
Efficient Instance Retrieval over
Semi-Expressive Ontologies

Vom Promotionsausschuss der

Technischen Universität Hamburg-Harburg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

genehmigte Dissertation

von

Sebastian Wandelt

aus Berlin

2011

II

1. Reviewer: Ralf Möller, Hamburg University of Technology

2. Reviewer: Ian Horrocks, University of Oxford

3. Reviewer: Norbert Ritter, University of Hamburg

Day of the defense: 06.10.2011

Abstract

In the last years, the vision of the Semantic Web fostered the interest in
reasoning over growing sets of assertional statements in ontologies. Traditional
tableau-based reasoning systems have problems to answer queries over large
ontological data sets because these reasoning systems are based on efficient
use of main memory data structures. Increasing expressivity and worst-case
complexity further tighten the memory burden. The purpose of this thesis
was to investigate how to release the main memory burden from tableau-
based reasoning systems and perform efficient instance checking and instance
retrieval over semi-expressive ontologies.

The key idea was to reduce instance checking for an individual in an ontol-
ogy to smaller subsets of relevant axioms. Modularization techniques were
introduced and further refined in order to reduce the module size. Instance
retrieval performance was addressed by defining similarity criteria over in-
dividuals and their modules. Finally, this thesis investigated techniques to
preserve modularizations under syntactic ontology updates.

For evaluation purposes, experiments on benchmark and real world ontologies
were carried out. Modularization techniques gave rise to a distributed imple-
mentation for solving instance checking and retrieval problems. The principal
conclusion is that the main memory dependency for instance checking and
instance retrieval can be released from tableau-based reasoning systems for
semi-expressive ontologies in practice.

IV

This page is intentionally left blank.

CONTENTS V

Contents

List of Figures . VII

List of Symbols . IX

Chapter 1: Introduction . 1
1.1 Reasoning in the Semantic Web . 1
1.2 Research Objectives and Scientific Contributions 3
1.3 Dissemination Activities . 5
1.4 Outline . 7

Chapter 2: Preliminaries . 8
2.1 Basic Preliminaries . 8
2.2 Description Logics . 13

2.2.1 Conceptual Language . 13
2.2.2 Ontologies . 17
2.2.3 Decision Problems for Ontologies . 21
2.2.4 Naming Schemes . 25
2.2.5 Reasoning Procedures . 26

2.3 Running Example . 37

Chapter 3: Modularization . 39
3.1 Modularization Preliminaries . 40

3.1.1 ABox Modularization . 40
3.1.2 Tableau Run Compositions . 42

3.2 Component-based Modularization . 50
3.3 Intensional-based Modularization . 53

3.3.1 Technical Preliminaries . 54
3.3.2 Consistency-preserving ABox Splits for ALC 58
3.3.3 Consistency-preserving ABox Splits for ALCH 62
3.3.4 Consistency-preserving ABox Splits for ALCHI 64
3.3.5 Consistency-preserving ABox Splits for SHI 65

3.4 Concluding Remarks . 69

Chapter 4: Islands, Simulations and One-Step Nodes 71
4.1 Islands for Individuals . 71
4.2 Simulation over Individual Islands . 78

CONTENTS VI

4.3 One-Step Nodes . 83
4.4 Reasoning Optimization . 89

4.4.1 Instance Checking . 90
4.4.2 Instance Retrieval . 91

4.5 Concluding Remarks . 93

Chapter 5: Updates . 94
5.1 Syntactic Update Definitions . 94
5.2 Abstract Split Decision System . 98
5.3 Syntactic Update Structures . 102

5.3.1 Updatable Sound TBox Classification Structure 103
5.3.2 Updatable Sound TBox Disjointness Structure 108
5.3.3 Updatable Complete ∀-info Structure 110
5.3.4 Updatable Complete RBox Structures 112

5.4 Updatable Split Decision System . 113
5.4.1 Difference Bounds for Syntactic ABox Updates 114
5.4.2 Difference Bounds for Syntactic RBox Updates 115
5.4.3 Difference Bounds for Syntactic TBox Updates 116

5.5 Updatable Reasoning Structures . 117
5.5.1 Updatable One-Step Node Map Structure 117
5.5.2 Updatable Island Map Structure . 120

5.6 Concluding Remarks . 122

Chapter 6: System Description and Evaluation 123
6.1 System Description . 123

6.1.1 General Structure . 123
6.1.2 Data Loading and Management . 124
6.1.3 Query Answering . 126

6.2 Evaluation . 128
6.2.1 LUBM . 128
6.2.2 CASAM Multimedia Content Ontology 135

Chapter 7: Conclusions . 141

References . 144

LIST OF FIGURES VII

List of Figures

2.1 Graph example GEx2.2 . 12
2.2 Restrictions on the description logic ALC 26
2.3 Example of a tableau for OEx2.15 . 34
2.4 General tableau algorithm . 35
2.5 Intuition of tableau run extraction . 36
2.6 Individual relationships for Example 2.16 38

3.1 Example for tableau run composition . 44
3.2 Example tableau runs for individual disjointness 47
3.3 Intuition of an ABox split . 56
3.4 SHI-splittability for Example 3.12 . 69
3.5 SHI-splittability for Example 3.12 with subsumption 70

4.1 Algorithm for computing an individual island 73
4.2 Example individual island for mae and c5 in Example 3.12 76
4.3 Example individual islands for c1 and c4 (plus homomorphism) in Ex-

ample 3.12 . 80
4.4 Individual relationships and splittability for Example 4.5 90

5.1 Updating sound TBox classification structures 106
5.2 Updating split dependency structures . 118
5.3 Updating one-step node maps . 119
5.4 Updating island maps . 121

6.1 Module structure of the system . 124
6.2 Example for a comma separated value input file 125
6.3 Informal interface of the Update Handler module 125
6.4 Structure of the Data Management module 126
6.5 Number of individuals in LUBM . 129
6.6 Number of ABox assertions in LUBM 130
6.7 Percentage of unsplittable role assertions in LUBM 131
6.8 Number of modules in LUBM . 131
6.9 Average size of modules in LUBM . 132

6.10 Number of distinct one-step nodes for LUBM 133
6.11 Load time for LUBM . 133
6.12 Main memory used for loading LUBM 134
6.13 Time for instance retrieval for Chair and different number of nodes . . . 134

LIST OF FIGURES VIII

6.14 Instance retrieval times for LUBM 10000 135
6.15 Excerpt of the MCO concept classification 136
6.16 Excerpt of the MCO role classification 136
6.17 MCO ABox example . 137
6.18 Number of individuals and ABox assertions in Document 1 138
6.19 Percentage of unsplittable role assertions in Document 1 138
6.20 Number of modules in Document 1 . 139
6.21 Average size of modules in Document 1 139
6.22 Number of distinct one-step nodes for Document 1 140

LIST OF SYMBOLS IX

List of Symbols

In the following list of symbols, each line contains the symbol notation, the name and a
reference for the page, where the symbol is defined.

• Chapter 2, Section 2.1:

S Set (page 8)
℘(S) Powerset of S (page 8)
R Relation (page 8)
f Function (page 9)
FD(f) Used domain of f (page 9)
FV AL(f) Range of f (page 9)
n.d. Function value is not defined (page 9)
f − Inverse of f (page 9)

f|S Domain restriction on f (page 9)
MS Multiset (page 10)
Ξ Empty multiset (page 10)
↑MS (S) Transformation of sets to multisets (page 10)
↓MS (MS) Transformation of multisets to sets (page 10)
L List (page 10)
� Empty list (page 10)
T Tree (page 11)
n Node (page 11)
root Root node of a tree (page 11)
G Graph (page 11)
φ Node labeling function (page 11)
σ Edge labeling function (page 11)

• Chapter 2, Section 2.2:

CN Set of concept names (page 13)
RN Set of role names (page 13)
NIN Set of named individuals (page 13)
AIN Set of anonymous individuals (page 13)
IN Set of individuals (page 13)
I Interpretation (page 13)
R Role description (page 14)
Rol All role descriptions (page 14)
C Concept description (page 14)
Con All concept descriptions (page 14)
AtCon Set of atomic concept descriptions (page 15)

LIST OF SYMBOLS X

clos (C) Concept closure of C (page 16)
nnf(C) Negation normal form of C (page 16)
T TBox (page 19)
ST Set of TBoxes (page 19)
R RBox (page 19)
SR Set of RBoxes (page 19)
A ABox (page 19)
SA Set of ABoxes (page 19)
Ind(A) Individuals occurring in A (page 19)
NInd(A) Named individuals occurring in A (page 19)
AInd(A) Anonymous individuals occurring in A (page 19)
O Ontology (page 19)
SO Set of ontologies (page 19)
clos (T) Concept closure of T (page 20)
rcO Role classification for O (page 24)
rtcO Role transitivity classification for O (page 24)
ccO Concept classification for O (page 24)
irOC Instance retrieval result for O and C (page 24)
rrOR Relation retrieval result for O and R (page 24)
tabrappX,T,R Tableau rule application (page 28)

π Variable Assignment (page 28)
tabrapps,T,R Set of all tableau rule applications (page 28)
TO Tableau for O (page 33)
TPO Tableau proof for O (page 34)
RUN Tableau run (page 36)

• Chapter 3, Section 3.1:

Ind(RUN) Tableau run individuals (page 44)
RUN 1 ◦ RUN 2 Tableau run composition (page 42)
A[a1 → a2] Renaming of ABox individuals (page 45)
π[a1 → a2] Variable assignment individual renaming

(page 45)

tabrappπ,YX,T,R [a1 → a2] Tableau rule application individual renaming
(page 45)

RUN [a1 → a2] Tableau run individual renaming (page 45)
S[a1, ..., an → b1, ..., bn] Consecutive individual renaming (page 45)
RUN +Aext Tableau run assertion extension

(page 49)
M ABox modularization (page 40)

• Chapter 3, Section 3.2:

GA ABox graph of A (page 50)
MCA Component-based ABox modularization

(page 50)

LIST OF SYMBOLS XI

• Chapter 3, Section 3.3:

info∀T ∀-info structure for T (page 54)

↓R(a,b)
c,d ABox split (page 55)

extinfo∀T,R Extended ∀-info structure for T and R (page 62)

• Chapter 4, Section 4.1:

ISLa Individual island for a (page 73)
islandmapO Individual island map for O (page 76)

• Chapter 4, Section 4.2:

IIGa Individual island graph (page 78)

a1
ρ−→GA a2 ABox graph successor (page 79)

a1
ρ−→IIGa a2 Individual island graph neighbor (page 79)

θ Individual island graph homomorphism (page 79)
Iθ Homomorphism interpretation (page 80)

• Chapter 4, Section 4.3:

pnsa,A Pseudo node successor of a in A (page 83)
osna,A One-step node of a in A (page 84)
OSN Set of all one-step nodes (page 84)
ABoxa2(pnsa,A) Pseudo node successor ABox realization

(page 85)
ABox(osna,A) One-step node ABox realization (page 85)
θ One-step node homomorphism (page 86)

• Chapter 5, Section 5.1:

upd Syntactic ontology update (page 96)
OS Ontology state (page 97)
history List of syntactic ontology updates (page 97)
OS ↑ upd Ontology state update (page 97)

• Chapter 5, Section 5.2:

αstcsOS Sound TBox classification structure (page 99)
αstdsOS Sound TBox disjointness structure (page 99)

αcfisOS Complete ∀-info structure (page 99)
αcrcsOS Complete RBox classification structure (page 99)
αcrtsOS Complete RBox transitivity structure (page 99)
asdsOS Abstract split decision system (page 100)

LIST OF SYMBOLS XII

• Chapter 5, Section 5.3:

occ [C1 v C2] Obvious classification consequences (page 103)
stclss [OS] Updatable sound TBox classification snapshot

(page 104)
βstcsOS Updatable sound TBox classification structure

(page 105)
odc [C1 v C2] Obvious disjointness consequences (page 108)
βstdsOS Updatable sound TBox disjointness structure

(page 109)
fac [C1 v C2] ∀-concept description closure (page 110)

βcfisOS Updatable ∀-info structure (page 111)
βcrcsOS Updatable complete RBox classification structure

(page 112)
βcrtsOS Updatable complete RBox transitivity structure

(page 113)

• Chapter 5, Section 5.4:

updsds(OS) Updatable split decision system (page 113)
spls(updsds(OS)) Split set (page 114)
sdf(updsds(OS), upd) Update split difference bound (page 114)

βaboxsplOS Updatable complete split structure (page 117)

• Chapter 5, Section 5.5:

βosnmapOS Updatable one-step node map structure (page 118)

βislmapOS Updatable island map structure (page 120)

1. INTRODUCTION 1

Chapter 1: Introduction

1.1 Reasoning in the Semantic Web

The Semantic Web is intended to bring structure to the meaningful content of web pages
and to create an accessible environment for software agents. Ontologies are one way of
representing the knowledge of these agents. For a discussion of the term ontology please
refer to [Gua98] and a more recent discussion in [Gru09]. The idea to represent datasets
on the Internet with ontologies was first widely made public in [BLHL01]. Since then the
Semantic Web became a widely used buzzword.

There is increased interest in the development of Semantic Web applications, e.g. digital
libraries [KKS09, GFW08], community management [BM07, MP06], and health-care sys-
tems [DS05, CdK08]. As the Semantic Web evolves, the amount of data available in these
applications is growing with an incredible speed. Since the size of the Semantic Web is
expected to further grow in the coming years, scalability and performance of Semantic
Web systems become increasingly important. Usually, such systems deal with informa-
tion described in description-logic based ontology languages such as OWL [HKP+09], and
provide services for storing, querying, and updating large numbers of facts.

Decidability results for many expressive description logics and for query answering over
these description logics have been shown, e.g., for SHIQ in [GHLS07], SHOQ in [GHS08],
andALCHIOQb in [GR10]. However, early tableau-based description logic reasoning sys-
tems, e.g. Racer [HMW04] and Pellet [SPG+07], do not perform well with large ontologies
since the implementation of tableau algorithms is built based on efficient main memory
data structures. As long as a tableau representation for an ontology fits into main memory
these systems are quite successfully used in practice. However, if the tableau represen-
tation does not fit into main memory, these systems are doomed to fail because of out
of memory errors or extensive paging activities of the operating system. Until now, to
the best of our knowledge, there is no successful implementation of tableau algorithms
directly over external memory as, e.g. relational database systems. To sum up, many
traditional reasoning systems raise serious scalability concerns, because these systems
are not tailored to the peculiarities of secondary storage and do not provide appropriate
indexing techniques. There are several solutions proposed in the scientific community.
These solutions can be categorized as follows.

There exists a lot of research to identify tractable description logics. For example the de-
scriptions logic EL and extensions up to EL++, introduced in [BBL08], admit reasoning
in polynomial time for classification and instance checking. Another lightweight descrip-
tion logic (family) is DL-LITE [CDGL+05]. For an extensive overview see [ACKZ09].
DL-LITE allows the use of relational database management systems for query answering.

1. INTRODUCTION 2

Another tractable fragment is the rule-based language OWL-R, introduced in [HKP+09].
All tractable fragments have in common that the set of constructors in the ontology lan-
guage is restricted in order to obtain efficient reasoning algorithms for query answering.
However, in practical applications, users often need more expressive languages.

The increasing growth of Semantic Web applications also led to the development of a new
class of external memory-based retrieval systems, so called triple stores. Originally moti-
vated to store RDF schema information, see [Bec04], a general architecture to store triples
was proposed in [BKvH03]. In the recent years, the amount of these stores substantially
increased, see for instance Franz AllegroGraph [Fra11] or OWLIM [Kir06]. An extensive
overview over triple stores over large datasets can be found in [RDE+07]. Although the
creators of triple stores continuously come up with more impressive performance evalua-
tion results, there are two basic problems with these statistics.

First, in general, it is not clear what kind of reasoning takes place inside the triple store
during retrieval - it can be anything from pure lookup to complex description logic rea-
soning. Second, the hardware test configurations used by triple stores creators seem to
be a little over the line. For instance, if one uses four computers with 48 GB of main
memory each, then it is not a big surprise that the system is able to handle datasets in
the order of several GB. This scenario seems to be at odds with the original intention of
triple stores - managing data in external memory.

Tests to build a query answering engine on top of a triple store, for instance in [Spa07],
failed. Even though a worst-case efficient algorithm for the description logic ALC [SSS91]
was implemented, the approach turned out to be not useful for query answering.

Another approach to overcome the problem of reasoning over large ontologies is to approx-
imate the ontology by a more compact representation or in a weaker description logic. In
[PTZ09], the authors propose to reuse the idea of knowledge compilation to approximate
ontologies in a weaker ontology language. For the ontology language of their choice, i.e.
DL-LITE , efficient query answering algorithms with polynomial data complexity exist.
Reasoning on the approximated ontology allows to include/reject potential answers with
respect to the original ontology. A similar direction was taken in [RPZ10], where the ter-
minology part of an ontology is approximated to the description logic EL++. The results
from the approximated ontology are used for more efficient classification over the original
ontology. The classification results can then be used for more efficient retrieval as well.

Another approach focusing on reasoning over instances in large ontologies is presented
in [TRKH08]. The algorithms in [TRKH08] are based on KAON2 [Mot08] algorithms,
which transform the terminological part of an ontology into Datalog [MW88]. Depending
on the transformation strategy, the obtained Datalog program can be used for sound or
complete reasoning over instances in the source ontology. The preceding approximation
approaches rely on expressivity reduction of the ontology language.

A different approach is proposed in [FKM+06], [DFK+07], and [DFK+09], based on sum-
marization and refinement. First, a summarization of the assertional part is created by
aggregating individuals. This is part of a setup step that can be performed offline, i.e.

1. INTRODUCTION 3

before query answering takes place. Queries are then executed over the summarization.
During the summarization process, one has to take care of inconsistencies. If the sum-
marization leads to inconsistencies, previously merged individuals have to be broken up
again.

While approximation techniques usually rely on the summarization of the input or the
reduction of the expressivity, there exist modularization techniques which try to extract
independent modules with respect to a given reasoning problem. Most of the modular-
ization techniques focus on TBox modularization. In [GPSK06], the notion of a module
for the terminological part of an ontology is introduced, and an algorithm for computing
modules is presented. This work is further extended in [GHKS09].

Usually, modularization of terminologies has not only the intention to extract modules,
but to also combine modules from different source ontologies into one importing ontology.
This is in detail discussed in [BS03], where so-called distributed description logics are
proposed. The idea is to create rules between parts of terminologies, so-called bridge
rules, to propagate information between source ontologies.

The review of state-of-the-art ontology systems shows that many existing reasoning sys-
tems are implemented using main memory techniques or at least have to fall back to use
main memory techniques for the whole dataset. Therefore, these systems are often unable
to handle data which is too big to fit into main memory. The proposed solutions for ex-
ternal memory reasoning systems are usually created for less expressive description logics.
Furthermore, to the best of our knowledge, there exist no external memory techniques
to explicitly support updates of ontologies. In general, all necessary data structures are
recomputed after each ontology update from scratch again.

1.2 Research Objectives and Scientific Contributions

The main goal of the research presented in this thesis is to investigate optimizations and
heuristics for query answering with tableau-based reasoning systems. In detail, the thesis
has the following objectives:

• Focus on a class of description logics which we call semi-expressive. These semi-
expressive description logics are between tractable description logics, such as EL++

or DL-LITE , and inherently intractable logics, such as SHOIQ and SROIQ. Our
focus is on the description logic SHI (no nominals and no choose rule)

• Release the main memory burden from description logic reasoning systems for semi-
expressive ontologies. It should be possible to perform instance checks on large
ontologies efficiently in the average case.

• Optimize instance retrieval queries beyond naive iteration over all individuals.

1. INTRODUCTION 4

• Propose index data structures for easy and direct implementation of instance checks
and instance retrieval over semi-expressive ontologies.

• Provide updatable index data structures for reasoning.

When designing and developing a description logic reasoning system, a lot of decisions
have to made at design time. During dissemination these decisions have to be reconsid-
ered and sometimes reverted/changed. This leads to the situation that many existing
reasoning systems have a lot of tricks and heuristics implemented, which often are not
published anywhere. We intend to provide a set of optimization techniques, which are
clearly described and can be implemented right away. At some points, we might explain
even

”
simple“ techniques and definitions quite formally, but we think this is necessary in

order to put our techniques across and make them reusable in different scenarios.

The major contributions of this thesis are as follows:

• Inspired by graph partitioning approaches, we introduce a set of modularization
techniques over the assertional part of SHI-ontologies. It is possible to perform
instance checks on usually small

”
independent“ subsets of assertions. The

”
inde-

pendence“ can be exploited to only load a small part of the ontology into main
memory at a time.

• In the style of binary instance retrieval techniques [HM04], we achieve optimized
instance retrieval by defining a similarity relation over individuals. We define cri-
teria for sufficient degrees of similarity to treat sets of individuals as equivalent
for instance retrieval checks. In addition, we define index data structures to man-
age modules and similarity information. With this idea we can avoid that similar
modules are repeatedly loaded into main memory.

• Modularization techniques and similarity criteria give rise to efficient use of recent
advances in distributed and parallel computing, such as multicore-systems and cloud
computing [Vou08].

• We define a class of syntactic updates over ontologies and describe how the index
data structures have to be adapted under each syntactic update operation.

• We evaluate our modularization techniques for benchmark and real world ontology
data. It is shown that our techniques help query answering systems to reason over
ontologies which do not fit into main memory.

This thesis is not only interesting for developers of description logic reasoners. Under-
standing possible optimization techniques can also help ontology designers and users to
improve (the experience with) their ontologies.

1. INTRODUCTION 5

1.3 Dissemination Activities

Several parts of this thesis have been published to disseminate research results at different
stages. In the following, dissemination activities are listed in inverse chronological order.

• Year 2011:

– Sebastian Wandelt, Ralf Möller:

Islands and Query Answering for ALCHI-Ontologies in CCIS 128: Third In-
ternational Joint Conference on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management. 2010, Heidelberg, Germany, 2011, Springer,
pages 224 - 236.

• Year 2010:

– Sebastian Wandelt, Ralf Möller, Michael Wessel:

Towards Scalable Instance Retrieval over Ontologies in Journal of Software and
Informatics, 2010,4(3):201 218.

– Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski,
and Sebastian Wandelt:

Dealing Efficiently with Ontology-Enhanced Linked Data for Multimedia in Pro-
ceedings of International Conference on Semantic and Multimedia Technolo-
gies, SAMT 2010, Saarbrücken, 2010, Springer.

– Sebastian Wandelt, Ralf Möller:

Distributed Island-Based Query Answering for Expressive Ontologies in Pro-
ceedings of International Conference on Advances in Grid and Pervasive Com-
puting, GPC 2010, Hualien, Taiwan, pages 461 - 470.

