,514 3,488 3,570 3,671 3,886 3,965 4,032 4,140 4,269 4,336 4,531 4,588 4,698 5,032 4,992

AVG 2,882 2,963 3,060 3,146 3,151 3,187 3,436 3,567 3,640 3,617 3,791 3,895 3,625 3,863 3,918

Rewriting of refererential compressions to boost compression ratio 

- Idea: Apply a kind of second-order referential compression, i.e. rewrite (traditional) referentially compressed files be replacing RMEs with links to other referentially compressed files

Results for Human Chromosome 1

Results for Human Chromosome 22

Results for Arabidopsis thaliana  Chromosome 1
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Fig. 10: Compression factors for randomly selected sequences with respect to 5-70 additional references
top5

Wikipedia article Versions Current (KB) Total (KB) Time (ms) Size (KB) CF Time (ms) Size (KB) CF

Helsinki 2,664 406.8 584,178.0 18,419.1 115,970.0 5.0 17,375.1 40,708.8 14.4

Kardashev_scale 1,808 179.7 188,359.0 8,410.9 49,521.2 3.8 8,260.7 23,517.8 8.0

Fairy_chess_piece 495 217.7 84,015.5 2,171.1 10,954.5 7.7 1,836.9 2,781.2 30.2

United_States_Numbered_Highways 576 154.5 66,396.7 2,488.4 15,151.4 4.4 2,520.1 6,705.8 9.9

Vela_Incident 790 164.7 65,542.7 2,696.5 17,629.9 3.7 1,805.3 6,020.3 10.9

Fan_death 1,099 60.4 60,137.3 2,730.9 18,927.4 3.2 2,165.3 7,593.9 7.9

AVERAGE 1,238.7 197.3 174,771.5 6,152.8 38,025.7 4.6 5,660.6 14,554.6 13.5

Uncompressed Zip FRESCO

Page 1

Fig. 11: Zip and referential compression on all versions of different Wikipedia articles.

in the set of additional references. It can be seen
that for all three datasets the compression factor is
around four times higher when having 70 additional
compressed sequences as reference, leading up to
4000:1. Already with 10 additional references, the
compression factor can be almost doubled, leading to
an average compression ratio of 1500:1 for H-1 and
H-22, and 227:1 for AT-1.

Compared to reference selection/rewriting, second-
order compression increases the compression ratio
recognizably even for AT-* and Y-*. We think that this
is caused by the following: AT-* and Y-* contain many
clusters of similar individuals. No matter which se-
quence we pick as a reference for referential compres-
sion, we only can compress sequences from the same
cluster more efficiently. On the other hand, second-
order compression compresses sequences against mul-
tiple references. In this case (even with a random set of
references) sequences from different clusters are used
as references. In the human dataset we found two
major clusters only (see Figure 4 for distribution of
storage requirements). A reference sequence from one
of the two clusters can still be optimized for all the
(many) sequences inside the cluster. For 10 additional
references, the overhead of second-order compression
is small: the compression time is increased by 20-40
percent. For 70 sequences, compression time is already
almost doubled for all three datasets. Main memory
usage depends on the number of additional references
and the (average) number of referential match entries
per string. For H-22 we measured around 320 MB plus
roughly 2 MB for each additional reference.

6.6 FRESCO for compressing Wikipedia articles
Over time, a WikiPedia article undergoes several
modifications by different users. Often, these modifi-
cations only address small parts of the documents. We
have tested FRESCO on a randomly chosen collection

of 100 Wikipedia articles. On average, FRESCO com-
presses an article with all its versions by a compres-
sion factor of 12.3, while zip obtains a compression
factor of 3.4 only. FRESCO is usually faster than zip: in
average zip needs 0.7 seconds to compress all versions
of an article, while FRESCO needs 0.5 seconds. The
results for the six most modified articles is shown
in Figure 11. We have also compared FRESCO with
gzip and bzip2. On average (over all our Wikipedia
articles), FRESCO is around 15 percent faster com-
pared to gzip. The execution of bzip2 took around
5 times longer compared to FRESCO, while FRESCO
still shows a better compression ratio on average. We
ran gzip and bzip2 with default options.