– Alissa Kaplunova, Ralf Möller, Sebastian Wandelt, Michael Wessel:

Towards Scalable Instance Retrieval over Ontologies in Proceedings of Knowl-
edge Science, Engineering and Management, 4th International Conference,
KSEM 2010, Belfast, Northern Ireland, 2010, pages 436 - 448.

– Sebastian Wandelt, Ralf Möller:

Distributed Island-Based Query Answering for Expressive Ontologies in Pro-
ceedings of International Workshop on Description Logics, DL 2010, Waterloo,
Canada.

– Sebastian Wandelt, Ralf Möller:

Sound Summarizations for ALCHI-Ontologies - How to Speed up Instance
Checking and Instance Retrieval in Proceedings of International Conference
on Agents and Artificial Intelligence, ICAART 2010, Valencia, 2010, pages 656
- 661.

1. INTRODUCTION 6

• Year 2009:

– Sebastian Wandelt, Ralf Möller:

Updatable Island Reasoning for ALCHI-Ontologies in Proceedings of Inter-
national Conference on Knowledge Engineering and Ontology Development,
KEOD 2009, Funchal, Portugal, 2010, pages 48 - 55.

• Year 2008:

– Sebastian Wandelt:

Partitioning OWL Knowledge Bases - Revisited and Revised in Proceedings of
International Workshop on Description Logics, DL 2008, Dresden, Germany,
2008.

– Sebastian Wandelt, Ralf Möller:

Island Reasoning for ALCHI-Ontologies in Proceedings of Formal Ontology in
Information Systems, FOIS 2008, Saarbrücken, Germany, 2008, pages 164 -
177.

• Year 2007:

– Sebastian Wandelt, Ralf Möller:

Scalability of OWL Reasoning: Role condensates in Proceedings of On the
Move to Meaningful Internet Systems: OTM 2007 Workshops, OTM 2007,
Vilamoura, Portugal, 2007, pages 1145 - 1154.

– D. Calvanese, G. De Giacomo, B. C. Grau, A. Kaplunova, D. Lembo, M.
Lenzerini, R. Möller, R. Rosati, U. Sattler, B. Sertkaya, B. Suntisrivaraporn,
S. Tessaris, A.-Y. Turhan, and S. Wandelt:

D14: Ontology-Based Services: Usage Scenarios and Test Ontologies. Project
deliverable, TONES, 2007. http://www.tonesproject.org.

– G. De Giacomo, E. Franconi, B. Cuenca Grau, V. Haarslev, A. Kaplunova, A.
Kaya, D. Lembo, C. Lutz, M. Milicic, R. Möller, U. Sattler, B. Sertkaya, B.
Suntisrivaraporn, A.-Y. Turhan, S. Wandelt, and M. Wessel:

D23: Analysis of Test-Results on Individual Test Ontologies. Project deliver-
able, TONES, 2007. http://www.tonesproject.org.

1. INTRODUCTION 7

1.4 Outline

Before optimization techniques and heuristics for the solution of reasoning problems are
introduced, the formal foundations are defined in Chapter 2. Besides defining basic math-
ematical notions, e.g. set theory, handling of lists and graphs, the focus of Chapter 2 is
on the introduction of description logics. The conceptual language is introduced, decision
problems for ontologies are defined, and reasoning procedures explained. Moreover, dif-
ferent members of the description logic family are introduced and their formal properties
are recapitulated.

Chapter 3 explains the fundamental idea of breaking down a large ontology into smaller
parts, called ABox modularization. The idea is to rewrite the assertional part of an
ontology into smaller chunks (modules), such that decision problems can be solved by
considering these small chunks only. The modularization technique is extended to further
break up existing assertional information by so called intensional-based partitioning. The
modularization techniques are first shown and proved for the description logic ALC and
then further lifted to the description logic SHI.

While Chapter 3 introduces a purely technical transformation on the assertional part of an
ontology, Chapter 4 shows how to use these techniques for more efficient reasoning. First,
so-called individual islands are proposed. An individual island for an individual contains
a usually small set of the assertional axioms relevant for instance checking. Furthermore,
instance retrieval techniques over these individual islands are proposed and discussed.
The main concept for optimization of instance retrieval is to use similarity measures over
individual islands in order to reduce the number of atomic instance checks. Moreover,
a data structure called one-step node is introduced, which can be used for similarity
detection, as well as for direct optimization of instance retrieval over ontologies.

In Chapter 5, it is shown how the techniques from Chapter 4 can be applied to manage
updates to ontologies. A set of syntactic update functions over ontologies is defined and
for each of these update functions we show, how to change the data structures introduced
in Chapter 4.

We present a prototypical implementation of our algorithms in Chapter 6. In addition,
we evaluate the prototype over test ontologies to show up to what extent updatable
modularization techniques are applicable and scale in practice.

Chapter 7 concludes this work by summarizing the main achievements. Furthermore, we
indicate interesting directions for future work.

2. PRELIMINARIES 8

Chapter 2: Preliminaries

In this chapter, we introduce mathematical notions. First, our notation for functions,
sets, and graphs is introduced in Section 2.1. In Section 2.2, we introduce the family of
description logics, a logical formalism for knowledge representation. We introduce the
conceptual language and axioms for descriptions of ontologies. Furthermore, we formally
define decision problems over description logic ontologies and recapitulate existing decision
algorithms. We define an example ontology in Section 2.3 for further use.

2.1 Basic Preliminaries

First, we define general notions from basic mathematics. The set of natural numbers is
denoted with N. The powerset of a set S is denoted with ℘(S). The number of elements in
a set S is denoted with |S|. If we define elements in a set, the expression {x | x ∈ X∧...} is
often abbreviated as {x ∈ X | ...}, e.g. the set definition {x | x ∈ N ∧ primenumber(x)}
is rewritten as {x ∈ N | primenumber(x)}. With S1 	 S2 we denote the symmetric
difference between two sets, i.e. S1 	 S2 = (S1 \ S2) ∪ (S2 \ S1).

Definition 2.1 (N-ary Relations):
Given a collection of sets X1, ...,Xn, the n-ary relation R over X1, ...,Xn is a subset
of X1 × ... × Xn. To denote the type of an n-ary relation, we write R : X1 × ... ×
Xn. (x1, .., xn) ∈ R is also denoted with 〈x1, ..., xn〉 ∈ R or R(x1, ..., xn). An element
〈x1, ..., xn〉 of an n-ary relation R, is called a tuple. 〈x1, x2〉 is called a pair and 〈x1, x2, x3〉
is called a triple. Given a set X and a set Y, a binary relation R is a 2-ary relation over
X and Y. If (x, y) ∈ R, this is also denoted with xRy. A binary relation R is

• left-total if ∀x ∈ X.∃y ∈ Y.R(x, y),

• surjective if ∀y ∈ Y.∃x ∈ X.R(x, y),

• functional if ∀x ∈ X.∀y1 ∈ Y.∀y2 ∈ Y.R(x, y1) ∧R(x, y2) =⇒ y1 = y2,

• injective if ∀x1 ∈ X.∀x2 ∈ X.∀y ∈ Y.R(x1, y) ∧R(x2, y) =⇒ x1 = x2, and

• bijective if R is surjective and injective.

Given a binary relation R : X ×X, we let

• reflexive closure of R: RREF = R ∪ {(x, x) | x ∈ X},

• symmetric closure of R: RSYM = R ∪ {(x2, x1) | (x1, x2) ∈ R}, and

2. PRELIMINARIES 9

• transitive closure of R, denoted RTRA, is the smallest relation satisfying the follow-
ing constraints:

R(x1, x2) =⇒ RTRA(x1, x2)

R(x1, x2)
TRA ∧R(x2, x3) =⇒ RTRA(x1, x2).

Sometimes we combine several closure operations, e.g. RSYM,TRA denotes the transitive
closure of the symmetric closure of R.

Definition 2.2 (Functions and their Properties):
Given a set X and a set Y, a function f is a functional binary relation over X and Y.
The set X is called the domain of f and the set Y is called the codomain of f. (x, y) ∈ f
is also denoted with f(x) = y or x →f y. In order to denote the type of a function we
use the notation f : X → Y, where X is the domain of f and Y is the codomain of f.
If x ∈ X and the value f(x) is not defined for a (non-total) function f : X → Y, we
denote this with f(x) = n.d.. The set of values used from the domain of f, i.e. the set
{x | f(x) 6= n.d.}, is denoted as FD(f). The set of values used from the codomain of f,
i.e. the set {y | ∃x ∈ X ∧ f(x) = y}, is denoted as FV AL(f).

Although the properties of functions are directly derived from relations, we define them
explicitly here. A function is

• total if ∀x ∈ X.∃y ∈ Y.f(x) = y,

• partial if f is not total,

• surjective if ∀y ∈ Y.∃x ∈ X.f(x) = y,

• injective if ∀x ∈ X.∀y ∈ Y.(f(x) = f(y) =⇒ x = y), and

• bijective if f is surjective and injective.

Given a set S ⊆ X, the result of applying f : X → Y to all elements in S is defined as
the set f(S) = {y ∈ Y | ∃x ∈ S.(f(x) = y)}.

Since functions are special binary relations, we often use notions from binary relations
on the relational representation of functions. For instance, the expression f = ∅ denotes
that the function f has no mappings, i.e. f(x) = n.d. for all elements x in the domain of
f. Furthermore, we apply set manipulation operations, such as union and difference, on
two functions directly, as long as the domain allows it. In order to define functions, we
use the following notation sometimes: f = {a → 1, b → 2}, which means that f(a) = 1,
f(b) = 2, and f(x) = n.d. for all other elements in the domain of f.

Given a function f : X → Y, the inverse function f − : Y → X, is defined as

f −(y) = x ⇐⇒ f(x) = y.

Please note that the inverse of a function is only well defined, if the original function f is
injective.

2. PRELIMINARIES 10

Given a function f : X → Y, the restriction of the domain to the set S, denoted f|S , is
defined as

f|S(x) =

{
f(x) if x ∈ S,

n.d. otherwise.

In the following, we introduce the notion of multisets [Knu81, Bli89]. As an extension of
sets, elements can occur multiple times in a multiset. A function is used to keep track of
the number of occurrences of each element.

Definition 2.3 (Multiset):
Given a base set domain, a multiset MS over domain is a total function MS :
domain → N. Let MS1 : domain → N and MS2 : domain → N be multisets over a
set domain, and s ∈ domain then

• (MS1

⊎
MS2)(s) = MS1(s) + MS2(s) (multiset union) and

• (MS1 \MS2)(s) = max(0,MS1(s)−MS2(s)) (multiset difference).

The empty multiset, denoted Ξ, is a multiset, such that ∀s ∈ domain.Ξ(s) = 0. A
multiset MS contains an element s, denoted s ∈MS, if MS(s) ≥ 1.

Given a base set domain and a set S ⊆ domain, the multiset of S, denoted ↑MS (S), is
a multiset defined as follows:

↑MS (S)(x) =

{
1 if x ∈ S,

0 otherwise.

Given a base set domain and a multiset MS over domain, the set of MS, denoted
↓MS (MS), is a set defined as ↓MS (MS) = {x | x ∈MS}.
Example 2.1 (Multiset Operations):
Given the two sets S1 = {a, b, c} and S2 = {b, c, d}, we have

• ↑MS (S1) = {a→ 1, b→ 1, c→ 1},

• ↑MS (S2) = {b→ 1, c→ 1, d→ 1},

• (↑MS (S1))
⊎

(↑MS (S2)) = {a→ 1, b→ 2, c→ 2, d→ 1} and

• ↓MS ((↑MS (S1))
⊎

(↑MS (S2))) = {a, b, c, d}.

We introduce the formal notation of a list in Definition 2.4.

Definition 2.4 (List):
Given a base set domain, a list L over domain is inductively defined as follows:

• � is a list (empty list).

2. PRELIMINARIES 11

• d ◦ L is a list if L is a list and d ∈ domain (concatenated list).

The length of a list L, denoted |L|, is defined recursively as usual, i.e. |�| = 0 and
|d ◦ L| = |L| + 1. To simplify the handling of lists, we use common notation from the
literature, e.g. the expression [a, b, c] is denoted to represent the list (c ◦ (b ◦ (a ◦ �))).
With begin (or start) of L we refer to the first element in L, e.g. element a above, and
with end of L we refer to the last element of L, e.g. element c above.

Definition 2.5 (Directed Graph):
A directed graph is a tuple G = 〈N,E〉, such that N is a set of nodes and E ⊆ N ×N
is a set of edges. Given a node n ∈ N, an edge (n, n2) ∈ E is called outgoing edge of
n, and an edge (n2 , n) ∈ E is called incoming edge of n. The set of outgoing edges of a
node n is denoted with outG(n). The set of incoming edges of a node n is denoted with
inG(n). The node successors of n, denoted succsG(n), are defined as the set of nodes
connected by an outgoing edge from n, i.e., succsG(n) = {n2 ∈ N | (n, n2) ∈ E}. The
node predecessors of n, denoted predsG(n), are defined as the set of nodes connected by
an outgoing edge to n, i.e. predsG(n) = {n2 ∈ N | (n2 , n) ∈ E}. The node neighbors of
n, denoted neighborsG(n), are defined as the set of nodes connected by an outgoing or
incoming edge from n, i.e. neighborsG(n) = {n2 ∈ N | (n, n2) ∈ E ∨ (n2 , n) ∈ E}.
Definition 2.6 (Trees):
A directed tree (or short tree) is a tuple T = 〈N, root, children〉, where N is a set of
nodes, root ∈ N is a distinguished root node, and children : N → ℘(N) is a total function
which assigns a set of child nodes to each node, such that every node other than the root
node is reachable from the root (via children) and has exactly one predecessor. Given a
directed tree T = 〈N, root, children〉, a node n ∈ N is called leaf node if children (n) = ∅,
otherwise the node n is called inner node. A tree T = 〈N, root, children〉 is called x-ary
if each node has at most x children, i.e. ∀n ∈ N.|children (n)| ≤ x. We refer to 2-ary
trees as binary trees.

In the following, we extend our tree and graph definitions by introducing labels. We
formally define two different functions which can be used to label nodes (of trees and
graphs) and edges (of graphs).

Definition 2.7 (Node and Edge Labeling Function):
Given a set of nodes N, a set of node labels SGNL, and a set of edge labels SGEL, a
node labeling function φ : N → SGNL for N assigns to each node n ∈ N a label from
SGNL and an edge labeling function σ : N ×N → SGEL for N assigns to each pair of
nodes a label from SGEL. A directed labeled graph is a tuple G = 〈N,E, φ, σ〉, such that
〈N,E〉 is a directed graph, φ is a node labeling function for N, and σ is an edge labeling
function for N. A directed labeled tree is a tuple T = 〈N, root, children , φ, σ〉, such that
〈N, root, children〉 is a directed tree, φ is a node labeling function for N and σ is an edge
labeling function for N.

Sometimes we also add more than one node labeling functions to on tree. In this case we
will mention this fact explicitly. In the following example, we define a graph GEx2.2 for
modeling an excerpt of a university domain.

2. PRELIMINARIES 12

Figure 2.1 Graph example GEx2.2

sam

mae

sue

ee

headOf

c4 c5

teaches

takes takes

Department

Professor

Student

Course

Student

Course

Example 2.2 (Graphs):
Given a set of node labels SGNL = ℘({Department, Professor, Course, Student}) and
edge labels SGEL = ℘({headOf, teaches, takes}), an example directed labeled graph
GEx2.2 = 〈N,E, φ, σ〉 is given as follows:

N = {ee,mae, c4, c5, sam, sue}
E = {(mae, ee), (mae, c4), (mae, c5), (sam, c4), (sue, c5)}

φ(n) =



{Department} if n = ee,

{Professor} if n = mae,

{Course} if (n = c4 ∨ n = c5),

{Student} if (n = sam ∨ n = sue),

∅ otherwise.

σ(e) =


{headOf} if e = (mae, ee),

{teaches} if (e = (mae, c4) ∨ e = (mae, c5)),

{takes} if (e = (sam, c4) ∨ e = (sue, c5)),

∅ otherwise.

The graph is depicted in Figure 2.1.

Examples for further graph notations over GEx2.2 are given as follows:

• Outgoing edges of mae: outGEx2.2(mae) = {(mae, ee), (mae, c4), (mae, c5)},

2. PRELIMINARIES 13

• Incoming edges of c4: inGEx2.2(c4){(mae, c4), (sam, c4)},

• Node neighbors of c5: neighborsGEx2.2(c5) = {mae, sue}.

We finalize our introduction of basic mathematical notions here and proceed to description
logics.

2.2 Description Logics

Description logics are a family of languages for knowledge representation. Historically,
description logics are descendants of semantic nets [Qui68] and frame systems [Min74].
In Artificial Intelligence, description logics are used for formal reasoning about applica-
tion domains. The most prominent application of description logics might be the use as
a formalism for the Semantic Web [BHS05]. For further information on the historical
background of description logics, we refer to [BCM+07]. A general review on logic-based
knowledge representation with description logics and other logics as well, such as modal
logics, is given in [Baa99].

2.2.1 Conceptual Language

In the following, we introduce the conceptual language underlying description logics by
defining syntax and semantics for different constructors and descriptions.

Definition 2.8 (Base sets):
We assume a number of disjoint base sets as follows:

• CN is a non-empty set of concept names,

• RN is a non-empty set of role names,

• NIN is a non-empty set of named individuals, and

• AIN is a non-empty set of anonymous individuals.

The set of individuals is IN = NIN ∪AIN.

The elements from base sets form the basis for descriptions in description logics. The
semantics of base descriptions is defined by an interpretation.

Definition 2.9 (Interpretations):
An interpretation I is a pair 〈∆I , ·I〉, such that

• ∆I is a non-empty set, the domain of I, and

2. PRELIMINARIES 14

• ·I is an interpretation function which assigns to every A ∈ CN a set AI ⊆ ∆I , to
every S ∈ RN a set SI ⊆ ∆I × ∆I , and to every individual a ∈ IN an element
aI ∈ ∆I .

The definition of interpretation functions is extended step-by-step for each of the descrip-
tion constructors introduced below. First, we introduce role descriptions, which are used
to relate individuals in an application domain.

Definition 2.10 (Role Descriptions):
The expression R is a role description if and only if

• R = S and S ∈ RN (R is called role name) or

• R = R−2 and R2 is a role description (R is called inverse role of R2). If R2 is a role
name, then R is called inverse role name.

Interpretation functions are extended such that we have (R−)
I

= {(a1, a2) | (a2, a1) ∈
RI}. The set of all role descriptions is denoted with Rol. A role description R is called
atomic role if R is a role name or R is a inverse role name.

In Example 2.3, we define some role descriptions which can be constructed from the
constructors introduced above. For instance, the role description teaches−, is the inverse
role of teaches.

Example 2.3 (Role Descriptions):
Given a set RN = {headOf, takes, teaches}, examples of role descriptions are:

• Inverse role name: teaches−.

• Atomic roles: teaches, takes, headOf−.

• Non-atomic role: teaches−
−

.

It is easy to see that each non-atomic role is equivalent (with respect to interpretations)
to an atomic role. Hence, in the following, we assume that each role description is atomic.
Next, we introduce concept descriptions, which are used to categorize and classify indi-
viduals in an application domain.

Definition 2.11 (Concept Descriptions):
The expression C is a concept description if and only if

• C = > (top-symbol),

• C = ⊥ (bottom-symbol),

• C = A, such that A ∈ CN (C is called concept name),

• C = C1 u C2, such that C1 and C2 are concept descriptions (C is called concept
intersection),

2. PRELIMINARIES 15

• C = C1 t C2, such that C1 and C2 are concept descriptions (C is called concept
union),

• C = ¬C2, such that C2 is a concept description (C is called concept negation),

• C = ∃R.C2, such that C2 is a concept description and R is a role description (C is
called exists constraint or existential restriction),

• C = ∀R.C2, such that C2 is a concept description and R is a role description (C is
called forall constraint or value restriction),

• C =≥n R.C2, such that C2 is a concept description, R is a role description and
n ∈ N (C is called minimum cardinality restriction or cardinality restriction),

• C =≤n R.C2, such that C2 is a concept description, R is a role description and
n ∈ N (C is called maximum cardinality restriction or cardinality restriction), or

• C = {a}, such that a ∈ NIN (C is called nominal).

The set of all concept descriptions is denoted with Con. Interpretation functions are
extended such that we have

• (>)I = ∆I ,

• (⊥)I = ∅,

• (C1 u C2)
I = C1

I ∩ C2
I ,

• (C1 t C2)
I = C1

I ∪ C2
I ,

• (¬C)I = ∆I \ CI ,

• (∃R.C)I = {δ1 ∈ ∆I | ∃δ2 ∈ ∆I .((δ1, δ2) ∈ RI ∧ δ2 ∈ CI}),

• (∀R.C)I = {δ1 ∈ ∆I | ∀δ2 ∈ ∆I .((δ1, δ2) ∈ RI =⇒ δ2 ∈ CI}),

• (≥n R.C)I = {δ1 ∈ ∆I | (|{δ2 | (δ1, δ2) ∈ RI ∧ δ2 ∈ CI}|) ≥ n},

• (≤n R.C)I = {δ1 ∈ ∆I | (|{δ2 | (δ1, δ2) ∈ RI ∧ δ2 ∈ CI}|) ≤ n}, and

• ({a})I = aI .

A concept description C is called atomic if C is a concept name or C is a negated concept
name.

Example 2.4 (Example for Concept Descriptions):
Given a set CN = {Course, Professor, Student} and a set RN = {headOf, takes, teaches},
examples for concept descriptions are:

• Negated concept names: ¬Professor,¬Student.

2. PRELIMINARIES 16

• Atomic concepts: Professor,¬Student.

• Non-atomic concepts: ProfessortStudent,∀headOf−.P rofessor,∃takes.Course.

In Example 2.5 we show one example for an interpretation.

Example 2.5 (Interpretations):
Given a set CN = {Course, Professor, Student} and a set RN = {takes, teaches}, an
example interpretation IEx2.5 is defined as follows:

∆IEx2.5 = {δa, δb, δc, δd}
CourseIEx2.5 = {δb}

ProfessorIEx2.5 = {δa}
StudentIEx2.5 = {δc, δd}
teachesIEx2.5 = {(δa, δb)}
takesIEx2.5 = {(δc, δb), (δd, δb)}.

The extension of IEx2.5 yields for example (∀takes.Course)IEx2.5 = {δc, δd}.

Interpretations are often depicted as directed, labeled graphs, such that the domain of
the interpretation is mapped to nodes and the interpretation function is mapped to either
node or edge labels.

Definition 2.12 (Closure of Concepts):
Given a concept description C, the concept closure of C, denoted clos (C), is defined as
follows:

clos (C) =



{>} if C = >,
{⊥} if C = ⊥,
{A} if C = A,

{{a}} if C = {a},
{C} ∪ clos (C1) ∪ clos (C2) if C = C1 t C2,

{C} ∪ clos (C1) ∪ clos (C2) if C = C1 u C2,

{C} ∪ clos (C1) if C = ¬C1,

{C} ∪ clos (C1) if C = ∀R.C1,

{C} ∪ clos (C1) if C = ∃R.C1,

{C} ∪ clos (C1) if C =≥n R.C1,

{C} ∪ clos (C1) if C =≤n R.C1.

The closure of a concept description is usually used for syntactical analysis. We introduce
the notion of a concept description in negation normal form in order to further ease
syntactical analysis.

Definition 2.13 (Negation Normal Form):
A concept description C is in negation normal form if all negations occur in front of

2. PRELIMINARIES 17

concept names only, i.e. for all ¬C1 ∈ clos (C), C1 is a concept name. The negation
normal form of a concept description C is denoted nnf(C).

Every concept description can be transformed into a concept description in negation
normal form, see [HST00b] and [HS07] for details about the transformation.

In the remaining part, we always assume that each concept description is in negation
normal form, unless stated otherwise.

Apart from the introduced syntactical constructors, there exist many description logic
extensions. For the sake of completeness we mention some of these extensions here. The
most prominent extension might be concrete domains - a means to represent concrete
qualities of instances such as age, duration, ids or even spatial information, see [Lut03]
for an overview. Other research is focused on probabilistic [Luk08], fuzzy [Str05], and
temporal [AFWZ02] extensions. In addition functional and uniqueness constraints [BW97]
as well as epistemic operators [DLN+98] have been investigated.

2.2.2 Ontologies

A description logic ontology is a formal representation of knowledge as a set of axioms.
One axiom set describes the intensional knowledge and the axiom set describes the ex-
tensional knowledge. Both kinds of axioms and their semantics are introduced next.

Definition 2.14 (Role Axioms and their Models):
A general role inclusion axiom has the form R1 v R2, where R1 and R2 are role descrip-
tions. An interpretation I satisfies (is a model of) a general role inclusion axiom R1 v R2,
denoted I � R1 v R2, if and only if RI1 ⊆ RI2 . A general role equality axiom has the
form R1 ≡ R2, where R1 and R2 are role descriptions. An interpretation I satisfies (is a
model of) a general role equivalence axiom R1 ≡ R2, denoted I � R1 ≡ R2, if and only if
RI1 = RI2 . A role transitivity axiom has the form Trans(R), where R is a role description.
An interpretation I satisfies (is a model of) a role transitivity axiom Trans(R), denoted
I � Trans(R), if and only if RI = (RI)TRA.

It is easy to see that an interpretation I is a model of a general role equality axiom
R1 ≡ R2 if and only if I is a model for R1 v R2 and for R2 v R1. Therefore, it is
common to take into account general role inclusion axioms only, since each general role
equality axiom can be trivially dealt with as two general role inclusion axioms.

Definition 2.15 (Concept Axioms and their Models):
A general concept inclusion axiom (GCI) has the form C1 v C2, where C1 and C2 are
concept descriptions. An interpretation I satisfies (is a model of) a general concept
inclusion axiom C1 v C2, denoted I � C1 v C2, if and only if CI1 ⊆ CI2 . General concept
inclusion axioms are often just called concept inclusions. The set of all general concept
inclusion axioms is denoted with GCIs. A general concept equality axiom has the form
C1 ≡ C2, where C1 and C2 are concept descriptions. An interpretation I satisfies (is a
model of) a general concept equivalence axiom C1 ≡ C2, denoted I � C1 ≡ C2, if and

2. PRELIMINARIES 18

only if CI1 = CI2 . A general concept disjointness axiom has the form C1 � C2, where C1

and C2 are concept descriptions. An interpretation I satisfies (is a model of) a general
concept disjointness axiom C1 � C2, denoted I � C1 � C2, if and only if CI1 ∩ CI2 = ∅.

An interpretation I is a model of a general concept equality axiom C1 ≡ C2 if and only
if I is a model for C1 v C2 and for C2 v C1. Therefore it is a common assumption in
description logic research to take into account general concept inclusion axioms only, since
each general concept equality axiom can be trivially dealt with as two general concept
inclusion axioms.

An interpretation I is a model of a general concept disjointness axiom C1 � C2 if and
only if I is a model for C1 u C2 v ⊥. Therefore it is again common to take into account
general concept inclusion axioms only, since each general concept disjointness axiom can
be trivially dealt with using one general concept inclusion axiom.

Definition 2.16 (Individual Axioms and their Models):
A concept assertion axiom has the form C(a), where a ∈ IN and C is a concept de-
scription. An interpretation I satisfies (is a model of) a concept assertion axiom C(a),
denoted I � C(a), if and only if aI ∈ CI . Concept assertion axioms are often just called
concept assertions. A role assertion axiom has the form R(a1, a2), where {a1, a2} ⊆ IN
and R is a role description. An interpretation I satisfies (is a model of) a role assertion
axiom R(a1, a2), denoted I � R(a1, a2), if and only if (aI1 , a

I
2) ∈ RI . Role assertion axioms

are often just called role assertions.

Please note that, in general, we only allow atomic concepts in concept assertion axioms.
This way, it is easier to define efficient structures for reasoning. The restriction is without
loss of generality, since every non-atomic concept description, used to describe extensional
knowledge, can be given a name in the terminological part of the ontology.

Throughout our work we make use of the unique name assumption for all named indi-
viduals. This means that different individual names refer to different domain objects, i.e.
formally we have for all interpretations I: a1 6= a2 =⇒ aI1 6= aI2 . This assumption is
commonly made in description logics.

In Example 2.6 we provide example declarations for the axioms defined above.

Example 2.6 (Example for Description Logic Axioms):
Given the sets

CN = {Chair, Course, Person,Department,GraduateCourse,GraduateStudent,
Professor, Student, UndergraduateCourse}

RN = {headOf, isTaughtBy,memberOf, takes, teaches}
IN = {ani, c1}

axioms can be built as follows:

• Role equality axiom: teaches ≡ isTaughtBy−.

• Concept inclusion axioms: Professor v Person,∃takes.> v Student.

2. PRELIMINARIES 19

• Individual axioms: Person(ani), Course(c1), takes(ani, c1).

Definition 2.17 (TBoxes, RBoxes, ABoxes, Ontologies, and their Models):
A TBox T is a finite set of general concept inclusion axioms C1 v C2. With ST we denote
the set of all TBoxes. An interpretation I is a model for TBox T, denoted with I � T,
if and only if I satisfies all concept inclusions axioms in T. A RBox R is a finite set of
general role inclusion axioms and role transitivity axioms. With SR we denote the set of
all RBoxes. An interpretation I is a model for an RBox R, denoted with I � R, if and
only if I satisfies all axioms in R. An ABox A is a set of concept assertion axioms and
role assertion axioms. With SA we denote the set of all ABoxes. An interpretation I is
a model for ABox A, denoted with I � A, if and only if I satisfies all axioms in A. An
ontology O is a tuple 〈T,R,A〉, such that T ∈ ST, R ∈ SR, and A ∈ SA. With SO we
denote the set of all ontologies. An interpretation I is a model for ontology O, denoted
with I � O, if and only if I � T, I � R, and I � A.

Definition 2.18 (ABox Individuals):
Given an ABox A, the set of ABox individuals in A, denoted Ind(A), is a subset of IN
defined as follows:

Ind(A) ={a | C(a) ∈ A ∨ ∃a2 ∈ IN.∃R ∈ Rol.(R(a, a2) ∈ A ∨R(a2, a) ∈ A)}.

We denote the set of named ABox individuals in A with NInd(A). The set of anonymous
ABox individuals in A is denoted with AInd(A).

Sometimes, we are only interested in the terminological part of an ontology because some
decision problems can be solved by ignoring the ABox A. Terminologies are formally
defined in Definition 2.19.

Definition 2.19 (Terminology):
Given an ontology O = 〈T,R,A〉, the terminology of O is the pair 〈T,R〉.
Example 2.7 (Example for an Ontology):
Given the sets

CN = {Course,Department,GraduateCourse,GraduateStudent,
Professor, Student}

RN = {headOf, isTaughtBy,memberOf, takes, teaches}
IN = {c5, ee,mae, sue, zoe},

2. PRELIMINARIES 20

examples for TBoxes, RBoxes, ABoxes, and ontologies are given as follows:

TEx2.7 = {
Student ≡ ∃takes.Course, UndergraduateCourse v Course

}
REx2.7 = {headOf v memberOf, teaches ≡ isTaughtBy−}
AEx2.7 = {

Department(ee), P rofessor(mae), UndergraduateCourse(c5),

Student(sue), Student(zoe),

headOf(mae, ee), teaches(mae, c5), takes(sue, c5), takes(zoe, c5)

}
OEx2.7 =〈TEx2.7,REx2.7,AEx2.7〉

For instance, in TBox TEx2.7, we define that each student has to take at least one course.
Furthermore, only students take courses, and undergraduate courses are special courses.
In RBox REx2.7, we define that the role headOf is is a sub role of memberOf and that
the roles teaches and isTaughtBy− are equivalent. In ABox AEx2.7, we define knowledge
about the domain objects in an application domain, for instance that individual zoe is a
student.

Definition 2.20 (TBox Concept Closure):
Given a TBox T, the concept closure of T, denoted clos (T), is defined as

clos (T) =
⋃

C1vC2∈T

(clos (nnf(¬C1)) ∪ clos (C2)).

Example 2.8 (Example for TBox Concept Closure):
Given the TBox

TEx2.8 = {Student ≡ ∃takes.Course, UndergraduateCourse v Course},

the concept closure of TEx2.8 is

clos (TEx2.8) = {
Student,¬Student, Course,¬Course, UndergraduateCourse,
¬UndergraduateCourse, ∃takes.Course,∀takes.¬Course
}.

Please note that in Example 2.8, we implicitly split up a concept equivalence axiom into
two concept inclusion axioms for deriving the TBox concept closure of TEx2.8.

2. PRELIMINARIES 21

Example 2.9 (Example Interpretation):
One example interpretation IEx2.9, which models OEx2.7, i.e. we have IEx2.9 � OEx2.7, is
as follows:

∆IEx2.9 = {δ1, δ2, δ3, δ4, δ5}
CourseIEx2.9 = {δ3}

DepartmentIEx2.9 = {δ1}
ProfessorIEx2.9 = {δ2, δ4}
StudentIEx2.9 = {δ4, δ5}

UndergraduateCourseIEx2.9 = {δ3}
headOfIEx2.9 = {(δ2, δ1)}

memberOfIEx2.9 = {(δ2, δ1)}
takesIEx2.9 = {(δ4, δ3), (δ5, δ3)}

teachesIEx2.9 = {(δ2, δ3)}
isTaughtByIEx2.9 = {(δ3, δ2)}

c5IEx2.9 = δ3

eeIEx2.9 = δ1

maeIEx2.9 = δ2

sueIEx2.9 = δ4

zoeIEx2.9 = δ5.

Please note that interpretation IEx2.9 assigns more members to the concept description
Professor than strictly enforced by the ontology OEx2.7. For example, individual sue is
not obligatorily an instance of concept description Professor. In fact, ontology OEx2.7
allows models with sue being mapped to ¬Professor as well. This is an important
difference to databases, where partial knowledge is usually not assumed. In databases, if
a fact is not present in the system, then it is usually assumed to be false. See [Rei77] for
more information about closed world assumption in database systems, and [PSH07] for
more information about closed and open world assumption with respect to ontologies.

We now have defined the syntax and semantics of description-logic based ontologies. In
the following, we focus on decision problems for ontologies.

2.2.3 Decision Problems for Ontologies

2.2.3.1 Boolean Decision Problems

First, we briefly repeat decision problems for the terminological part of an ontology, i.e.
we assume that the assertional part is empty, or at least not considered.

2. PRELIMINARIES 22

Definition 2.21 (Boolean Decision Problems for Role Descriptions):
A role description R1 is subsumed by a role description R2 with respect to an ontology
O, denoted O � R1 v R2, if and only if for all interpretations I, we have I � O =⇒
RI1 ⊆ RI2 . A role description R1 is equivalent to a role description R2 with respect to
an ontology O, denoted O � R1 ≡ R2, if and only if for all interpretations I, we have
I � O =⇒ RI1 = RI2 .

Since the assertional part of an ontology is not relevant for deciding boolean decision prob-
lems for role descriptions, we sometimes write 〈T,R〉 instead of 〈T,R,A〉, e.g. 〈T,R〉 �
R1 v R2 instead of 〈T,R,A〉 � R1 v R2.

Definition 2.22 (Boolean Decision Problems for Concept Descriptions):
A concept description C is satisfiable with respect to an ontology O if and only if there
exists an interpretation I, such that I � O and CI 6= ∅. A concept description C1

is subsumed by a concept description C2 with respect to an ontology O, denoted O �
C1 v C2, if and only if for all interpretations I, we have I � O =⇒ C1

I ⊆ C2
I .

Given a set S of concept inclusion axioms, we write O � S if O � C1 v C2 for each
C1 v C2 ∈ S. A concept description C1 is equivalent to a concept description C2 with
respect to an ontology O, denoted O � C1 ≡ C2, if and only if for all interpretations I
we have I � O =⇒ CI1 = CI2 . A concept description C1 is disjoint from a concept
description C2 with respect to an ontology O, denoted O � C1 �C2, if and only if for all
interpretations I we have I � O =⇒ CI1 ∩ CI2 = ∅.

Concept satisfiability checking is a key decision problem for description logics. Many
other decision problems can be reduced to concept satisfiability problems, as shown in
[BCM+07] and [Smo88]. For instance, the problem of concept description subsumption
can be reduced to concept description satisfiability as follows: We haveO � C1 v C2 if and
only if ¬C2 u C1 is unsatisfiable with respect to O. Please note that this transformation
only works in the presence of full negation. However, this does not necessarily lead to an
optimal algorithm.

Given the axioms in a TBox T and an RBox R, one can define satisfiability of the termi-
nology 〈T,R〉, i.e. whether there exists a model for 〈T,R〉 at all.

Definition 2.23 (TBox and RBox Satisfiability):
The terminology of O = 〈T,R,A〉 is satisfiable if and only if there exists an interpretation
I, such that I � T and I � R. Satisfiable terminologies are also called consistent, all
other terminologies are called unsatisfiable or inconsistent.

Example 2.10 (Example Solutions of Decision Problems for Terminologies):
Given an ontology OEx2.10 = 〈TEx2.10,REx2.10,AEx2.10〉, where

• TEx2.10 = {GraduateStudent v Student, Student v ∀takes.Course},

• REx2.10 = {}, and

• AEx2.10 = {},

some decision problems for OEx2.10 and their solutions are:

2. PRELIMINARIES 23

• The concept description Student u ∃takes.¬Course is unsatisfiable with respect to
OEx2.10.

• The concept description GraduateStudent is subsumed by Student with respect to
OEx2.10.

• The terminology of OEx2.10 is consistent.

In the following, we do not only consider terminological information, but we take into
account assertional information as well. The basic decision problem is consistency again.

Definition 2.24 (Ontology Consistency):
An ontology O is consistent if and only if there exists an interpretation I, such that we
have I � O. An ontology which is not consistent is called inconsistent.

In general, we assume that an ontology is initially consistent. This is further discussed in
Chapter 3.

Definition 2.25 (Instance Checking and Relation Checking):
A named individual a ∈ NInd(A) is an instance of concept description C with respect
to an ontology O = 〈T,R,A〉, denoted O � C(a), if and only if for all interpretations
I, we have I � O =⇒ aI ∈ CI . A named individual a1 ∈ NInd(A) is related to
a named individual a2 ∈ NInd(A) via role description R with respect to an ontology
O = 〈T,R,A〉 if and only if for all interpretations I, we have I � O =⇒ (aI1 , a

I
2) ∈ RI .

The problem of instance checking can be easily reduced to consistency checking.

Proposition 2.1 (Reduction of Instance Checking to Inconsistency):
Given an ontology O = 〈T,R,A〉, a concept description C, and a named individual
a ∈ NInd(A), O � C(a) if and only if 〈T,R,A ∪ {¬C(a)}〉 is inconsistent.

Proof of Proposition 2.1. [BCM+07].

In Example 2.11, we show some solutions for decision problems with respect to an example
ontology.

Example 2.11 (Example Solutions of Decision Problems for Ontologies):
Given an ontology OEx2.11 = 〈TEx2.11,REx2.11,AEx2.11〉, where

• TEx2.11 = {GraduateStudent v Student, Student v ∀takes.Course},

• REx2.11 = {}, and

• AEx2.11 = {Student(zoe), takes(zoe, c5)},

some decision problems for OEx2.11 and their solutions are:

• The ontology OEx2.11 is consistent.

2. PRELIMINARIES 24

• The individual c5 is an instance of the concept description Course.

• The individuals zoe and c5 are related via role description takes.

2.2.3.2 Computational Problems

Boolean decision problems build the foundation for computational problems.

Definition 2.26 (Role Classifications over Ontologies):
Given an ontology O = 〈T,R,A〉, a role classification, denoted rcO , is a subset of Rol ×
Rol, such that rcO(R1, R2) ⇐⇒ O � R1 v R2. Given an ontology O = 〈T,R,A〉,
a transitivity classification for O, denoted rtcO , is defined as rtcO = {R1 ∈ Rol | O �
Trans(R1)}.

Since the ABox is not necessary for role classification and transitivity classification, we
often use the the terminology of an ontology as an index, e.g. rtc〈T,R〉 instead of rtcO and
rc〈T,R〉 instead of rcO .

Definition 2.27 (Concept Classification over Ontologies):
Given an ontology O = 〈T,R,A〉, a concept classification, denoted ccO , is a subset of
AtCon ×AtCon, such that ccO(C1, C2) ⇐⇒ O � C1 v C2.

The computational problem of instance retrieval is to find all named individuals which
are instance of a given concept description C. It can easily be seen that the problem of
instance retrieval can in principle be reduced to instance checking.

Definition 2.28 (Instance Retrieval over Ontologies):
Given an ontology O = 〈T,R,A〉 and an atomic concept description C, an instance
retrieval result, denoted irOC , is the set of named individuals, such that

irOC = {a ∈ NInd(A) | O � C(a)}.

Please note that by Definition 2.28 and Definition 2.25, the elements in ir
〈T,R,A〉
C are

restricted to the individuals in NInd(A).

The computational problem relation retrieval is to find all pairs of named individuals
which are related by a given role description R. The formal definition of relation retrieval
is given in Definition 2.29. Please note that the definition of relation retrieval is not so
common in description logic research.

Definition 2.29 (Relation Retrieval):
Given an ontology O = 〈T,R,A〉 and a role description R, a relation retrieval result,
denoted rrOR , is a set of pairs of named individuals, such that

rrOR(a1, a2) ⇐⇒ O � R(a1, a2).

Please note again that by Definition 2.29 and Definition 2.25, the elements in rr
〈T,R,A〉
R

are restricted to the individual pairs in NInd(A)×NInd(A).

2. PRELIMINARIES 25

2.2.4 Naming Schemes

Different classes of description logics were proposed by the research community in the
past. The need for gradually different expressivity is motivated by different users and
their requirements. Second, when the logical constructors are limited, it might be possible
to prove more interesting computational properties about the description logic of concern.
It is well known that there is a trade off between the expressive power of a description
logic and its computational properties [BCM+07, HST00a]. In the following, we give a
short overview of different members of the description logics family.

The description logic FL0 was first discussed in [Baa90]. The language has two construc-
tors for specifying concept descriptions: concept conjunction and value restrictions. The
decision problems considered for FL0 are focused on terminological reasoning. The con-
cept subsumption problem for FL0 was shown to be PSPACE for least fixpoint semantics
in [Baa90], for greatest fixpoint semantics in [Baa96] and for descriptive semantics in
[KN03].

Extending the description logic FL0 with existential restrictions leads to the description
logic FL−, introduced in [LB87]. In the same paper, the authors also introduce a more
general general description logic FL, which allows a form of

”
existential restriction“ in

addition. It is shown in [LB87] that the concept subsumption problem for FL− is in P
and that concept subsumption for FL is in coNP. In recent years, research on FL and its
sublogics has been more and more reduced. The reasons are manifold. First, users and
researchers are always looking for more expressivity. Second, improved technology allows
for implementation of practical reasoning procedures for more expressive description log-
ics. And third, other lightweight description logics got into the focus of researchers: EL,
its extensions, and the family of description logics summarized as DL-LITE .

The description logic EL was first defined in [BKM99]. The concept subsumption problem
for EL was shown to be PSPACE for least fixpoint semantics, for greatest fixpoint seman-
tics and for descriptive semantics in [Baa02]. It is shown in [BBL05] that the description
logic EL can be extended by further constructors without losing tractability. Examples for
these description logics are EL+ and EL++. There exist further extensions of EL++, e.g.
adding reflexive roles and range restrictions, which are proposed and discussed in [BBL08].
Reasoning over these extensions is still tractable under certain syntactic restrictions.

For an extensive overview over DL-LITE see [ACKZ09].

Next, we consider the family of AL languages. More expressive languages are built from
the AL language by adding constructors. The syntax for ALC is shown in Figure 2.2.
ALC is a syntactic variant of the propositional modal logic Km [Sch91]. The concept sub-
sumption problem for ALC and general TBoxes is shown in [DM00] to be in EXPTIME,
hardness was shown in [Sch91].

The extension ALCHI is obtained from ALC by allowing inverse roles and role hierar-
chies. Further extending ALCHI with transitive roles yields the description logic SHI

2. PRELIMINARIES 26

Figure 2.2 Restrictions on the description logic ALC

Role description constructors: R := S
Concept description constructors: C1, C2 := >,⊥, A,¬C1

C1 u C2, C1 t C2,∀R.C1,∃R.C1

TBox axioms: C1 v C2

RBox axioms: none

[HS99], and extending SHI with cardinality restrictions yields SHIQ [HST00b]. These
extensions do not change the upper bound of the complexity for deciding concept sub-
sumption, concept satisfiability, and ABox consistency, as shown in [Tob01]. The last
description logic we would like to mention is SHOIQ [HS07], which, in addition, al-
lows for the use of nominals, i.e. usage of individual names in the TBox. It is shown in
[Tob01] that concept satisfiability and ABox consistency for SHOIQ turn out to be in
NEXPTIME.

In the remaining part of our work, whenever we mention the word ontology, we mean an
ontology which only uses constructors from the SHI description logic, unless mentioned
otherwise.