7 FRESCO:OPEN SOURCE RELEASE

FRESCO, Framework for REferential Sequence COm-
pression, is the name of our open source release.
The software can be found at https://github.com/
hubsw/FRESCO.git. FRESCO was implemented in
C++, using the BOOST library, CST [45], and libz.
We have designed FRESCO in a modular way, which
makes it easy to replace parts of the compression
algorithm, e.g. index structures, with different imple-
mentations. The major design choices when imple-
menting a referential compression algorithm are 1)
input format, 2) index structure for the reference, 3)
compression algorithm, e.g. greedy, and 4) serializa-
tion format for compressed files, i.e. the actual encod-
ing of matches. For existing compression algorithms,
developers make a choice for either of these criteria
at design time. FRESCO contains interfaces for each
of these four components and allows to use different
implementations interchangeably and to add novel,
possible specialized algorithms. In the following, we
describe each of these interfaces and their standard
implementations in FRESCO in detail.
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CF C.Speed CF C.Speed CF C.Speed CF C.Speed CF C.Speed CF C.Speed

H-* 635.0 11.2 158.4 12.8 550.7 126.8 594.7 81.2 742.4 90.6 3,057.2 58.4

AT-* 144.6 43.9 99.3 7.5 121.5 134.5 126.9 56.3 123.6 60.6 407.7 53.7

Y-WG 127.3 44.5 1.4 2.6 89.0 124.7 89.0 21.1 91.9 21.5 712.8 41.4

AVERAGE 302.3 33.2 86.4 7.6 253.7 128.7 270.2 52.8 319.3 57.5 1,392.6 51.1

FRESCO                                       

(second-order compression)
GDC RLZ FRESCO

FRESCO                    

(reference selection)

FRESCO                        

(reference rewriting)

Fig. 12: Summary of all techniques (CF=compression factor, C.speed=compression speed in MB/s)

The sequence interface defines two functions: one
for loading a sequence from a file and and another
one for writing a sequence to a file. FRESCO provides
implementations for handling raw-files (one byte per
symbol) and FASTA files.

An index is used for looking up matches of the
to-be-compressed sequence with respect to the refer-
ence. The index is initialized from a given reference
sequence, e.g. loaded from a FASTA file. The interface
declares a function for looking up the longest prefix
match of an input string with respect to the indexed
reference. In FRESCO, we provide a standard imple-
mentation based on a k-mer hash index, i.e. for each k-
mer we store all occurrences in the reference sequence.
Once a match for a partial sequence is needed, the
k-mer prefix of the partial sequence is used to find
the longest match in the reference sequence. Other
implementations could use suffix arrays as in [28].

The compression interface defines two functions: one
for compressing a sequence into a list of referential
match entries and another one for decompressing
referential match entries back to a sequence. FRESCO
provides three compression algorithms: 1) a greedy
(BAS), which always finds the longest possible match,
2) an optimization for finding local matches with-
out expensive index lookups (LO), and 3) an opti-
mization which prefers short, but local matches over
longer matches further away from the previous match
(LO MD), a strategy proposed in [17].

A serializer (un)serializes a list of referential matches
to/from a file. FRESCO has three standard imple-
mentations: 1) plain ASCII format (PLAIN), 2) plain
encoding with positions relatively encoded to previ-
ous matches (DELTA) [17], and 3) compact binary
encoding (COMPACT).

8 CONCLUSIONS

In Figure 12, we show an overview of the main results
obtained in our evaluation for biological sequences.
It can be seen that all variants of FRESCO outper-
form existing referential compression algorithms in
terms of compression speed. Furthermore, the com-
pression factor for most variants is similar to related
work, while the best variant of FRESCO obtains a
compression factor 4-5 times higher. Apart from the
greedy compression algorithm, the other components
of FRESCO are optional. Moreover, it does not always
make sense to apply all steps in a row. In particular,
the results obtained from greedy referential compres-
sion together with second-order compression yields

results very similar to those obtained with additional
reference rewriting in between.

Our results show that second-order compression on
top of greedy compression and reference rewriting,
boosts compression ratios far beyond the state-of-the-
art. The larger and more similar the set of to-be-
compressed sequences is, the more it makes sense to
apply second-order compression. In our tests (data not
shown), second-order referentially compressed files
can be decompressed at around 500 MB/s in main
memory, similar to normal referentially compressed
files.

We conclude that lossless referential compression
of highly-similar sequences referentially can be done
in real-time on commodity hardware. Based on our
results, it should be investigated whether working on
compressed files is feasible, first results are encourag-
ing [46].
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