2.2.5 Reasoning Procedures

In the following, we give an overview of reasoning procedures to solve decision problems
over ontologies. In our work, we focus on tableau-based reasoning procedures. Especially
for description logics with full negation, tableau algorithms have turned out to be very
useful [BCM+07]. There exist various other approaches, for instance automata-based
approaches[BHLW03] or approaches motivated by logic programming, e.g. using resolution
[HMS04], or theorem provers for more expressive logics [RV02, KL04].

According to [BS00], one can distinguish four different phases for description logics (rea-
soning systems) research:

1. First implementations of efficient, but incomplete structural algorithms, e.g. KL-
ONE [BS85].

2. First theoretical complexity and undecidability results obtained. It was shown for
example that subsumption is undecidable in KL-ONE [SS89]. A modification of
KL-ONE, called CLASSIC, was proposed in [BBM+92], using a less expressive de-
scription logic.

3. First tableau algorithms for expressive description logics. In addition a thorough
complexity analysis on description logics started. The reasoning system KRIS
[BH91] was, for instance, the first reasoning system which supported a complete
tableau algorithm for an expressive description logic.

2. PRELIMINARIES 27

4. Optimized algorithms and implementations for expressive description logics, e.g. the
system DLP [PS98], FaCT [Hor98], FaCT++ [FS06], Pellet [SPG+07], and Racer
[HMW04].

The first tableau algorithm was presented by [SSS91] for satisfiability of ALC-concepts.
Since then similar approaches have been used to obtain sound and complete satisfiability
algorithms for many extensions of ALC, e.g SHIQ [HST00b], SHOQ [HS01], SHOIQ
[HS07], and SROIQ [HKS06].

The purpose of a tableau algorithm is to check consistency of a given ontology O. As
pointed out before, (in-)consistency is one of the basic decision problems. Other decision
problems can be reduced to inconsistency checking. Given an input ontology O, a tableau
algorithm tries to generate a finite representation for a model of O. If the algorithm
succeeds, the algorithm computed a compact model representation and therefore shows
that the ontology is consistent. If the algorithm fails, then the output is false, i.e. there
does not exists a model for O.

There are different representations used as a basis for tableau algorithms, e.g. graph-
based and ABox-based. Here, we select the ABox-based view on tableau algorithms as
for instance chosen in [BS01]. In each step, a tableau algorithm applies one tableau rule
to an intermediate ABox, in order to try to generate a model representation.

Depending on the expressivity of the description logic used for ontology O, there are
different rules necessary. In general, there is one tableau rule for each constructor, with
some exceptions (see below).

We define additional notions on ABoxes, which are necessary for the definition of a tableau
algorithm.

Definition 2.30 (Role Successor and Role Predecessor in ABoxes):
Let v∗ be the transitive-reflexive closure of the role hierarchy (as defined in [HS99]).
Given an ontology O = 〈T,R,A〉 and two individuals a1 ∈ Ind(A) and a2 ∈ Ind(A),
individual a2 is called R1-successor of a1 (with respect to O) if there exists a R2 ∈ Rol,
such that R2(a1, a2) ∈ A and R2 v∗ R1. The individual a2 is called R1-predecessor of a1
(with respect to O) if there exists a R2 ∈ Rol, such that R2(a2, a1) ∈ A and R2 v∗ R1.

Definition 2.31 (Role Neighbors and Neighbors in ABoxes):
Given an ontology O = 〈T,R,A〉 and two individuals a1 and a2, individual a2 is a R-
neighbor of individual a1 (with respect to O) if and only if a2 is a R-successor of a1, or
a1 is a R−-successor of a2. The individuals a1 and a2 are called neighbors (with respect to
O) if there exists a R ∈ Rol, such that a is a R-neighbor of a1 or a1 is a R2-neighbor of
a2.

Based on these neighbor relationships we define the set of tableau rules below. A tableau
rule application is a (in-)consistency-preserving application of a tableau rule to an ABox
A, such that the output ABoxes are inconsistent if and only if the input ABox is incon-
sistent.

2. PRELIMINARIES 28

Definition 2.32 (Tableau Rule Application):
Let X be the name of a tableau rule. Given an ontology O = 〈T,R,A〉, a tableau rule
application is a function tabrappX,T,R : SA → ℘(SA), such that O is inconsistent if and
only if for all Ai ∈ tabrappX,T,R(A) we have that 〈T,R,Ai〉 is inconsistent.

In the following, we define a number of tableau rules, similar to the way they have been
introduced in the literature [BCM+07, BS01]. In particular, a tableau algorithm for the
description logic SHI has been defined in [HS99]. Our definition of the algorithm is
a slightly changed version, since we attach to each rule a variable assignment, which
indicates, how the tableau rule is applied. We need this additional information for proofs
about tableau properties in Chapter 3.

Definition 2.33 (Variable Assignment):
Given a set of variables VAR, a variable assignment is a function π : VAR → IN.

Before we introduce the tableau rules, we need to discuss the notion of blocking. There
exist several levels of blocking, depending on the usage of concept description constructors
in an ontology:

• Subset-blocking [BBH96]: In the presence of general concept inclusions, subset-
blocking is employed in order to ensure termination of the tableau algorithm.

• Dynamic-blocking [HS99]: In the additional presence of inverse roles, blocking is
dynamic, i.e., blocked nodes (and their sub-branches) can be un-blocked and blocked
again later.

• Pairwise-blocking [HST00a]: In the additional presence of number restrictions, pairs
of nodes are blocked rather than single nodes only.

For the description logic SHI, we assume that ABox individuals are (directly/indirectly)
blocked with the dynamic-blocking strategy. For the details please refer to [HS99].

Definition 2.34 (u-Tableau Rule Applicability and Application):
Given an ontology 〈T,R,A〉, a concept description C = C1uC2, and a variable assignment
π, the u-tableau rule is applicable to 〈T,R,A〉 if

1. C(π(x)) ∈ A,

2. π(x) is not indirectly blocked, and

3. {C1(π(x)), C2(π(x))} * A.

Given that the u-tableau rule is applicable to 〈T,R,A〉, for a variable assignment π and
concept description C = C1 u C2, the tableau rule application of the u-tableau rule with
π and C is defined as

tabrappπ,C1uC2

u,T,R (A) ={A ∪ {C1(π(x)), C2(π(x))}}.

2. PRELIMINARIES 29

Depending on the input ABox, π, and C there are several rule applications possible. The
set of all these possible tableau rule applications of the u-tableau rule is denoted with
tabrappsu,T,R .

In order to illustrate our representation of tableau rules, we present one example tableau
rule application in Example 2.12.

Example 2.12 (Example u-Tableau Rule Application):
Given an ontology OEx2.12 = 〈TEx2.12,REx2.12,AEx2.12〉, where

• TEx2.12 = ∅,

• REx2.12 = ∅, and

• AEx2.12 = {Student u Person(zoe), Course u UndergraduateCourse(c5)},

we have that:

• the u-tableau rule is applicable to OEx2.12, for a variable assignment {x → zoe} and
concept description Student u Person,

• the u-tableau rule is applicable to OEx2.12, for a variable assignment {x → c5} and
concept description Course u UndergraduateCourse, and

• tabrapp
{x→zoe},StudentuPerson
u,T,R (AEx2.12) = AEx2.12 ∪ {Student(zoe), P erson(zoe)}.

Definition 2.35 (t-Tableau Rule Applicability and Application):
Given an ontology 〈T,R,A〉, a concept description C = C1tC2, and a variable assignment
π, the t-tableau rule is applicable to 〈T,R,A〉 if

1. C(π(x)) ∈ A,

2. π(x) is not indirectly blocked, and

3. {C1(π(x)), C2(π(x))} ∩ A = ∅.

Given that the t-tableau rule is applicable to 〈T,R,A〉, for a variable assignment π and
concept description C = C1 t C2, the tableau rule application of the t-tableau rule with
π and C is defined as

tabrappπ,C1tC2

t,T,R (A) ={A ∪ {C1(π(x))},A ∪ {C2(π(x))}}.

The set of all possible tableau rule applications of the t-tableau rule is denoted with
tabrappst,T,R .

Definition 2.36 (∃-Tableau Rule Applicability and Application):
Given an ontology 〈T,R,A〉, a concept description C = ∃R.C1, and a variable assignment
π, the ∃-tableau rule is applicable to 〈T,R,A〉 if

2. PRELIMINARIES 30

1. C(π(x)) ∈ A,

2. π(x) is not blocked,

3. π(x) has no anonymous R-neighbor a1 with respect to 〈T,R,A〉, such that C1(a1) ∈
A, and

4. π(x1) is a fresh anonymous individual name, i.e. π(x1) ∈ (AIN \ Ind(A)).

Given that the ∃-tableau rule is applicable to 〈T,R,A〉, for a variable assignment π and
concept description C = ∃R.C1, the tableau rule application of the ∃-tableau rule with π
and C is defined as

tabrappπ,∃R.C1

∃,T,R (A) ={A ∪ {R(π(x), π(x1)), C1(π(x1))}}.

The set of all syntactically possible tableau rule applications of the ∃-tableau rule is
denoted with tabrapps∃,T,R .

Please note that the fourth criterion in Definition 2.36 could be seen as a post-condition.
However, we fix the chosen fresh individual name already in the pre-condition. This
makes our definitions and proofs easier. In Example 2.13, we show another example for a
tableau rule application. This example indicates why we attach variable assignments to
all tableau rule applications.

Example 2.13 (Example ∃-Tableau Rule Application):
Given an ontology OEx2.13 = 〈TEx2.13,REx2.13,AEx2.13〉, where

• TEx2.13 = ∅,

• REx2.13 = ∅, and

• AEx2.13 = {∃takes.UndergraduateCourse(zoe), takes(zoe, c5), Course(c5)},

we have that:

• The ∃-tableau rule is applicable toOEx2.13, for a variable assignment {x → zoe, x1 →
new} and concept description ∃takes.UndergraduateCourse.

• tabrapp
{x→zoe,x1→new},∃takes.UndergraduateCourse
∃,T,R (AEx2.13)=

AEx2.13 ∪ {takes(zoe, new), UndergraduateCourse(new)}.

Definition 2.37 (∀-Tableau Rule Applicability and Application):
Given an ontology 〈T,R,A〉, a concept description C = ∀R.C1, and a variable assignment
π, the ∀-tableau rule is applicable to 〈T,R,A〉 if

1. C(π(x)) ∈ A,

2. π(x) is not indirectly blocked, and

3. π(x) has an R-neighbor π(x1) with respect to 〈T,R,A〉, such that C1(π(x1)) /∈ A.

2. PRELIMINARIES 31

Given that the ∀-tableau rule is applicable to 〈T,R,A〉, for a variable assignment π and
concept description C = ∀R.C1, the tableau rule application of the ∀-tableau rule with π
and C is defined as

tabrappπ,∀R.C1

∀,T,R (A) ={A ∪ {C1(π(x1))}}.

The set of all possible tableau rule applications of the ∀-tableau rule is denoted with
tabrapps∀,T,R .

In the following the verbalization propagation of a concept description C is used to describe
the process of applying the ∀-tableau rule and adding C to π(x1).

Definition 2.38 (∀+-Tableau Rule Applicability and Application):
Given an ontology 〈T,R,A〉, a concept description C = ∀R.C1, and a variable assignment
π, the ∀+-tableau rule is applicable to 〈T,R,A〉 if

1. C(π(x)) ∈ A,

2. π(x) is not indirectly blocked,

3. there exists some R2 with 〈T,R,A〉 � Trans(R2) and 〈T,R,A〉 � R2 v R, and

4. π(x) has a R2-neighbor π(x1) with respect to 〈T,R,A〉, with ∀R2.C1(π(x1)) /∈ A.

Given that the ∀+-tableau rule is applicable to 〈T,R,A〉, for a variable assignment π and
concept description C = ∀R.C1, the tableau rule application of the ∀+-tableau rule with
π and C is defined as

tabrappπ,∀R.C1

∀+,T,R (A) ={A ∪ {∀R2.C1(π(x1))}}.

The set of all possible tableau rule applications of the ∀+-tableau rule is denoted with
tabrapps∀+,T,R .

Definition 2.39 (TBox-Tableau Rule Applicability and Application):
Given an ontology 〈T,R,A〉, a concept inclusion axiom C1 v C2, and a variable assign-
ment π, the TBox-tableau rule is applicable to 〈T,R,A〉 if

1. C1 v C2 ∈ T,
2. π(x) is not indirectly blocked, and

3. (¬C1 t C2)(π(x)) /∈ A.

Given that the TBox-tableau rule is applicable to 〈T,R,A〉, for a variable assignment π
and concept inclusion axiom C1 v C2, the tableau rule application of the TBox-tableau
rule with π and C is defined as

tabrappπ,C1vC2

TBox,T,R(A) ={A ∪ {(¬C1 t C2)(π(x))}}.

The set of all possible tableau rule applications of the TBox-tableau rule is denoted with
tabrappsTBox,T,R .

2. PRELIMINARIES 32

In Definition 2.40, we define the set of all possible tableau rule applications.

Definition 2.40 (Tableau Rule Application Set):
The set of all possible tableau rule applications, denoted tabrapps,T,R , is defined as

tabrappsT,R =tabrappsu,T,R ∪ tabrappst,T,R ∪ tabrapps∃,T,R

∪ tabrapps∀,T,R ∪ tabrapps∀+,T,R ∪ tabrappsTBox,T,R .

Please note that tabrappsT,R is a set of functions over ABoxes, and the functions are
parametrized with variable assignments and concept descriptions/concept inclusions ax-
ioms (plus a TBox and RBox). Next, we need to define further properties on ABoxes to
decide whether the tableau algorithm is finished or not.

Definition 2.41 (ABox Properties):
An ABox A contains a clash if {C(a),¬C(a)} ⊆ A or ⊥(a) ∈ A for an individual
a ∈ Ind(A) and concept description C. An ABox A is called closed if A contains a clash,
and open otherwise. Given an ontology O = 〈T,R,A〉, an ABox A is called complete if
no tableau rule (Definitions 2.34 to 2.39) is applicable to O, ABox A is called incomplete
otherwise.

In Example 2.14, we provide examples for tableau definitions with respect to an example
ontology in order to make the definitions above clear.

Example 2.14 (Example for ABox Properties):
Given an ontology OEx2.14 = 〈TEx2.14,REx2.14,AEx2.14〉, where

• TEx2.14 = {Student v ∀takes.Course},

• REx2.14 = {}, and

• AEx2.14 = {Student(zoe), takes(zoe, c5)},

some examples for ABox properties are:

• c5 is a takes-neighbor of zoe in AEx2.14,

• zoe and c5 are neighbors in AEx2.14,

• The ABox AEx2.14 ∪ {¬Student(zoe)} contains a clash (on individual zoe), and

• The ABox

AEx2.14 ∪ {
(¬Student t ∀takes.Course)(zoe),
∀takes.Course(zoe)
}

is incomplete, because the ∀-tableau rule is applicable to individual zoe and concept
description ∀takes.Course. Please note that there exist further applicable tableau

2. PRELIMINARIES 33

rules, e.g. the TBox-tableau rule is applicable for π = {x → zoe} and Student v
∀takes.Course,

• The ABox

AEx2.14 ∪ {
(¬Student t ∀takes.Course)(zoe),∀takes.Course(zoe),
Course(c5), (¬Student t ∀takes.Course)(c5),¬Student(c5)

}

is complete, because no tableau rule is applicable. Furthermore the ABox is open
since the ABox does not contain a clash.

Based on the tableau rules, we define the notion of a tableau next. A tableau is an
abstraction of a model . From a technical point of view, we look at a tableau as a tree of
tableau rule applications, such that the root of the tree is labeled with the input ABox
which has to be checked for inconsistency. Tableau rules are applied to the leaf node
ABoxes of the tree as long as possible.

Definition 2.42 (Tableau):
Given an ontology O = 〈T,R,A〉, a tableau for O is a tuple

TO = 〈N, root, children , φabox, φruleapp〉,

such that

• TTO = 〈N, root, children〉 is a directed tree,

• φabox : N → SA is a total node labeling function, with φabox(root) = A,

• φruleapp : N → tabrappsT,R is a node labeling function on all inner nodes of TTO ,
such that φruleapp assigns a tableau rule application tabrappX,T,R to node n and

tabrappX,T,R is applicable to 〈T,R, φabox(n)〉, and

• for every inner node n of TTO , we have φabox(children (n)) = (φruleapp(n))(φabox(n)).

Please note the application of φabox to sets of nodes, instead of a single node. The result
of that function application to children (n) is, as defined in Definition 2.2, the set of all
the ABoxes from the child nodes of n.

In the following, we often refer to tableaux as trees. Formally, we mean TTO when we talk
about the tableau TO as a tree. To describe a particular node in a tableau, we sometimes
use the following notation: n〈A, tabrappX,T,R〉 means that we have φabox(n) = A and

φruleapp(n) = tabrappX,T,R for a node n in the tableau. With n.d. instead of tabrappX,T,R
we denote that there is no tableau rule application attached to n. An example for a
tableau is shown in Example 2.15.

2. PRELIMINARIES 34

Figure 2.3 Example of a tableau for OEx2.15

n1〈AEx2.15, tabrapp
{x→zoe},Studentv∀takes.Course
TBox,T,R 〉

n2〈A2, tabrapp
{x→zoe},¬Studentt∀takes.Course
t,T,R 〉

n4〈A4, tabrapp
{x→zoe},∀takes.Course
∀,T,R 〉

n5〈A5, n.d.〉

n3〈A3, n.d.〉

Example 2.15 (Tableau Example):
Given an ontology OEx2.15 = 〈TEx2.15,REx2.15,AEx2.15〉, where

• TEx2.15 = {Student v ∀takes.Course},

• REx2.15 = {}, and

• AEx2.15 = {Student(zoe), takes(zoe, c5)},

the tableau depicted in Figure 2.3 is a tableau for OEx2.15, where

A2 = AEx2.15 ∪ {¬Student t ∀takes.Course(zoe)}
A3 = A2 ∪ {¬Student(zoe)}
A4 = A2 ∪ {∀takes.Course(zoe)}
A5 = A4 ∪ {Course(c5)}.

It is easy to see that the tableau is not yet finished since we can still apply additional rules,
e.g. the TBox-rule to individual c5 and concept inclusion Student v ∀takes.Course at
node n5. Please note that all the leave nodes have no tableau rule application attached
(these leaf nodes are labeled with n.d.).

In Definition 2.43, we define a special class of tableau, namely proofs, for which every leaf
ABox is complete, and hence every path is complete.

Definition 2.43 (Tableau Proof, Result):
Given an ontology O = 〈T,R,A〉, a tableau proof for O, denoted TPO , is a tableau for O,
such that all leaf nodes of TPO are labeled by φabox with a complete ABox. The result of
a tableau proof TPO is yes (or consistent or satisfying) if at least one leaf node is labeled
with an open (and complete) ABox, and the result is no (or inconsistent or unsatisfying)
otherwise.

2. PRELIMINARIES 35

Figure 2.4 General tableau algorithm

Input: Ontology O =〈T,R,A〉
Output: Tableau TO

Algorithm:

Let TO = 〈{n1}, n1, children , φabox, φruleapp〉, such that children = ∅, φabox =
{n1 → A} and φruleapp = ∅

While there exists a tabrappX,T,R ∈ tabrappsT,R for an open ABox Aleaf labeled

by φabox to a leaf node leaf in TO ,

Set φruleapp(leaf) = tabrappX,T,R
For each Anew ∈ tabrappX,T,R(Aleaf) do

Add a new node newleaf to N
Set φabox(newleaf) to Anew
Set children (leaf) = children (leaf) ∪ {newleaf}

Please note the usage of terms satisfying and unsatisfying in Definition 2.43. The intu-
ition is that the tableau proof either creates a model representation satisfying the input
ontology or shows that no model can exist.

In Figure 2.4, we define a general tableau algorithm in pseudo-code.

The general tableau algorithm from Figure 2.4 together with the tableau rules in Def-
initions 2.34 to 2.39, is designed for description logics up to SHI. In order to ensure
termination of the given tableau algorithm, it is necessary to avoid an infinite number of
rule applications.

In Proposition 2.2, we show that the introduced tableau algorithm is sufficient to test for
(in-)consistencies of ontologies. Please note again that our tableau representation only
differs from standard implementations in the attachment of the variable assignment. The
variable assignment fixes the individuals involved in each tableau rule application. This
is necessary for our proof techniques below.

Proposition 2.2 (Tableau Inconsistency Test):
Given an ontology O = 〈T,R,A〉, O is inconsistent if and only if there exists an unsatis-
fying tableau proof TPO for ontology O.

Proof of Proposition 2.2. A direct consequence of [HS99], since we implement all neces-
sary and sufficient tableau rules and apply dynamic-blocking.

Proposition 2.3 (Instance Checking with Tableau Inconsistency Test):
Given an ontology O = 〈T,R,A〉, an individual a, and a concept description C, O � C(a)
if and only if there exists a unsatisfying tableau proof TPO for ontology 〈T,R,A ∪
{¬C(a)}〉.

2. PRELIMINARIES 36

Figure 2.5 Intuition of tableau run extraction

Tableau proof Tableau run
n1

n3

n7

n5

n6

n4

n2

=⇒

n1

n3

n5

n6

Proof of Proposition 2.3. By Proposition 2.1 and Proposition 2.2.

In order to prove consistency of an ontology, one only needs to find one path of the tableau
tree, derived in a tableau proof, such that the leaf of the path is labeled with a complete
and open ABox. We define the notion of a tableau run, which represents one path in a
tableau proof tree. The intuition of a tableau run, given a tableau proof, is depicted in
Figure 2.5.

Definition 2.44 (Tableau Run, Result):
Given an ontology O = 〈T,R,A〉, a tableau run for O is a tableaux proof

RUN = 〈N, root, children , φabox, φruleapp〉,

for O, such that for each inner node n ∈ N:

• the cardinality of children (n) is 1 and

• we have φabox(children (n)) ∈ φruleapp(n)(φabox(n)).

The leaf node of RUN is denoted as leaf . The ABox of the leaf node of RUN , denoted
φabox (leaf), is called leaf ABox of RUN . The result of a tableau run RUN is yes (or
consistent or satisfying) if the leaf node is labeled with an open ABox, and the result is
no (or inconsistent or unsatisfying) otherwise.

It is easy to see that given an ontology O = 〈T,R,A〉 and a tableau proof TPO for O,
we have TPO is satisfying if and only if there exists a satisfying tableau run RUN for O
in TPO .

Below, we assume that subsets (subsets with respect to T, R, and A) of consistent ontolo-
gies are consistent and supersets of inconsistent ontologies are inconsistent without further
proof. Both relationships hold because our description logics of concern can directly be
mapped to first order logic.

2. PRELIMINARIES 37

2.3 Running Example

In the following, we introduce an example ontology, which is used throughout the re-
maining part of the thesis. The example ontology is situated in the university domain
and inspired by the Lehigh University Benchmark, introduced in [GPH05]. Sometimes
we only use subsets of the example ontology.

Example 2.16 (Running Example):
The example ontology OEx2.16 = 〈TEx2.16,REx2.16,AEx2.16〉 is defined as follows

TEx2.16 = {
Chair ≡ ∃headOf.Department,
Student ≡ ∃takes.Course,
GraduateStudent ≡ ∃takes.GraduateCourse,
Student v Person, Professor v Person,

UndergraduateCourse v Course,

GraduateCourse v Course,

GraduateCourse u UndergraduateCourse v ⊥,
> v ∀teaches.Course,> v ∀takes.Course,
> v ∀memberOf−.P erson,> v ∀isTaughtBy.Professor,
∃memberOf.> v Person

}

REx2.16 = {headOf v memberOf, teaches ≡ isTaughtBy−}

AEx2.16 = {
Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

2. PRELIMINARIES 38

Figure 2.6 Individual relationships for Example 2.16

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf
headOf

memberOf

c4 c5

teaches teaches teaches

takes takes takes

takes
takes

In TEx2.16, we define, for instance, the concept name Chair as someone who is the
head of a Department. In a similar style, we define the concept names Student and
GraduateStudent. We introduce a GraduateCourse and an UndergraduateCourse, and
enforce that both concept descriptions are disjoint. In addition, we define domain and
range restrictions on roles descriptions used in OEx2.16.

We define two role subsumptions in REx2.16. The role description headOf is subsumed
by role description memberOf. Furthermore, we state that the role description teaches
is the inverse role of the role description isTaughtBy.

The relationships between individuals in AEx2.16 are depicted in Figure 2.6. Please note
that only role assertions are shown in the graph, since we only intend to visualize the
relationship between the individuals to avoid clutter.

It is easy to see that individual ann is an instance of concept description Chair with
respect to the ontology OEx2.16. In order to prove the entailment of the concept assertion
Chair(ann), not the whole ABox is necessary. The two ABox assertions headOf(ann, cs)
and Department (cs) already suffice to derive the fact that ann is a Chair. This small
example already suggests that modularization techniques can be valuable in reasoning
over ontologies. We define different kinds of modularization techniques in Chapter 3.

3. MODULARIZATION 39

Chapter 3: Modularization

Reasoning over description logic ontologies, such as the task of instance retrieval, is diffi-
cult. The worst-case time complexity even for solving the basic decision problem instance
checking is known to be (double-)exponential for semi-expressive description logics. Fur-
thermore, the sheer amount of data, supported by todays advanced storage technologies,
makes efficiency in information retrieval increasingly difficult.

We think that modularization techniques can be used in order to release the main memory
dependency from reasoning systems and speed up query answering. Recent advances in
distributed and parallel computing, such as multicore-systems and cloud computing, give
further support, since it might be possible to distribute modules over multiple cores
or computers. We focus on the modularization of ABoxes here, since the size of the
assertional part often exceeds the size of the terminological part by orders of magnitude,
especially in database-motivated scenarios.

During the remaining part of this thesis we make two assumptions with respect to the
input ontology O = 〈T,R,A〉:

• We assume that O is initially consistent. Despite recent research trends on reason-
ing over inconsistent (web-)ontologies, e.g. see [HVHT05] and [HH08], we focus on
standard decision problems.

• We assume that all concept assertions in A (and in instance checking/retrieval
queries) only contain atomic concept descriptions. This restriction is without loss
of generality, since every non-atomic concept description can be given a name in the
terminology.

In this chapter, we introduce techniques to break down an ABox into smaller chunks
(modules), such that decision (and computational) problems can be solved by considering
the smaller parts only. In Section 3.1, we formally define ABox modularizations and addi-
tional operations on tableau runs. In Section 3.2, we present an initial ABox partitioning
algorithm. While the initial partitioning technique is quite naive, since it is basically
inspired by graph components, the technique builds the basis of further modularization
techniques. We extend the naive partitioning for the description logic ALC in Section 3.3,
by taking into account terminological information. This kind of technique usually offers
a more fine grained partitioning/modularization. We further extend the technique to the
semi-expressive description logic SHI. The chapter is concluded with Section 3.4.

3. MODULARIZATION 40

3.1 Modularization Preliminaries

3.1.1 ABox Modularization

We define the (very general) notion of an ABox modularization in Definition 3.1. While
our criterion for ABox modularization seems quite general, we would like to keep the
definition of ABox modularization as open as possible. For instance, we will define mod-
ularization techniques, such that the modules are not necessarily subsets of the original
ABox. The intuition for these kinds of modules will become clear below. Please note that
whenever we use the term modularization we usually refer to the result of the modular-
ization process.

Definition 3.1 (ABox Modularization):
An ABox modularization M is defined as a set of ABoxes {A1, ...,An}. Each Ai is called
an ABox module.

Definition 3.2 (ABox Modularization Entailment):
Given a TBox T, a RBox R, and an ABox modularization M, we say that M entails a
concept assertion C(a), denoted 〈T,R,M〉 � C(a), if ∃Ai ∈ M.〈T,R,Ai〉 � C(a). We
say that M entails a role assertion R(a1, a2), denoted 〈T,R,M〉 � R(a1, a2), if ∃Ai ∈
M.〈T,R,Ai〉 � R(a1, a2).

Given Definition 3.2, we can define soundness and completeness of ABox modularizations.
Informally speaking, we have chosen to base soundness and completeness of modulariza-
tions on entailment of atomic concept descriptions for all named individuals. This as-
sumption makes the definition and implementation of our techniques easier. However,
please note that the restriction to atomic query concepts is without loss of generality,
since we can assign fresh concept names to non-atomic query concepts in the TBox and
execute a query for the (atomic) concept names.

Informally speaking, again, we would like to obtain modularizations which preserve en-
tailment of atomic concept assertions for all named individuals in the input ontology.

Definition 3.3 (Soundness and Completeness of ABox Modularizations):
Given an ontology O = 〈T,R,A〉 and an ABox modularization M = {A1, ...,An}, we say
that M is sound for instance retrieval in ontology O if for all atomic concept descriptions
C ∈ AtCon and all individuals a ∈ NInd(A), 〈T,R,M〉 � C(a) =⇒ 〈T,R,A〉 � C(a).
The ABox modularization M is complete for instance retrieval in ontology O if for all
atomic concept descriptions C ∈ AtCon and all individuals a ∈ NInd(A), 〈T,R,A〉 �
C(a) =⇒ 〈T,R,M〉 � C(a).

We say that M is sound for relation retrieval in ontology O if for all role descriptions
R ∈ Rol and all pairs of individuals a1, a2 ∈ NInd(A), 〈T,R,M〉 � R(a1, a2) =⇒
〈T,R,A〉 � R(a1, a1). The ABox modularization M is complete for relation retrieval
in ontology O if for all atomic role descriptions R ∈ Rol and all pairs of individuals
a1, a2 ∈ NInd(A), 〈T,R,A〉 � R(a1, a2) =⇒ 〈T,R,M〉 � R(a1, a2).

3. MODULARIZATION 41

We say that M is sound for reasoning in ontology O if M is sound for instance and relation
retrieval in O. We say that M is complete for reasoning in ontology O if M is complete
for instance and relation retrieval in O.

We present examples in Example 3.2 and Example 3.3. First, we introduce an example
ontology in Example 3.1.

Example 3.1 (Example Ontology for ABox Modularization):
The ontology OEx3.1 = 〈TEx3.1,REx3.1,AEx3.1〉 is defined as follows

TEx3.1 = {Chair ≡ ∃headOf.Department}
REx3.1 = {headOf v memberOf}
AEx3.1 = {

Department(ee), P rofessor(mae),

UndergraduateCourse(c4), UndergraduateCourse(c5),

Student(sam), Student(sue), Student(zoe),

headOf(mae, ee),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

Example 3.2 (First Example for an ABox Modularization):
One possible ABox modularization for ontology OEx3.1 is MEx3.2 = {AEx3.2,1,AEx3.2,2},
such that

AEx3.2,1 = {
Department(ee),

headOf(mae, ee),

P rofessor(mae)

}
AEx3.2,2 = {

UndergraduateCourse(c4), UndergraduateCourse(c5),

Student(sam), Student(sue), Student(zoe),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

It is easy to see that with respect to the original ontology OEx3.1, we have that mae is
an instance of the concept description Chair, since she has a headOf-relationship to a
Department called ee. The ABox modularization in Example 3.2 entails that individ-
ual mae is an instance of the concept description Chair, since all necessary axioms are
being kept in one ABox module. Moreover, it can be shown that the modularization in
Example 3.2 is sound and complete for reasoning over ontology OEx3.1.

3. MODULARIZATION 42

Another example modularization is given in Example 3.3.

Example 3.3 (Second Example for an ABox Modularization):
Another possible ABox modularization for OntologyOEx3.1 isMEx3.3 = {AEx3.3,1,AEx3.3,2},
such that

AEx3.3,1 = {
Department(ee),

UndergraduateCourse(c4), UndergraduateCourse(c5)

}
AEx3.3,2 = {

Professor(mae),

Student(sam), Student(sue), Student(zoe),

headOf(mae, ee),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

The ABox modularization in Example 3.3 is chosen quite arbitrarily and it can be seen
that neither of the two modules entails that mae is an instance of the concept description
Chair. This happens because the necessary information for entailment was split up into
different ABoxes. In [BS03], this problem is solved by so called bridge rules, which commu-
nicate useful temporary reasoning results from one module to another module. However,
we would like to keep relevant information together, in order to avoid the communication
overhead.

The ABox modularizations from Example 3.2 and 3.3 show that the choice of ABox mod-
ularization is critical for completeness during reasoning. Before we discuss in detail how
to obtain sound and complete ABox modularizations (one might even have to add new
assertions), we need to define additional mathematical notions. Our proofs for modular-
ization techniques are based on the use and modification of tableau runs. In detail, the
basic technique used in our proofs is tableau run composition.

3.1.2 Tableau Run Compositions

We introduce a notion of tableau run composition next. The idea is that under a certain
condition (individual disjointness), satisfying tableau runs from different ontologies can
be combined to a satisfying tableau run over the union of these ontologies. First, we
formally define tableau run compositions in Definition 3.4.

Definition 3.4 (Tableau Run Composition of two Tableau Runs):
Given a tableau run RUN 1 = 〈N1, root1, children1, φ

abox
1 , φruleapp1 〉 and a tableau run

3. MODULARIZATION 43

RUN 2 = 〈N2, root2, children2, φ
abox
2 , φruleapp2 〉, the composition of RUN 1 and RUN 2, de-

noted RUN 1 ◦ RUN 2, is defined as

RUN 1 ◦ RUN 2 = 〈Nc, rootc, childrenc, φ
abox
c , φruleappc 〉,

where

Nc =N1 ∪N2 \ {leaf}
rootc =root1

childrenc =children1 ∪ children2 \ {leafp → leaf} ∪ {leafp → root2}

φaboxc (n) =


φabox1 (n) ∪ φabox2 (root2) if n ∈ (N1 \ {leaf}),
φabox1 (leaf) ∪ φabox2 (n) if n ∈ N2,

n.d. otherwise.

φruleappc =φruleapp1 ∪ φruleapp2 ,

leaf denotes the leaf node of RUN 1, and leafp denotes the parent node of leaf . Given
n tableau runs, the composition is defined stepwise as

(((RUN 1 ◦ RUN 2) ◦ RUN 3)... ◦ RUN n).

Please note that in Definition 3.4, we assume that N1 and N2 are disjoint. If both sets
are not disjoint, then they can be easily made disjoint by renaming all shared nodes and
changing the runs accordingly.

Example 3.4 (Tableau Run Composition):
Given the following two ontologies (for simplification we have chosen an empty TBox and
an empty RBox),

OEx3.4,1 = 〈∅, ∅, {∃takes.Course(zoe)}〉
OEx3.4,2 = 〈∅, ∅, {∃takes.Course(noa)}〉,

a tableau run RUN 1 for OEx3.4,1, a tableau run RUN 2 for OEx3.4,2, and the composition
RUN 1 ◦ RUN 2 is depicted in Figure 3.1, where

Ac1 = {∃takes.Course(zoe),∃takes.Course(noa)}
Ac2 = Ac1 ∪ {takes(zoe, ind1), Course(ind1)}
Ac3 = Ac2 ∪ {takes(noa, ind5), Course(ind5)}.

We would like to show that, under some conditions, the composition of satisfying tableau
runs can be used to construct a satisfying tableau run for the composed ontology. For
instance, given two consistent ontologies O1 = 〈T,R,A1〉 and O2 = 〈T,R,A2〉, we would
like to deduce that O = 〈T,R,A1 ∪ A2〉 is consistent by only considering tableau runs.

3. MODULARIZATION 44

Figure 3.1 Example for tableau run composition

RUN 1: n1〈{∃takes.Course(zoe)}, tabrapp
{x→zoe,x1→ind1},∃takes.Course
∃,∅,∅ 〉

n2〈{∃takes.Course(zoe), takes(zoe, ind1), Course(ind1)}, n.d.〉

RUN 2: n3〈{∃takes.Course(noa)}, tabrapp
{x→noa,x1→ind5},∃takes.Course
∃,∅,∅ 〉

n4〈{∃takes.Course(noa), takes(noa, ind5), Course(ind5)}, n.d.〉

RUN 1 ◦ RUN 2:

n1〈Ac1, tabrapp
{x→zoe,x1→ind1},∃takes.Course
∃,∅,∅ 〉

n3〈Ac2, tabrapp
{x→noa,x1→ind5},∃takes.Course
∃,∅,∅ 〉

n4〈Ac3, n.d.〉

However, not in every case two satisfying tableau runs can be combined (composed) to
a satisfying tableau run for 〈T,R,A1 ∪ A2〉. A problem occurs if both tableau runs (for
ontology O1 and ontology O2) contain information about the same individual. This can
lead to inconsistencies during the tableau run composition.

For instance, assume that in RUN 1 an individual a is labeled with concept description
C, and in RUN 2 the same individual a is labeled with concept description ¬C. While
both tableau runs maybe yield an open and complete ABox, the composition merges the
information about individual a and that will lead to a clash (closed ABox).

Thus, in order to define and prove properties of tableau run compositions, we need to for-
mally define properties of individuals and renaming operations on individuals in tableau
runs. Please note that the intuition of the following definitions is usually quite clear. How-
ever, in order to be precise and use these notions in proofs below, we provide definitions
formally step by step.

In Definition 3.5, the set of (existing) individuals in a tableau run is computed from the
union of all ABoxes in the tableau run.

Definition 3.5 (Tableau Run Individuals):
Given a tableau run RUN = 〈N, root, children , φabox, φruleapp〉, the set of tableau run
individuals of RUN , denoted Ind(RUN), is defined as

Ind(RUN) ={a | ∃n ∈ N.a ∈ Ind(φabox(n))}.

3. MODULARIZATION 45

In order to define individual renamings on tableau runs, we introduce individual renamings
for ABoxes, variable assignments, and tableau rule applications as well in Definition 3.6.

Definition 3.6 (Individual Renamings):
Given a structure S, such that S is an ABox, a variable assignment, a tableau rule
application, or a tableau run, the individual renaming on S, denoted S[a1 → a2], is
defined as follows:

• If S = A, then A[a1 → a2] = A \ Aremove ∪ Aadd , where

Aremove ={C(a1) | C(a1) ∈ A} ∪ {R(a1, a3) | R(a1, a3) ∈ A}∪
{R(a3, a1) | R(a3, a1) ∈ A}

Aadd ={C(a2) | C(a1) ∈ A} ∪ {R(a2, a3) | R(a1, a3) ∈ A}∪
{R(a3, a2) | R(a3, a1) ∈ A}.

• If S = π, then π[a1 → a2](x) ={
a2 if π(x) = a1,

π(x) otherwise.

• If S = tabrappπ,YX,T,R , then tabrappπ,YX,T,R [a1 → a2] = tabrapp
π[a1→a2],Y
X,T,R .

• If S is a tableau run RUN = 〈N1, root1, children1, φ
abox
1 , φruleapp1 〉, then RUN [a1 →

a2] = 〈N1, root1, children1, φ
abox
2 , φruleapp2 〉, such that for each n ∈ N1:

φabox2 (n) =(φabox1 (n))[a1 → a2]

φruleapp2 (n) =(φruleapp1 (n))[a1 → a2].

An individual renaming S[x → a2] on S is called fresh

• if S = A and a2 /∈ Ind(A),

• if S = π and there exists no x ∈ VAR, such that π(x) = a2,

• if S = tabrappπ,YX,T,R and a2 is a fresh individual renaming for π,

• if S = RUN and a2 does not occur in Ind(RUN).

The definition of individual renamings is extended to sets of structures by applying the
renaming to each structure in the set.

We extend single individual renamings to consecutive individual renamings.

Definition 3.7 (Consecutive Individual Renamings):
Given a structure S, such that S is either an ABox, a variable assignment, a tableau
rule application, or a tableau run, the consecutive individual renaming, denoted with
S[a1, ..., an → b1, ..., bn], is defined as (...(S[a1 → b1])...)[an → bn].

3. MODULARIZATION 46

In Example 3.5 it can be seen that an ABox individual renaming just replaces all occur-
rences of an individual, by another individual.

Example 3.5 (ABox Individual Renaming):
Given the ABox

A = {Student(ani), takes(ani, c1), UndergraduateCourse(c1)},

we have

A[c1 → c6] = {Student(ani), takes(ani, c6), UndergraduateCourse(c6)}.

In Example 3.6, the intuition of a tableau rule application renaming is shown. Once
we rename an individual in an ABox, for instance c1 to c6, we also need to consider
this individual renaming on tableau rule applications to individual c1. All tableau rule
applications on c1 should be applied to c6 after the renaming.

Example 3.6 (Tableau Rule Application Individual Renaming):
Given the tableau rule application

tabrapp
{x→c1},¬UndergraduateCoursetCourse
t,T,R ,

which applies the t-tableau rule to individual c1 and ¬UndergraduateCourse tCourse,
we have that

tabrapp
{x→c1},¬UndergraduateCoursetCourse
t,T,R [c1 → c6] =

tabrapp
{x→c6},¬UndergraduateCoursetCourse
t,T,R

applies the t-tableau rule to individual c6 and ¬UndergraduateCourse t Course.
Example 3.7 (Tableau Run Individual Renaming):
Given a tableau run RUN = 〈N, root, children , φabox, φruleapp〉, such that

N ={n1, n2, n3}
root1 =n1

children ={n1 → n2, n2 → n3}
φabox ={n1 → {Student(ani)},

n2 → {Student(ani),¬Student t Person(ani)},
n3 → {Student(ani),¬Student t Person(ani),¬Student(ani)}
}

φruleapp ={n1 → tabrapp
{x→ani},StudentvPerson
TBox,T,R ,

n2 → tabrapp
{x→ani},¬StudenttPerson
t,T,R

},

3. MODULARIZATION 47

we have that RUN [ani → luis] = 〈N, root, children , φabox2 , φruleapp2 〉, such that

φabox2 ={n1 → {Student(luis)},
n2 → {Student(luis),¬Student t Person(luis)},
n3 → {Student(luis),¬Student t Person(luis),¬Student(luis)}
}

φruleapp2 ={n1 → tabrapp
{x→luis},StudentvPerson
TBox,T,R ,

n2 → tabrapp
{x→luis},¬StudenttPerson
t,T,R

}.

We formally define the notion of individual-disjoint tableau runs in Definition 3.8.

Definition 3.8 (Individual-disjoint Tableau Runs):
A set of n tableau runs {RUN 1, ...,RUN n} is individual-disjoint if

Ind(RUN 1) ∩ Ind(RUN 2) ∩ ... ∩ Ind(RUN n) = ∅.

In Figure 3.2, RUN 1 is individual-disjoint with RUN 2, but not with RUN 3. Please note
the introduction of the anonymous individual ind1 in RUN 1 and RUN 3.

Figure 3.2 Example tableau runs for individual disjointness

RUN 1: n1〈{∃takes.Course(zoe)}, tabrapp
{x→zoe,x1→ind1},∃takes.Course
∃,∅,∅ 〉

n2〈{∃takes.Course(zoe), takes(zoe, ind1), Course(ind1)}, n.d.〉

RUN 2: n1〈{∃takes.Course(ean)}, tabrapp
{x→ean,x1→ind5},∃takes.Course
∃,∅,∅ 〉

n2〈{∃takes.Course(ean), takes(ean, ind5), Course(ind5)}, n.d.〉

RUN 3: n1〈{∃takes.Course(noa)}, tabrapp
{x→noa,x1→ind1},∃takes.Course
∃,∅,∅ 〉

n2〈{∃takes.Course(noa), takes(noa, ind1), Course(ind1)}, n.d.〉

In the following, we show that tableau runs over individual-disjoint SHI-ontologies can
always be made individual-disjoint. The idea of the proof of Proposition 3.1 is to rename
all individuals generated by the tableau run/rules, until the tableau runs are disjoint.

3. MODULARIZATION 48

Proposition 3.1 (Tableau Runs of Individual-disjoint SHI-ontologies can be made In-
dividual-disjoint):
Given n ontologies O1 = 〈T,R,A1〉, O2 = 〈T,R,A2〉, ..., On = 〈T,R,An〉, such that
Ind(Ai)∩ Ind(Aj) = ∅, for all 1 ≤ i < j ≤ n, and n tableau runs (one for each ontology)
RUN 1, RUN 2, ..., RUN n, the tableau runs can be made individual-disjoint.

Proof of Proposition 3.1. Whenever an individual occurs in two tableau runs (note that
the individual must have been introduced by tableau rule applications, since the source
ontologies are individual-disjoint), we can rename the shared individual in one of the
tableau runs to a new individual not used in any of the n tableau runs. Validity of this
renaming step is shown as follows:

Given RUN is a tableau run for ontology O = 〈T,R,A〉 and RUN [a1 → a2] is a fresh
individual renaming on RUN , it is easy to see that:

• RUN [a1 → a2] is a tableau run for O: First, note that A[a1 → a2] =A, i.e. the
ABox of the root node of RUN [a1 → a2] is labeled with A. It can be seen that all
tableau rules remain applicable in RUN [a1 → a2]. Furthermore, by induction on
the tableau rules, it can be seen that the leaf ABox of RUN [a1 → a2] is complete:
if a tableau rule is applicable in the leaf ABox of RUN [a1 → a2], then it would have
to be already applicable in the leaf ABox of RUN .

• RUN contains a clash if and only if RUN [a1 → a2] contains a clash: a fresh indi-
vidual renaming does not change the concept set of any individual in the ABoxes
of the tableau run (only the name). Thus, the fresh individual renaming does not
change the result (clash or no clash) of the tableau run.

Repeated application of fresh individual renamings yield a set of n individual-disjoint
tableau runs.

In Proposition 3.2 we show that the composition of two individual-disjoint tableau runs
yields a tableau run for the union of the two source ontologies.

Proposition 3.2 (Composition of two Individual-disjoint Tableau Runs is a Tableau
Run):
Given two ontologies O1 = 〈T,R,A1〉 and O2 = 〈T,R,A2〉, and two individual-disjoint
tableau runs, RUN 1 for O1 and RUN 2 for O2, RUN 1 ◦ RUN 2 is a tableau run for O
=〈T,R,A1 ∪ A2〉.

Proof of Proposition 3.2. By Definition 3.4, the ABox of the root node of RUN 1 ◦RUN 2

is A1 ∪ A2. It can be seen by induction on the tableau rules that tableau rules remain
applicable for each node in RUN 1 ◦RUN 2. The fact that the leaf node of RUN 1 ◦RUN 2

is labeled with a complete ABox can be shown by contradiction: if a tableau rule is
applicable to φabox1 (n1)∪φabox2 (n2) then the tableau rule must be applicable already either
in φabox1 (n1) or φabox2 (n2), since φabox1 (n1) and φabox2 (n2) are individual-disjoint.

3. MODULARIZATION 49

We show in Lemma 3.1 that the composition of n individual-disjoint tableau runs yields
a tableau run for the union of the source ontologies.

Lemma 3.1 (Composition of n Individual-disjoint Satisfying Tableau Runs):
Given n ontologies O1 = 〈T,R,A1〉, O2 = 〈T,R,A2〉, ..., On = 〈T,R,An〉, and n
individual-disjoint tableau runs (one for each ontology) RUN 1, RUN 2, ..., RUN n, it is
true that: The tableau run RUN = RUN 1 ◦ RUN 2 ◦ ... ◦ RUN n is a satisfying tableau
run for O =〈T,R,A1 ∪ A2 ∪ ... ∪ An〉 if and only if each tableau run RUN i (such that
1 ≤ i ≤ n) is satisfying.

Proof of Lemma 3.1. By repeated application of Proposition 3.2, RUN is a tableau run
for O. It is easy to see that RUN contains a clash if and only if there exists a RUN i

containing a clash: since the individuals of all tableau runs are disjoint, tableau run
composition does not change the concept set of any individual in the ABoxes of the
tableau run. Thus, the composition does not change the result (clash or no clash) of the
tableau run.

To summarize, the important condition used in Lemma 3.1 is individual disjointness. If
the individuals of two tableau runs overlap, then the ABox merging can create direct
clashes. Moreover, even if the individuals of the source ABoxes are disjoint, one still has
to ensure disjointness of all fresh individuals (generated by tableau rule applications, e.g.
the ∃-tableau rule).

In order to prove properties about tableau run compositions below, we define a general
notion of an assertion extension to a tableau run. The motivation is that under some
conditions, these assertion extensions of tableau runs are tableau runs again.

Definition 3.9 (Tableau Run Assertion Extension):
Given

• an ontology O = 〈T,R,A〉,

• a tableau run RUN = 〈N, root, children , φabox, φruleapp〉 for O, and

• an ABox Aext,

the tableau run assertion extension of RUN with Aext, denoted RUN +Aext , is defined as
RUN +Aext = 〈N, root, children , φabox2 , φruleapp〉, such that for all n ∈ N we have φabox2 (n) =
φabox(n) ∪ Aext.

In the remaining part of this chapter, we focus on how to find
”
interesting“ ABox mod-

ularizations, i.e. ABox modularizations which guarantee soundness and completeness of
modularization-based instance tests for different classes of description logics.

3. MODULARIZATION 50

3.2 Component-based Modularization

With component-based modularization we refer to modularization techniques which only
consider the assertional part of an ontology O = 〈T,R,A〉 in order to decide how to break
up an ABox into an ABox modularization. For this purpose, we look at ABoxes as graphs.
The intuition is as follows: each individual in the ABox is mapped to a node in the graph.
Node labels are concept assertions from the ABox and the edges of the graph are derived
from the role assertions. We introduce a formal notion in order to define algorithms and
proofs. Given an ABox A, we define the corresponding ABox-graph in Definition 3.10.

Definition 3.10:
Given an ABox A, an ABox-graph GA = 〈N,E, φ, σ〉 for A is a directed labeled graph
such that

• N = Ind(A),

• the codomain of φ is ℘(Con),

• the codomain of σ is ℘(Rol),

• for all n ∈ N, we have C ∈ φ(n) if and only if C(n) ∈ A, and

• for all pairs of nodes (n1, n2) ∈ N × N, we have R ∈ σ(n1, n2) if and only if
R(n1, n2) ∈ A.

Please note that the construction of an ABox-graph for a given ABox A is deterministic
and invertible. This means that given a ABox-graph GA , we can reconstruct the corre-
sponding ABox A. Given this relationship, we often change between the usual ABox-view
and the ABox-graph-view whenever it is convenient.

Since the ABox A of an ontology O can be seen as a graph, it seems natural to apply
standard connectedness-based graph partitioning techniques to determine ABox modules:
if two individuals a1 and a2 are connected in the ABox-graph, then these two individuals
end up in the same ABox module.

Definition 3.11 (Graph Component-based ABox Modularization for an ABox):
Given an ontology O = 〈T,R,A〉, a graph component-based ABox modularization for A,
denoted MCA , is an ABox Modularization {A1, ...,An} for A, such that Ai ∈MCA ⇐⇒
GAi is a component in GA .

An optimal algorithm for obtaining graph components is shown in [HT73]. The compo-
nents of a graph can be obtained in linear time in the number of edges. In the following,
we often refer to the term

”
graph component-based“ with the term component-based.

Please note that the graph component-based ABox modularization for an ABox A is
unique. An example of a component-based ABox modularization is shown in Example 3.8.

3. MODULARIZATION 51

Example 3.8 (Example for ABox Modularization by Graph Components):
Given the ontology OEx3.8 = 〈TEx3.8,REx3.8,AEx3.8〉, such that

TEx3.8 = {Chair ≡ ∃headOf.Department}
REx3.8 = {headOf v memberOf}
AEx3.8 = {

Department(cs), P rofessor(ann),

headOf(ann, cs),

Department(ee), P rofessor(mae),

headOf(mae, ee)

},

the graph component-based ABox modularization is MEx3.8 = {AEx3.8,1,AEx3.8,2}, such
that

AEx3.8,1 ={Department(cs), P rofessor(ann), headOf(ann, cs)}
AEx3.8,2 ={Department(ee), P rofessor(mae), headOf(mae, ee)}.

In the following, we show soundness and completeness of instance retrieval over graph
component-based ABox modularizations. We start with the proof of soundness, which
is quite straightforward. First, we formally prove that the union of all ABox modules is
equivalent to the original ABox.

Proposition 3.3 (Graph Components Recover ABox):
For each component-based ABox modularization M = {A1, ...,An} we have A = (A1 ∪
... ∪ An).

Proof of Proposition 3.3. Easy to see by the formal definition of graph components.

Lemma 3.2 (SHI-Instance Retrieval over Component-based ABox Modularizations is
Sound):
Given an ontology O = 〈T,R,A〉, the component-based ABox modularization MCA =
{A1, ...,An} for A is sound for instance retrieval in O.

Proof of Lemma 3.2. We have to show that for all atomic concept descriptions C ∈
AtCon and all individuals a ∈ NInd(A), 〈T,R,MCA〉 � C(a) =⇒ 〈T,R,A〉 � C(a).
Assume that 〈T,R,MCA〉 � C(a). Thus, ∃Ai ∈MCA .〈T,R,Ai〉 � C(a). From Proposi-
tion 3.3 it is clear that Ai ⊆ A, and hence Ai ∪ {¬C(a)} ⊆ A ∪ {¬C(a)}. Furthermore,
from 〈T,R,Ai〉 � C(a), it can be seen that 〈T,R,Ai ∪ {¬C(a)}〉 is inconsistent. Thus,
〈T,R,A ∪ {¬C(a)}〉 must be inconsistent as well, and thus 〈T,R,A〉 � C(a).

Next, we show a proof for completeness with respect to SHI and give a negative result
for the description logic SHOQ. Before we show the actual proof, we prove a property
about the union of individual-disjoint ontologies.

3. MODULARIZATION 52

Proposition 3.4 (Consistency Preservation of Unions of Individual-disjoint Ontologies):
Given n individual-disjoint ontologies O1 = 〈T,R,A1〉, O2 = 〈T,R,A2〉, ..., and On =
〈T,R,An〉, 〈T,R,A1 ∪ A2 ∪ ... ∪ An〉 is consistent if O1, O2, ... and On are consistent
respectively.

Proof of Proposition 3.4. If O1, O2,..., On are consistent, then there exist n tableau runs
RUN 1 for O1, RUN 2 for O2,..., RUN n for On, such that all of these tableau runs are
satisfying. Since all input ontologies are individual-disjoint to each other, one can compute
a set of n individual-disjoint tableau runs RUN new1, ..., RUN newn, by Proposition 3.1.
Then by Lemma 3.1, a satisfying tableau run for 〈T,R,A1 ∪ A2 ∪ ... ∪ An〉 exists. Thus
〈T,R,A1 ∪ A2 ∪ ... ∪ An〉 is consistent.

Lemma 3.3 (SHI-Instance Retrieval over Component-based ABox Modularizations is
Complete):
Given an ontology O = 〈T,R,A〉 and a component-based ABox modularization MCA =
{A1, ...,An} for A, the ABox modularization MCA is complete for instance retrieval in
O.

Proof of Lemma 3.3. We have to show that for all atomic concept descriptions C ∈
AtCon and all individuals a ∈ NInd(A), 〈T,R,A〉 � C(a) =⇒ 〈T,R,MCA〉 � C(a).
By contraposition: We have to show 〈T,R,MCA〉 2 C(a) =⇒ 〈T,R,A〉 2 C(a).
Assume that 〈T,R,MCA〉 2 C(a). Thus, for all Ai ∈ MCA , 〈T,R,Ai ∪ {¬C(a)}〉
is consistent. Let Aj be the ABox module, such that a ∈ Ind(Aj). There exists
only one such module, by Definition 3.11. By Proposition 3.4, we can conclude that
〈T,R,A1 ∪ A2 ∪ ...Aj−1 ∪ (Aj ∪ {¬C(a)}) ∪ Aj+1 ∪ ... ∪ An〉 is consistent as well. Since,
by Proposition 3.3, A ∪{¬C(a)} = A1 ∪A2 ∪ ...Aj−1 ∪ (Aj ∪ {¬C(a)})∪Aj+1 ∪ ...∪An,
the ontology 〈T,R,A ∪ {¬C(a)}〉 is consistent, and thus 〈T,R,A〉 2 C(a).

Theorem 3.1 (Instance Retrieval over Component-based ABox Modularizations is Sound
and Complete for SHI):
Instance Retrieval over component-based ABox modularizations is sound and complete
for SHI-ontologies.

Proof of Theorem 3.1. In Lemma 3.2 we have shown soundness and in Lemma 3.3 we
have shown completeness.

Unfortunately, the completeness result does not hold for ontologies containing nomi-
nals, e.g. SHOQ-ontologies. It is not always possible to ensure individual disjointness
of tableau runs, because TBox axioms can introduce individuals and these individuals
cannot be renamed without changing the semantics and result of the tableau run. While
all modules of an ABox modularization are consistent, the complete ontology might be
inconsistent. Thus, graph component-based ABox modularization techniques cannot be
applied directly to ontologies containing nominals.

3. MODULARIZATION 53

The effectiveness of component-based modularization techniques is usually quite low, since
in most ontologies each individual is related to many other individuals, either directly or
indirectly.

3.3 Intensional-based Modularization

Component-based modularization alone can be too naive for the modularization of real-
world ontologies. Usually, most individuals in an ABox are connected by paths of role as-
sertions to many other individuals. Thus, the number of modules obtained by component-
based ABox modularizations can be quite small and the average module size is usually
quite big. In the following section, we discuss how to compute smaller modules by split-
ting up role assertions whenever possible. After the split process is finished, we can apply
component-based modularization techniques on the result. Please note again that, during
the modularization process, we are interested in preserving the entailment of all atomic
concept descriptions for each named individual.

The idea is to analyze the terminological part of the ontology (hence called intensional-
based modularization) to find out in which ways role assertions are used in the ontology. It
is important to note that we only use a purely syntactic analysis of the TBox. Otherwise,
for complex ontologies, a more sophisticated analysis could turn out to be too complex. To
illustrate the idea of intensional-based modularization in a more detailed way, an example
ontology is given in Example 3.9.

Example 3.9 (Example Ontology):
Let OEx3.9 = 〈TEx3.9,REx3.9,AEx3.9〉 as follows:

TEx3.9 ={> v ∀takes.Course}
REx3.9 ={}
AEx3.9 ={Course(c5), Student(zoe),

takes(zoe, c5), teaches(mae, c5)}.

Looking closer at the ontology defined in Example 3.9 reveals the following details about
the role assertions in AEx3.9:

• teaches(mae, c5): The role teaches is not used (mentioned) anywhere in the TBox
or RBox of the ontology OEx3.9. Thus, no information can be propagated in a
tableau algorithm from mae to c5 and vice versa via teaches, and it might be safe
to ignore/remove the role assertion to obtain a more fine grained modularization in
some cases.

• takes(zoe, c5): Although the role takes is mentioned in TEx3.9, we can see that it
is only used to propagate the concept description Course. Since individual c5 is
already known to be an instance of Course, because that fact is directly asserted
in AEx3.9, we might further split up this role assertion in some cases.

3. MODULARIZATION 54

3.3.1 Technical Preliminaries

In the following, we define necessary criteria for identifying concept descriptions which are
propagated over role descriptions in the worst-case during the application of the tableau
algorithm. Since we only allow atomic concept assertions in ABoxes, we can focus on the
syntactic analysis of the TBox to obtain this set of concept descriptions. First, we define
a normal form of general concept inclusions and TBoxes. The normal form makes the
syntactical analysis of a terminology easier.

Definition 3.12 (Normal Form of GCIs):
A general concept inclusion axiom is in normal form if it has the shape > v C, such that
C is a concept description in negation normal form. A TBox T is in normal form (or
normalized) if all general concept inclusion axioms in T are in normal form.

It is easy to see that each GCI can be transformed into an equivalent GCI in negation
normal form. Furthermore, it is easy to see that each TBox can be transformed into an
equivalent TBox in negation normal form.

In Definition 3.13, we formally define a structure which associates the worst-case set
of propagated concept descriptions with each role description. The idea is to extract
subconcept descriptions of all ∀-concept descriptions from the closure of the input TBox.

Definition 3.13 (∀-info structure):
A ∀-info structure for a TBox T in normal form is a function info∀T : Rol → ℘(Con),

such that we have C ∈ info∀T(R) if and only if ∀R.C ∈ clos (T).
Example 3.10 (Example for a ∀-info structure):
Let

TEx3.10 = {> v ∀takes.Course,
∃takes.Course v Student,

∃memberOf.> v Person,

GraduateStudent v Student,

UndergraduateStudent v Student

},

then one TBox in normal form is

TEx3.10norm = {> v ∀takes.Course,
> v ∀takes.¬Course t Student,
> v ∀memberOf.⊥ t Person,
> v ¬GraduateStudent t Student,
> v ¬UndergraduateStudent t Student
}

3. MODULARIZATION 55

and the ∀-info structure for TEx3.10norm is:

info∀TEx3.10norm(R) =


{Course,¬Course} if R = takes,

{⊥} if R = memberOf,

∅ otherwise.

The ∀-info structure helps us to check which concept descriptions are (in the worst case)
propagated over role assertions during the application of tableau rules in tableau proofs.
First, we prove a general property about concept descriptions in tableau runs.

Proposition 3.5 (Labeling with Non-Atomic Concept Descriptions in Tableau Runs for
ALCHI-Ontologies):
Given

• an ALCHI-ontology O = 〈T,R,A〉,

• a tableau run RUN = 〈N, root, children , φabox, φruleapp〉,

• a node n ∈ N,

• an individual a, and

• a non-atomic concept description C,

C(a) ∈ φabox(n) =⇒ C ∈ clos (T).

Proof of Proposition 3.5. Initially we only have concept assertions with atomic concept
descriptions in A. By induction on the tableau run (the applications of tableau rules), it
is easy to see that every newly added concept description is in clos (T).

Given the above results, we define an operation which splits up role assertions in such
a way that we can apply graph component-based modularization techniques over the
outcome of the split. Then we show that under some conditions the operation retains
soundness and completeness for instance checking and instance retrieval.

Definition 3.14 (ABox Split):
Given

• a role description R,

• two distinct named individuals a and b,

• two distinct anonymous individuals c and d, and,

• an ABox A,

3. MODULARIZATION 56

Figure 3.3 Intuition of an ABox split

ABox

ABox

ann

c1

teaches ABox split

ABox

ABox

ann

c1

ann*
c1*

teaches

teaches

an ABox split is a function ↓R(a,b)
c,d : SA → SA, defined as follows:

• If R(a, b) ∈ A and {c, d} ∩ Ind(A) = ∅, then

↓R(a,b)
c,d (A) =A \ {R(a, b)}∪

{R(a, d), R(c, b)} ∪ {C(c) | C(a) ∈ A} ∪ {C(d) | C(b) ∈ A}

• Else

↓R(a,b)
c,d (A) = A.

The intuition of Definition 3.14 is depicted in Figure 3.3. The clouds in Figure 3.3 indicate
a set of ABox assertions. We split up a role assertion and keep the concept assertions
for each fresh individual copy. The reason for keeping the asserted concept descriptions
is explained below. If the ABox does not contain the role assertion in question, then the
split returns an unchanged ABox.

In Definition 3.15, we define soundness and completeness of ABox splits. While soundness
of ABox splits is shown by simply applying Lemma 3.4, the proof of completeness is harder
and depends on several criteria.

Definition 3.15 (Sound, Complete and Valid ABox Split):

Given an ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , we say that

• ↓R(a,b)
c,d is sound with respect to O if and only if for all individuals a1 ∈ NInd(A)

and all atomic concept descriptions C ∈ AtCon:

∃Ai ∈MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1) =⇒ 〈T,R,A〉 � C(a1),

3. MODULARIZATION 57

• ↓R(a,b)
c,d is complete with respect to O if and only if for all individuals a1 ∈ NInd(A)

and all atomic concept descriptions C ∈ AtCon:

〈T,R,A〉 � C(a1) =⇒ ∃Ai ∈MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1),

• ↓R(a,b)
c,d is valid with respect to O if ↓R(a,b)

c,d is sound and complete with respect to O.

Lemma 3.4 (Soundness of ABox Splits):

Given an ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is sound with respect
to O.

Proof of Lemma 3.4. We have to show that for all individuals a1 ∈ NInd(A) and all

atomic concept descriptions C ∈ AtCon: ∃Ai ∈ MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1) =⇒

〈T,R,A〉 � C(a1). Assume that ∃Ai ∈ MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1). Without loss of

generality, letAX ∈MC↓
R(a,b)
c,d (A) be the ABox module which makes 〈T,R,AX∪{¬C(a1)}〉

inconsistent. Furthermore, let A∗ = AX ∪ {¬C(a1)}. It is easy to see that 〈T,R,A∗〉 is
inconsistent and we have to show that 〈T,R,A∪{¬C(a1)}〉 is inconsistent. By contrapo-
sition: We show that if 〈T,R,A ∪ {¬C(a1)}〉 is consistent, then 〈T,R,A∗〉 is consistent.
Assuming that 〈T,R,A ∪ {¬C(a1)}〉 is consistent, there exists an interpretation I, such
that I � 〈T,R,A ∪ {¬C(a1)}〉. It is easy to see that for the interpretation Inew, an ex-
tension of I by setting cInew = aI and dInew = bI , Inew � 〈T,R,A∗〉 and thus, 〈T,R,A∗〉
is consistent.

The criteria for ensuring completeness of ABox splits are introduced below and proven
step-wise for the description logic ALC and extensions up to SHI. We define the notion
of a consistency-preserving ABox split, for which, informally speaking, the split-up role
assertion can be added to the outcome of the ABox split without changing consistency.
This is formally defined in Definition 3.16.

Definition 3.16 (Consistency-preserving ABox Split):

Given an ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , we say that ↓R(a,b)

c,d is a
consistency-preserving ABox split for O if for all atomic concept descriptions C and all
individuals e ∈ NInd(A), 〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)}〉 is consistent =⇒ 〈T,R, ↓R(a,b)
c,d

(A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

Lemma 3.5 (Completeness for Consistency-preserving ABox Splits):

Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is complete with

respect to O if ↓R(a,b)
c,d is a consistency-preserving ABox split for O.

Proof of Lemma 3.5. We have to show that for all named individuals a1 ∈ NInd(A) and
all atomic concept descriptions C ∈ AtCon:

〈T,R,A〉 � C(a1) =⇒ ∃Ai ∈MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 � C(a1).

3. MODULARIZATION 58

By contraposition: We have to show that ∀Ai ∈ MC↓
R(a,b)
c,d (A).〈T,R,Ai〉 2 C(a1) =⇒

〈T,R,A〉 2 C(a1). Assume that all 〈T,R,Ai ∪ {¬C(a1)}〉 are consistent. Let Aj be
the ABox module, such that a1 ∈ NInd(Aj). There exists only one such module, by
Definition 3.11. Let A∗ = A1∪A2∪ ...Aj−1∪(Aj∪{¬C(a1)})∪Aj+1∪ ...∪An. By Propo-

sition 3.4, 〈T,R,A∗〉 is consistent. Since ↓R(a,b)
c,d is a consistency-preserving ABox split

for 〈T,R,A〉 (precondition), we know that 〈T,R,A∗ ∪ {R(a, b)}〉 is consistent, because

A∗ =↓R(a,b)
c,d (A)∪{¬C(a1)}. Since A∪{¬C(a1)} ⊆ A∗∪{R(a, b)}, we can conclude that

〈T,R,A ∪ {¬C(a1)}〉 is consistent as well, and thus 〈T,R,A〉 2 C(a1).

Lemma 3.5 and Definition 3.16 help us to identify complete ABox splits, by finding
consistency-preserving ABox splits. We identify classes of these consistency-preserving
ABox splits below. Please note that consistency-preserving ABox splits do not affect
the blocking of individuals, i.e. adding the role assertions does not change the blocking
condition for any individual.

We distinguish the following three scenarios as candidate criteria for consistency-preserving
ABox splits ↓R(a,b)

c,d :

1. No concept descriptions are propagated over R.

2. Only the concept description ⊥ is propagated over R.

3. Only atomic concept descriptions are propagated over R, such that each propaga-
tion, informally speaking, either yields redundant information or an obvious clash.

Each scenario is discussed in detail for the description logic ALC below.

3.3.2 Consistency-preserving ABox Splits for ALC

First, we revisit the definition of neighbors again. The neighborship of individuals is
important for the application of the ∀-tableau rule. In Proposition 3.6, we define a
criterion for the role neighborship of individuals in ALC-ontologies.

Proposition 3.6 (Role Assertion Neighbor Impact in ALC):
Given an ALC-ontology O = 〈T,R,A〉, a role description R ∈ Rol, and two individuals
a1 ∈ Ind(A) and a2 ∈ Ind(A), we have a2 is an R-neighbor of a1 only if R(a1, a2) ∈ A.

Proof of Proposition 3.6. By Definition 2.31, Definition 2.30, and the absence of inverse
roles and role hierarchies in ALC.

In Proposition 3.7, we show that a ∀-info structure can be used for applicability checks
of tableau rules in tableau algorithms for ALC-ontologies.

3. MODULARIZATION 59

Proposition 3.7 (Relationship between ∀-Info Structure and Tableau Rule Applications
in ALC):
Given an ALC-ontology O = 〈T,R,A〉, a ∀-info structure info∀T for T, and a tableau
run RUN = 〈N, root, children , φabox, φruleapp〉 for O, for each n ∈ N, φruleapp(n) =
tabrappπ,∀R.C1

∀,T,R =⇒ C1 ∈ info∀T(R).

Proof of Proposition 3.7. If the ∀-tableau rule is applicable then, by Definition 2.37 and
Proposition 3.6, we must have ∀R.C1(π(x)) ∈ φabox(n). By Proposition 3.5, we conclude
that ∀R.C1 ∈ clos (T). By Definition 3.13, we have C1 ∈ info∀T(R).

Below, we discuss three cases for consistency-preserving ABox splits. First, in Lemma 3.6,
we prove that an ABox split is consistency-preserving, if no concept descriptions can be
propagated over the role assertion of the ABox split during the application of a tableau
algorithm to the ontology.

Lemma 3.6 (Propagationless ABox Splits):

Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is a consistency-

preserving ABox split for O if info∀T(R) = ∅.

Proof of Lemma 3.6. We have to show that for all atomic concept descriptions C and all
individuals e ∈ NInd(A), 〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)}〉 is consistent =⇒ 〈T,R, ↓R(a,b)
c,d

(A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent. Assume that 〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)}〉

is consistent. Thus, there exists a satisfying tableau run RUN for 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)}〉. It is easy to see that RUN +{R(a,b)} is a tableau run for 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)∪{R(a, b)}〉. For each node in the tableau run, the tableau rules remain applicable.
Please note that especially the ∃-tableau rules remain applicable, since the applicability
condition requires an anonymous successor individual (a and b are named individuals). In
the remaining part, we only discuss the completeness of the leaf ABox of RUN +{R(a,b)}.

Since the leaf ABox Aleaf of RUN is complete, the only tableau rule which could be-
come applicable due to the ABox extension is the ∀-tableau rule. But since we assume
info∀T(R) = ∅, we can conclude, by Proposition 3.7, that the individual a cannot be la-
beled with a ∀-constraint on role R. Thus, the ∀-tableau rule is not applicable either. In
particular, the TBox-tableau rule cannot become applicable, since a ∈ Ind(Aleaf) and
b ∈ Ind(Aleaf).

The leaf ABox of RUN +{R(a,b)} is Aleaf ∪ {R(a, b)}. It is easy to see that this addition
yields no immediate clash in Aleaf ∪ {R(a, b)}. Thus, RUN +{R(a,b)} is satisfying and

〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

Next, we discuss consistency-preserving ABox splits with role assertions, such that only
direct contradictions are propagated, i.e. given an ↓R(a,b)

c,d , we have info∀T(R) = {⊥}.

3. MODULARIZATION 60

Lemma 3.7 (Clash-Propagation ABox Splits):

Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is a consistency-

preserving ABox split for O if info∀T(R) = {⊥}.

Proof of Lemma 3.7. We have to show that for all atomic concept descriptions C and all
individuals e ∈ NInd(A), 〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)}〉 is consistent =⇒ 〈T,R, ↓R(a,b)
c,d

(A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent. Assume that 〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)}〉

is consistent. Thus, there exists a satisfying tableau run RUN for 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)}〉. It is easy to see that RUN +{R(a,b)} is a tableau run for 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)} ∪ {R(a, b)}〉. All tableau rules are still applicable on the respective ABox in
the tableau run RUN +{R(a,b)}. Please note that especially the ∃-tableau rules remain
applicable, since the applicability condition requires an anonymous successor individual
(a and b are named individuals). In the remaining part, we only discuss the completeness
of the leaf ABox of RUN +{R(a,b)}.

Since the leaf ABox Aleaf of RUN is complete, the only tableau rule which could become
applicable due to the ABox extension is the ∀-tableau rule. However, if the ∀-tableau rule
becomes applicable for R(a, b), then it must have been already applicable in RUN for the
role assertion R(a, d). Since RUN is satisfying, d does not contain a direct clash, and
thus the ∀-tableau rule was not applicable to R(a, d) in RUN and it cannot be applicable
to R(a, b) either. Since, by Proposition 3.7, only ⊥ is propagated over R, the ∀-tableau
rule is not applicable. The TBox-tableau rule cannot become applicable, since we have
a ∈ Ind(Aleaf) and b ∈ Ind(Aleaf).

The leaf ABox of RUN +{R(a,b)} is Aleaf ∪ {R(a, b)}. It is easy to see that this addition
yields no immediate clash in Aleaf ∪ {R(a, b)}. Thus, RUN +{R(a,b)} is satisfying and

〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

In the following, we discuss completeness of ABox splits with role assertions, such that
only particular atomic concepts are propagated. These atomic concepts are special in
such a way that they will either only propagate redundant information or yield a direct
clash during the application of a tableau algorithm. First, we discuss the propagation of
redundant information. The terminological knowledge can be used to avoid the worst-case
propagation over the role assertion of concern.

Lemma 3.8 (Redundant Propagation ABox Splits):

Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is a consistency-

preserving ABox split for O if info∀T(R) = {C1} and there exists a concept description
C2, with C2(b) ∈ A and T � C2 v C1.

Proof of Lemma 3.8. We have to show that for all atomic concept descriptions C and all
individuals e ∈ NInd(A), we have that 〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)}〉 is consistent =⇒
〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent. Assume that 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)}〉 is consistent. Thus, there exists a satisfying tableau run RUN for 〈T,R, ↓R(a,b)
c,d

3. MODULARIZATION 61

(A) ∪ {¬C(e)}〉. It is easy to see that RUN +{R(a,b)} is a tableau run for 〈T,R, ↓R(a,b)
c,d

(A)∪ {¬C(e)} ∪ {R(a, b)}〉. All tableau rules are still applicable on the respective ABox
in the tableau run RUN +{R(a,b)}. Please note that especially the ∃-tableau rules remain
applicable, since the applicability condition requires an anonymous successor individual
(a and b are named individuals). In the remaining part, we only discuss the completeness
of the leaf ABox of RUN +{R(a,b)}.

Since the leaf ABox Aleaf of RUN is complete, the only tableau rule which could become
applicable due to the ABox extension is the ∀-tableau rule. Please note that we must
have C1(b) ∈ Aleaf (since Aleaf is a complete ABox), and thus the ∀-tableau rule cannot
become applicable for the new role assertion R(a, b) and concept description ∀R.C1. In
particular the TBox-tableau rule cannot become applicable, since we have a ∈ Ind(Aleaf)
and b ∈ Ind(Aleaf).

The leaf ABox of RUN +{R(a,b)} is Aleaf ∪ {R(a, b)}. It is easy to see that this addition
yields no immediate clash in Aleaf ∪ {R(a, b)}. Thus, RUN +{R(a,b)} is satisfying and

〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

We discuss the propagation of directly contradicting information next. If a propagation
will only yield a direct clash due to disjointness information, we can break up the role
assertion as well.

Lemma 3.9 (Redundant Contradiction-Propagation ABox Splits):

Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is a consistency-

preserving ABox split for O if info∀T(R) = {C1} and there exists a concept description
C2, such that C2(b) ∈ A and T � C1 u C2 v ⊥.

Proof of Lemma 3.9. We have to show that for all atomic concept descriptions C and all
individuals e ∈ NInd(A), we have that 〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)}〉 is consistent =⇒
〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent. Assume that 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)}〉 is consistent. Thus, there exists a satisfying tableau run RUN for 〈T,R, ↓R(a,b)
c,d

(A) ∪ {¬C(e)}〉. It is easy to see that RUN +{R(a,b)} is a tableau run for 〈T,R, ↓R(a,b)
c,d

(A) ∪ {¬C(e) ∪ {R(a, b)}〉. All tableau rules are still applicable on the respective ABox
in the tableau run RUN +{R(a,b)}. Please note that especially the ∃-tableau rules remain
applicable, since the applicability condition requires an anonymous successor individual
(a and b are named individuals). In the remaining part, we only discuss the completeness
of the leaf ABox of RUN +{R(a,b)}.

Since the leaf ABox Aleaf of RUN is complete, the only tableau rule which could become
applicable due to the ABox extension is the ∀-tableau rule. However, if the ∀-tableau rule
becomes applicable for R(a, b), then it must have been already applicable in RUN for the
role assertion R(a, d) and we must have C1(d) ∈ Aleaf . This must have yielded a clash,
since T � C1 u C2 v ⊥ and C2(d) ∈ Aleaf .

Since RUN is satisfying, d does not contain that clash, and thus the ∀-tableau rule was
not applicable to R(a, d) in RUN and it cannot be applicable to R(a, b) either. Thus the

3. MODULARIZATION 62

∀-tableau rule is not applicable. The TBox-tableau rule cannot become applicable, since
we have a ∈ Ind(Aleaf) and b ∈ Ind(Aleaf).

The leaf ABox of RUN +{R(a,b)} is Aleaf ∪ {R(a, b)}. It is easy to see that this addition
yields no immediate clash in Aleaf ∪ {R(a, b)}. Thus, RUN +{R(a,b)} is satisfying and

〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

In Theorem 3.2, we summarize the above results about decision criteria for ABox splits
over ALC-ontologies.

Theorem 3.2 (Decision Criteria for ABox Splits in ALC-ontologies):

Given an ALC-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is valid for O if

for each C ∈ info∀T(R)

• C = ⊥ or

• there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

• there exists a concept description C2, such that C2(b) ∈ A and T � C u C2 v ⊥.

Proof of Theorem 3.2. Direct consequence of Lemma 3.4 (soundness), Lemma 3.5, Lemma 3.6,
Lemma 3.7, Lemma 3.8 and Lemma 3.9.

3.3.3 Consistency-preserving ABox Splits for ALCH

In the following, we extend our results for valid ABox splits step-by-step from ALC-
ontologies to SHI-ontologies. First, we add role hierarchies to ALC.

In presence of role hierarchies, the ∀-info structure needs to be extended in order to handle
role subsumptions, because propagations of concept descriptions can now occur over more
role descriptions (all super roles).

Definition 3.17 (Extended ∀-info Structure):
Given a TBox T in normal form and an RBox R, an extended ∀-info structure for T and
R is a function extinfo∀T,R : Rol → ℘(Con), such that we have C ∈ extinfo∀T,R(R) if and
only if there exists a role R2 ∈ Rol, such that O � R v R2 and ∀R2.C ∈ clos (T).
Example 3.11 (Example for an Extended ∀-info Structure):
Let

TEx3.11 = {
Chair v ∀headOf.Department,∃memberOf.> v Person,

GraduateStudent v Student

}

and

REx3.11 = {headOf v memberOf},

3. MODULARIZATION 63

then the TBox in normal form is

TEx3.11norm = {
> v ¬Chair t ∀headOf.Department,
> v ∀memberOf.⊥ t Person,
> v ¬GraduateStudent t Student
}

and the extended ∀-info structure for TEx3.11norm and REx3.11 is:

extinfo∀T,R(R) =


{Department,⊥} if R = headOf,

{⊥} if R = memberOf,

∅ otherwise.

The extended ∀-info structure allows us to check which concept descriptions are (in the
worst case) propagated over role assertions in ALCH-ontologies. Before presenting the
formal proof, we revisit the neighborship of individuals in ALCH-ontologies.

Proposition 3.8 (Role Assertion Neighbor Impact in ALCH):
Given an ALCH-ontology O = 〈T,R,A〉, a role description R ∈ Rol, and two individuals
a1 ∈ Ind(A) and a2 ∈ Ind(A), a2 is an R-neighbor of a1 if and only if there exists a role
description R2, such that O � R2 v R, and R2(a1, a2) ∈ A.

Proof of Proposition 3.8. By Definition 2.31, Definition 2.30 and the absence of inverse
roles in ALCH.

Lemma 3.10 (Extended ∀-Info Structure and Tableau Rule Applications in ALCH):
Given a tableau run RUN = 〈N, root, children , φabox, φruleapp〉 for an ALCH-ontology
O = 〈T,R,A〉 and an extended ∀-info structure extinfo∀T,R for T and R, the ∀-tableau
rule is applicable to a role assertion R(a1, a2) and a concept description ∀R2.C for the
ABox φabox(n) of a node n ∈ N, only if C ∈ extinfo∀T,R(R).

Proof of Lemma 3.10. If the ∀-tableau rule is applicable to a role assertion R(a1, a2) and a
concept description ∀R2.C, then, by Proposition 3.8, we must have ∀R2.C(a1) ∈ φabox(n),
such that O � R v R2. By Proposition 3.5 we conclude that ∀R2.C ∈ clos (T) and by
Definition 3.17, we have C ∈ extinfo∀T,R(R).

We extend Theorem 3.2 to ALCH-ontologies in Theorem 3.3.

Theorem 3.3 (Decision Criteria for ABox Splits in ALCH-ontologies):

Given an ALCH-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is valid with

respect to O if for each C ∈ extinfo∀T,R(R)

• C = ⊥ or

3. MODULARIZATION 64

• there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

• there exists a concept description C2, such that C2(b) ∈ A and T � C u C2 v ⊥.

Proof of Theorem 3.3. Since the tableau rules for ALCH do not change compared to
ALC, but only the definition of neighbor relationships, the proof is a direct consequence
of Lemma 3.10 and the results for ALC (Theorem 3.2).

3.3.4 Consistency-preserving ABox Splits for ALCHI

In presence of inverse roles, we have to adapt our approach a little bit, since concept
descriptions can be propagated in two directions over a role assertion R(a1, a2). We refine
our definitions below.

Proposition 3.9 (Role Assertion Neighbor Impact in ALCHI):
Given anALCHI-ontologyO = 〈T,R,A〉, two individuals a1 ∈ Ind(A) and a2 ∈ Ind(A),
and a role description R ∈ Rol, a2 is an R-neighbor of a1 if and only if

• there exists a role description R2, such that O � R2 v R, and R2(a1, a2) ∈ A or

• there exists a role description R2, such that O � R2 v R−, and R2(a2, a1) ∈ A.

Proof of Proposition 3.9. By Definition 2.30 and Definition 2.31.

Lemma 3.11 (Extended ∀-Info Structure and Tableau Rule Applications in ALCHI):
Given a tableau run RUN = 〈N, root, children , φabox, φruleapp〉 for an ALCHI-ontology
O = 〈T,R,A〉 and an extended ∀-info structure extinfo∀T,R for T and R, the ∀-tableau
rule is applicable to a role assertion R(a1, a2) and a concept description ∀R2.C in the
ABox φabox(n) of a node n ∈ N only if C ∈ extinfo∀T,R(R) or C ∈ extinfo∀T,R(R−).

Proof. If the ∀-tableau rule is applicable to a role assertion R(a1, a2) and a concept de-
scription ∀R2.C, then, by Proposition 3.9, we must have one of two cases (depending on
whether the ∀-tableau rule is applicable to individual a1 or individual a2):

• ∀R2.C(a1) ∈ φabox(n), for a role description R2, such that O � R v R2. Since
∀R2.C is a non-atomic concept description, we can conclude, by Proposition 3.5,
that ∀R2.C ∈ clos (T) and, by Definition 3.17, C ∈ extinfo∀T,R(R).

• ∀R2.C(a2) ∈ φabox(n), for one role description R2, such that O � R v R−2 . Since
∀R2.C is a non-atomic concept description, we can conclude, by Proposition 3.5,
that ∀R2.C ∈ clos (T) and, by Definition 3.17, C ∈ extinfo∀T,R(R−).

The extension of Theorem 3.3 to ALCHI-ontologies is shown in Theorem 3.4.

3. MODULARIZATION 65

Theorem 3.4 (Decision Criteria for ABox Splits in ALCHI-ontologies):

Given an ALCHI-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is valid with
respect to O if

1. for each C ∈ extinfo∀T,R(R)

• C = ⊥ or

• there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

• there exists a concept description C2, such that C2(b) ∈ A and T � CuC2 v ⊥

and

2. for each C ∈ extinfo∀T,R(R−)

• C = ⊥ or

• there exists a concept description C2, such that C2(a) ∈ A and T � C2 v C or

• there exists a concept description C2, such that C2(a) ∈ A and T � CuC2 v ⊥.

Proof of Theorem 3.4. Since the tableau rules for ALCHI do not change compared to
ALCH, but only the definition of neighbor relationships, the proof is a direct consequence
of Lemma 3.11 and the results for ALCH (Theorem 3.3).

3.3.5 Consistency-preserving ABox Splits for SHI

We discuss the extension to transitive roles next. Please note that the additional ∀+-
tableau rule can only become applicable for role assertions with transitive roles. Although
this insight is obvious, we formally declare this fact in Proposition 3.10.

Proposition 3.10 (SHI-Susceptibility and Tableau Rule Applications in SHI):
Given a tableau run RUN = 〈N, root, children , φabox, φruleapp〉 for a SHI-ontology O =
〈T,R,A〉, the ∀+-tableau rule is applicable to a role assertion R(a1, a2) and a concept
description C, in the ABox φabox(n) of a node n ∈ N only if there exists a role description
R2, such that O � R v R2 and R2 is transitive with respect to O.

Proof of Proposition 3.10. By Definition 2.38.

We formally define a class of SHI-splittable role assertions, and prove that each ABox
split with respect to these role assertions is valid in SHI-ontologies.

Definition 3.18 (SHI-splittability of Role Assertions):
Given a SHI-ontology O = 〈T,R,A〉 and a role assertion R(a, b), we say that R(a, b) is
SHI-splittable with respect to O if

1. there exists no transitive role R2 with respect to O, such that O � R v R2,

3. MODULARIZATION 66

2. for each C ∈ extinfo∀T,R(R)

• C = ⊥ or

• there exists a concept description C2, such that C2(b) ∈ A and T � C2 v C or

• there exists a concept description C2, such that C2(b) ∈ A and T � CuC2 v ⊥

and

3. for each C ∈ extinfo∀T,R(R−)

• C = ⊥ or

• there exists a concept description C2, such that C2(a) ∈ A and T � C2 v C or

• there exists a concept description C2, such that C2(a) ∈ A and T � CuC2 v ⊥.

Please note that the first criterion in Definition 3.18 is conservative. Although we believe
that the criterion can be extended, for the remaining part of the thesis we investigate this
simple criterion.

Lemma 3.12 (Consistency-preserving SHI-ABox Splits):

Given a SHI-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is a consistency-
preserving ABox split for O if R(a, b) is SHI-splittable with respect to O.

Proof of Lemma 3.12. We have to show that for all atomic concept descriptions C and
all individuals e ∈ Ind(A), 〈T,R, ↓R(a,b)

c,d (A) ∪ {¬C(e)}〉 is consistent =⇒ 〈T,R, ↓R(a,b)
c,d

(A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent. Assume that 〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)}〉

is consistent. Thus, there exists a satisfying tableau run RUN for 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)}〉. It is easy to see that RUN +{R(a,b)} is a tableau run for 〈T,R, ↓R(a,b)
c,d (A) ∪

{¬C(e)} ∪ {R(a, b)}〉. All tableau rules are still applicable on the respective ABox in
the tableau run RUN +{R(a,b)}. Please note that especially the ∃-tableau rules remain
applicable, since the applicability condition requires an anonymous successor individual.
In the remaining part, we only discuss the completeness of the leaf ABox of RUN +{R(a,b)}.

By Theorem 3.4 we know that the only rule which could become applicable is the ∀+-
tableau rule. However, since we assume that R does not have a transitive subsuming
role (SHI-splittability of R) we can conclude by Proposition 3.10 that the ∀+-tableau
rule is not applicable either. The same argumentation as before (ALCHI) is true for
non-applicability of the ∀-tableau rule.

The leaf ABox of RUN +{R(a,b)} is Aleaf ∪ {R(a, b)}. It is easy to see that this addition
yields no immediate clash in Aleaf ∪ {R(a, b)}. Thus, RUN +{R(a,b)} is satisfying and

〈T,R, ↓R(a,b)
c,d (A) ∪ {¬C(e)} ∪ {R(a, b)}〉 is consistent.

Theorem 3.5 is the extension of Theorem 3.4 from ALCHI to SHI-ontologies.

3. MODULARIZATION 67

Theorem 3.5 (Decision Criteria for ABox Splits in SHI-ontologies):

Given a SHI-ontology O = 〈T,R,A〉 and an ABox split ↓R(a,b)
c,d , ↓R(a,b)

c,d is valid with
respect to O if R(a, b) is SHI-splittable with respect to O.

Proof of Theorem 3.5. By Lemma 3.2 we have soundness and by Lemma 3.12 we have
completeness.

In Example 3.12, we define an example ontology and then derive one intensional-based
ABox modularization step by step.

Example 3.12 (Example Ontology for Intensional Modularization):
The example ontology OEx3.12 = 〈TEx3.12,REx3.12,AEx3.12〉 is defined as follows

TEx3.12 = {
Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,
UndergraduateCourse v Course,

Course u Chair v ⊥,> v ∀takes.Course,
> v ∀teaches.Course, ∃memberOf.> v Professor

}

REx3.12 = {headOf v memberOf, teaches ≡ isTaughtBy−, T rans(suborgOf)}

AEx3.12 = {
Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

suborgOf(r, cs), suborgOf(cs, u1), suborgOf(ee, u1),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

Please note the absence of the concept inclusion axiom GraduateCourse v Course in
TEx3.12. Absence and presence of that axiom makes the impact of TBox modeling for
SHI-splittability clear. We add the axiom later again.

3. MODULARIZATION 68

The extended ∀-info structure for TEx3.12 and REx3.12 is:

extinfo∀TEx3.12,REx3.12(R) =



{¬Department,⊥} if R = headOf,

{Course} if R = isTaughtBy−,

{⊥} if R = memberOf,

{¬Course, Course} if R = takes,

{Course} if R = teaches,

∅ otherwise.

We have for instance ⊥ ∈ extinfo∀TEx3.12,REx3.12(headOf) because of the subsumption rela-
tionship between headOf and memberOf in the RBoxREx3.12. Given the extended ∀-info
structure for OEx3.12, we can decide SHI-splittability for each role assertion in AEx3.12.
For instance, the role assertion memberOf(eve, cs) is SHI-splittable because of

• extinfo∀TEx3.12,REx3.12(memberOf) = {⊥} and

• extinfo∀TEx3.12,REx3.12(memberOf
−) = {}.

The role assertion takes(noa, c3) is not SHI-splittable because of

• extinfo∀TEx3.12,REx3.12(takes) = {¬Course, Course} and

• extinfo∀TEx3.12,REx3.12(takes
−) = {}.

The problem is that the concept description ¬Course can be propagated via role de-
scription takes. Since we only know that individual c3 is an instance of the concept
description GraduateCourse, we cannot find an obvious propagation and neither a direct
clash. Please note that this role assertion would be SHI-splittable if we had a subsump-
tion axiom between GraduateCourse and Course. Then, the propagation of ¬Course
will be identified as a direct clash. Furthermore, all transitive suborgOf-role assertions
are not SHI-splittable.

In Figure 3.4, we show all role assertions in AEx3.12 and their SHI-splittability. All
SHI-splittable role assertions are shown with dashed lines and all SHI-unsplittable role
assertions are shown with normal lines.

In Figure 3.5, we show all role assertions in AEx3.12 and their SHI-splittability, if the con-
cept inclusion axiom GraduateCourse v Course was present. With the axiom included,
all role assertions except role assertions involving transitive roles in AEx3.12 become SHI-
splittable. This simple example shows how important the correct modeling of (maybe
obvious) domain knowledge can be for intensional modularization. Our experiments in
Chapter 6 show similar results for real world ontologies.

3. MODULARIZATION 69

Figure 3.4 SHI-splittability for Example 3.12

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf
headOf

memberOf

c4 c5

teaches
teaches teaches

takes takes takes takes takes

r

suborgOf
u1

suborgOf suborgOf

Informally speaking, a more detailed look at ontology OEx3.12 shows that the suborgOf-
role assertions have an influence on relation checking and retrieval only, since there is no
∀-propagation over suborgOf possible/required. Thus, for instance checking and retrieval,
even transitive role assertions could be split up here. We discuss this special case in
Chapter 6 again.

3.4 Concluding Remarks

In Chapter 3, we have defined approaches for modularization of the assertional part of
an ontology. First, a graph component-based modularization was proposed. In order to
improve the granularity of graph component-based modularizations, we have proposed
ABox splits. For ontologies with expressivity up to SHI we propose necessary criteria to
ensure soundness and completeness of reasoning after applying ABox splits.

We conjecture that ABox modularizations based on ABox splits can be extended to
SHIQ-ontologies, although our proof techniques are not directly applicable to descrip-
tion logics with cardinality restrictions. It is possible to perform a syntactical analysis
of the terminological knowledge to decide whether a role description can be target of a
maximum cardinality restriction. All role assertions with these role descriptions should
be kept unsplittable. This analysis is somehow similar to what we did with transitive
roles.

3. MODULARIZATION 70

Figure 3.5 SHI-splittability for Example 3.12 with subsumption

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf headOf
memberOf

c4 c5

teaches
teaches

teaches

takes takes takes takes takes

r

suborgOf

u1

suborgOf suborgOf

Extensions to SHOIQ could be possible by following the line of [RPZ10]. The idea
is to determine all individuals (nominals) in a TBox which are related to each other.
This can be done by syntactical analysis of the terminological part again. Given the
outcome one would need to avoid ABox splits over individuals which are related by TBox
axioms. However, there is no doubt that there is a lot of open work in order to extend
our modularization techniques to SHOIQ.

The effectiveness of our modularization techniques can be further improved. For instance,
TBox modularization techniques can contribute to smaller ABox modularizations. If we
are able to split up the TBox into different modules, we could create an ABox modulariza-
tion for each TBox module. Since each TBox module only contains a subset of assertions
from the original TBox, it is clear that more role assertions become SHI-splittable.
However, it needs to be shown, whether the overhead of several ABox modularizations in
parallel, one for each TBox module, actually pays off.

In the same line, if the set of possible query concepts for instance checking and retrieval
are known beforehand then it might be possible to further split up more role assertions.
This could be investigated in further work as well.

In the next chapter, we use ABox modularizations in order to define algorithms for efficient
instance checking and instance retrieval over SHI-ontologies.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 71

Chapter 4: Islands, Simulations and
One-Step Nodes

So far, we have introduced approaches to modularize the assertional part of an ontology.
In Chapter 4, we use these modularization techniques to define structures for efficient
reasoning over ontologies in the average case.

In Section 4.1, we define an optimized way to perform instance checking for a given indi-
vidual and a given atomic concept description. We formally define a subset of assertions of
an ABox, called individual island, which is worst-case sufficient in order to have sound and
complete instance checking. Informally speaking, we take the graph view of an ABox and,
starting from the given individual, follow all role assertions in the graph until we reach
a SHI-splittable role assertion. We show that this strategy is sufficient for entailment
of atomic concepts. We also propose a naive way for instance retrieval, by performing
instance checks on each island separately.

In Section 4.2, we discuss how to optimize instance retrieval over islands. The main
insight is that islands might be either equivalent or at least similar to each other. We
describe criteria for the similarity of islands, in order to reduce the number of instance
checks necessary for instance retrieval.

In Section 4.3, we introduce a new data structure called one-step nodes. These one-step
nodes are partially motivated by the need for efficient similarity measures for individual
islands. Furthermore, one-step nodes can be used as a kind of proxy to answer queries
immediately in a sound (and often complete) way.

In Section 4.4, we describe how individual islands, simulations, and one-step nodes can
be used for optimized instance checking and instance retrieval over ontologies.

This chapter is concluded with Section 4.5.

4.1 Islands for Individuals

In the following section, we define an optimized way to perform instance checking for
a given named individual and a given atomic concept description. Usually, instance
checking over ontologies is performed on the whole TBox, RBox, and ABox. Our goal
is to formally identify a subset of assertions, called individual island, which is worst-case
sufficient to perform sound and complete instance checking for a given individual. The
formal foundations for these subsets of assertions have been set up in Chapter 3, where
we show that, under some conditions, role assertions can be broken up while preserving

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 72

soundness and completeness of instance checking algorithms. First, in Definition 4.1, we
formally define an individual island candidate with an arbitrary subset of the original
ABox. The concrete computation of the subset is then further defined below.

Definition 4.1 (Individual Island Candidate):
Given an ontology O = 〈T,R,A〉 and a named individual a ∈ Ind(A), an individual
island candidate, is a tuple ISLa = 〈T,R,Aisl, a〉, such that Aisl ⊆ A.

We formally define interpretations and entailment over individual island candidates next.

Definition 4.2 (Individual Island Interpretation):
Given an individual island candidate ISLa = 〈T,R,Aisl, a〉 and an interpretation I, we
say that I is a model of ISLa , denoted I � ISLa , if I � 〈T,R,Aisl〉.
Definition 4.3 (Individual Island Candidate Entailment):
Given an individual island candidate ISLa = 〈T,R,Aisl, a〉, we say that ISLa entails
a concept assertion C(a), denoted 〈T,R,Aisl, a〉 � C(a), if for all interpretations I, we
have I � ISLa =⇒ I � C(a). We say that ISLa entails a role assertion R(a1, a2),
denoted 〈T,R,Aisl, a〉 � R(a1, a2), if for all interpretations I, we have I � ISLa =⇒
I � R(a1, a2).

Please note that entailment of concept and role assertions can be directly reformulated as
a decision problem over ontologies, i.e. 〈T,R,Aisl, a〉 � C(a) ⇐⇒ 〈T,R,Aisl〉 � C(a).
In order to evaluate the quality of an individual island candidate, we define soundness
and completeness criteria for individual island candidates.

Definition 4.4 (Soundness and Completeness for Island Candidates):
Given an ontologyO = 〈T,R,A〉 and an individual island candidate ISLa = 〈T,R,Aisl, a〉,
we say that ISLa is sound for instance checking in ontology O if for all atomic concept
descriptions C ∈ AtCon, ISLa � C(a) =⇒ 〈T,R,A〉 � C(a). ISLa is complete
for instance checking in ontology O if for all atomic concept descriptions C ∈ AtCon,
〈T,R,A〉 � C(a) =⇒ ISLa � C(a).

We say that ISLa is sound for relation checking in ontology O if for all role descriptions
R ∈ Rol and all individuals a2 ∈ NInd(A)

• ISLa � R(a, a2) =⇒ 〈T,R,A〉 � R(a, a2) and

• ISLa � R(a2, a) =⇒ 〈T,R,A〉 � R(a2, a).

ISLa is complete for relation checking in ontology O if for all role descriptions R ∈ Rol
and all individuals a2 ∈ NInd(A)

• 〈T,R,A〉 � R(a, a2) =⇒ ISLa � R(a, a2) and

• 〈T,R,A〉 � R(a2, a) =⇒ ISLa � R(a2, a).

We say that ISLa is sound for reasoning in ontology O if ISLa is sound for instance and
relation checking in O. We say that ISLa is complete for reasoning in ontology O if ISLa
is complete for instance and relation checking in O.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 73

Definition 4.5 (Individual Island):
Given an individual island candidate ISLa = 〈T,R,Aisl, a〉 for an ontologyO = 〈T,R,A〉,
ISLa is called individual island for O if ISLa is sound and complete for reasoning in O.

An individual island candidate becomes an individual island if it can be used for sound
and complete reasoning. It is easy to see that each individual island candidate is sound
for reasoning since it contains a subset of the original ABox assertions.

In Figure 4.1, we define an algorithm which computes an individual island starting from
a given named individual a. The set agenda manages the individuals which have to
be visited. The set seen collects already visited individuals. Individuals are visited if
they are connected by a chain of SHI-unsplittable role assertions to a. We add the role
assertions of all visited individuals and all concept assertions for visited individuals and
their direct neighbors. Please note that we do not explicitly perform ABox splits here,
i.e. we do not introduce renamings, but use the original individual names from the ABox.
The reason is that we focus on single islands here.

Figure 4.1 Algorithm for computing an individual island

Input: Ontology O = 〈T,R,A〉, individual a ∈ NInd(A)

Output: Individual island ISLa = 〈T,R,Aisl, a〉
Algorithm:

Let agenda = a

Let seen = ∅
Let Aisl = ∅
While agenda 6= ∅ do

Remove a1 from agenda
Add a1 to seen
Let Aisl = Aisl ∪ {C(a1) | C(a1) ∈ A}
For each R(a1, a2) ∈ A
Aisl = Aisl ∪ {R(a1, a2) ∈ A}
If R(a1, a2) ∈ A is SHI-splittable with respect to O then

Aisl = Aisl ∪ {C(a2) | C(a2) ∈ A}
else agenda = agenda ∪ ({a2} \ seen)

For each R(a2, a1) ∈ A
Aisl = Aisl ∪ {R(a2, a1) ∈ A}
If R(a2, a1) ∈ A is SHI-splittable with respect to O then

Aisl = Aisl ∪ {C(a2) | C(a2) ∈ A}
else agenda = agenda ∪ ({a2} \ seen)

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 74

Proposition 4.1 (Island Computation yields a Subset of the Input ABox):
Given an ontology O = 〈T,R,A〉 and an individual a ∈ NInd(A), the algorithm in
Figure 4.1 computes an individual island candidate ISLa = 〈T,R,Aisl, a〉 for a.

Proof of Proposition 4.1. Easy to see, since each addition to Aisl comes from A.

In Lemma 4.1, we show that the individual island of an individual suffices to decide
entailment of atomic concept assertions for an individual.

Lemma 4.1 (Individual Island Dependencies):
Given an ontology O = 〈T,R,A〉, for all named individuals a ∈ NInd(A) and atomic
concept descriptions C, if ISLa 2 C(a) then there exists no individual diff ∈ NInd(A),
such that ISLdiff � C(a).

Proof of Lemma 4.1. By contradiction: Assume that ISLa 2 C(a) and there exists an
individual island ISLdiff = 〈T,R,Adiff , diff〉, such that ISLdiff � C(a). It is easy to
see that diff 6= a and ISLdiff 6= ISLa (ABox is not structurally equivalent). We know
that all role assertions for individual a in ISLdiff are SHI-splittable. Therefore, the role
assertions for individual a can only be used to derive/propagate obvious concept descrip-
tions. Since all the individual islands are consistent initially, we must have ISLdiff � C(a)
only because of the presence of role assertions for individual a, concept assertions for a
and its direct neighbors, and TBox axioms. Since all these axioms occur in ISLa , we
must have ISLa � C(a) as well. Contradiction.

Below, we show in Theorem 4.1 that the computed set of assertions is indeed sufficient
for complete reasoning.

Theorem 4.1 (Island Computation yields Individual Island for Ontologies):
Given an ontology O = 〈T,R,A〉 and an individual a ∈ NInd(A), the algorithm in
Figure 4.1 computes an individual island ISLa = 〈T,R,Aisl, a〉 for a.

Proof of Theorem 4.1. The proof is done in four steps, following Definition 4.4:

• ISLa is sound for instance checking in O: We have to show that we have for all
atomic concept descriptions C ∈ AtCon that ISLa � C(a) =⇒ 〈T,R,A〉 � C(a).
Assuming ISLa � C(a), it follows that 〈T,R,Aisl〉 � C(a), and thus 〈T,R,Aisl ∪
{¬C(a)}〉 is inconsistent. By Proposition 4.1 we know that Aisl ∪ {¬C(a)} ⊆
A ∪ {¬C(a)}. We can conclude that 〈T,R,A ∪ {¬C(a)}〉 is inconsistent, and thus
〈T,R,A〉 � C(a).

• ISLa is sound for relation checking in O: We have to show that we have for all role
descriptions R ∈ Rol and all individuals a2 ∈ NInd(A) that

– ISLa � R(a, a2) =⇒ 〈T,R,A〉 � R(a, a2): By contraposition: We obtain
〈T,R,A〉 2 R(a, a2) =⇒ ISLa 2 R(a, a2). Assuming 〈T,R,A〉 2 R(a, a2),
we know that there exists an interpretation I, such that I � 〈T,R,A〉, but

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 75

I 2 R(a, a2). By Proposition 4.1, we know that Aisl ⊆ A, and thus I �
〈T,R,Aisl〉. By I 2 R(a, a2) we can then conclude that ISLa 2 R(a, a2).

– ISLa � R(a2, a) =⇒ 〈T,R,A〉 � R(a2, a): By contraposition: We obtain
〈T,R,A〉 2 R(a2, a) =⇒ ISLa 2 R(a2, a). Assuming 〈T,R,A〉 2 R(a2, a),
we know that there exists an interpretation I, such that I � 〈T,R,A〉, but
I 2 R(a2, a). By Proposition 4.1, we know that Aisl ⊆ A, and thus I �
〈T,R,Aisl〉. By I 2 R(a2, a) we can then conclude that ISLa 2 R(a2, a).

• ISLa is complete for instance checking in O: We have to show that for all atomic
concept descriptions C ∈ AtCon and all individuals a ∈ NInd(A) that 〈T,R,A〉 �
C(a) =⇒ ISLa � C(a). By contraposition: We have to show that ISLa 2 C(a)
=⇒ 〈T,R,A〉 2 C(a). Assume that ISLa 2 C(a). By Lemma 4.1, we know that

no other individual island entails C(a). Please note that the set of all individual
islands can be rewritten to a component-based ABox modularization. Thus, by
Definition 3.15 and Theorem 3.5, we know that 〈T,R,A〉 2 C(a).

• ISLa is complete for relation checking in O: We have to show that for all role
descriptions R ∈ Rol and all individuals a2 ∈ NInd(A) that

– 〈T,R,A〉 � R(a, a2) =⇒ ISLa � R(a, a2): There are three (combinations of)
reasons for entailment of a role assertion R(a, a2) in a SHI-ontology:

∗ R2(a, a2) ∈ A and O � R2 v R: It is easy to see that all potentially useful
role assertions R2(a, a2) are in Aisl, since, by the computation of islands
in Figure 4.1, all role assertions for a are added to Aisl.
∗ R2(a2, a) ∈ A and O � R−2 v R: It is easy to see that all potentially useful

role assertions R2(a2, a) are in Aisl, since, by the computation of islands
in Figure 4.1, all role assertions for a are added to Aisl.
∗ a and a2 are connected by a chain of (subroles of) transitive roles: By

the definition of valid ABox splits and SHI-splittability, each role asser-
tion with a transitive superrole connected to an individual is not SHI-
splittable, and thus will end up in the Aisl computed by the algorithm in
Figure 4.1.

– 〈T,R,A〉 � R(a2, a) =⇒ ISLa � R(a2, a): symmetric to the previous case.

In Figure 4.2, we show two example individual islands for individual mae and individual
c5 from Example 3.12.

In the following, we define similarity measures for individual islands. First, a special case
called island identity is introduced. Then we take a different view on similarity with a
measure called island similarity. We try to find similar individual islands, for which we
only have to perform one instance check after all.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 76

Figure 4.2 Example individual island for mae and c5 in Example 3.12

mae

ee

headOf

c4 c5

teaches

mae

zoesue

c5

teaches

takes

Definition 4.6 (Individual Island Identity):
Given an ontology O = 〈T,R,A〉, an individual island ISLa1 = 〈T,R,Aisl1 , a1〉 for indi-
vidual a1, and an individual island ISLa2 = 〈T,R,Aisl2 , a2〉 for individual a2, we say that
ISLa1 and ISLa2 are identical, if Aisl1 = Aisl2 .

It is easy to see that any application of the algorithm in Figure 4.1 yields the same
individual island. This is formally shown in Proposition 4.2.

Proposition 4.2 (Individual Islands Are Unique):
Given an ontology O = 〈T,R,A〉, an individual a ∈ NInd(A), and two individual islands
computed by the algorithm in Figure 4.1, both islands are identical.

Proof of Proposition 4.2. It is easy to see that by definition of the algorithm in Figure 4.1,
the values of T, R, and a for both islands are identical, since these structures are deter-
ministically added to the result island. Furthermore, the non-determinism introduced by
the for loops, i.e. the order of iterating the neighbors of individuals does only affect the
order adding ABox assertions to Aisl. The result ABox Aisl, as a set, is the same for any
execution of the extraction algorithm.

By uniqueness of individual islands, we refer to the individual island of a given named
individual of an ontology below.

We have shown that an individual island can be used for sound and complete instance
checks. In the average case, the size of the individual island (with respect to the number of
assertion in its ABox) is considerably smaller than the original ABox. In our experiments
the size is usually orders of magnitudes smaller. For qualitative and quantitative results,
we refer to Chapter 6.

In the following, we extend our island-based approach from instance checking to instance
retrieval. The first naive approach to solve an instance retrieval problem is to perform
instance checking for each named individual in the ABox by using its individual island. In
Definition 4.7, we define an individual island map, which assigns to each named individual
its individual island.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 77

Definition 4.7 (Individual Island Map):
Given an ontology O = 〈T,R,A〉, a function islandmapO is an individual island map for
O if islandmapO assigns the individual island ISLa to each individual a ∈ NInd(A).

In Definition 4.8, we define formal entailment of islands, and in Definition 4.9, we define the
formal criteria for soundness and completeness with respect to reasoning over individual
island maps.

Definition 4.8 (Individual Island Map Entailment):
Given an individual island map islandmapO , we say that islandmapO entails a con-
cept assertion C(a), denoted islandmapO � C(a), if islandmapO(a) � C(a). We say
that islandmapO entails a role assertion R(a1, a2), denoted islandmapO � R(a1, a2), if
islandmapO(a1) � R(a1, a2).

Definition 4.9 (General Soundness and Completeness of Individual Island Maps):
Given an ontology O = 〈T,R,A〉 and an individual island map islandmapO , we say
that islandmapO is sound for instance retrieval in ontology O if for all atomic concept
descriptions C ∈ AtCon and all individuals a ∈ NInd(A), islandmapO � C(a) =⇒
〈T,R,A〉 � C(a). islandmapO is complete for instance retrieval in ontology O if for all
atomic concept descriptions C ∈ AtCon and all individuals a ∈ NInd(A), 〈T,R,A〉 �
C(a) =⇒ islandmapO � C(a).

We say that islandmapO is sound for relation retrieval in ontology O if for all role de-
scriptions R ∈ Rol and all pairs of individuals a1, a2 ∈ NInd(A), islandmapO � R(a1, a2)
=⇒ 〈T,R,A〉 � R(a1, a1). islandmapO is complete for relation retrieval in ontology
O if for all role descriptions R ∈ Rol and all pairs of individuals a1, a2 ∈ NInd(A),
〈T,R,A〉 � R(a1, a2) =⇒ islandmapO � R(a1, a2).

We say that islandmapO is sound for reasoning in ontology O if islandmapO is sound for
instance and relation retrieval in O. We say that islandmapO is complete for reasoning
in ontology O if islandmapO is complete for instance and relation retrieval in O.

In Theorem 4.2, we show that an individual island map for an ontology O is indeed
sound and complete for reasoning in O. The proof of Theorem 4.2 is straightforward by
reduction of instance retrieval over named individuals to instance checking.

Theorem 4.2 (Individual Island Maps are Sound and Complete for SHI-Ontologies):
Given an ontology O = 〈T,R,A〉 and an individual island map islandmapO , islandmapO

is sound and complete for reasoning in ontology O.

Proof of Theorem 4.2. By Theorem 4.1 and the fact that islandmapO is a total function.

The individual island map allows optimized instance checking, but can still be too naive
for instance retrieval since we have to perform instance checks for each named individual
in the ontology. In the following section we discuss how to further optimize instance
retrieval over individual islands.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 78

4.2 Simulation over Individual Islands

The computation of individual islands already has reduced the size of the (main memory)
input for reasoning over ontologies. Another possibility for optimization is the reduction
of the number of instance tests. In the literature, this approach is known, for instance,
as binary instance retrieval [HM08].

In order to perform instance retrieval over n individuals, the idea is to group individuals
for a combined instance check. For each individual a in a group g, the concept assertion
axiom ¬C(a) is added to the ontology. If the ontology is still consistent, then no individual
from group g is an instance of concept description C. If the ontology is inconsistent, then
at least one individual from the group g must be an instance of C. The approach is called
binary instance retrieval, because one tries to split up sets of individuals step by step,
until one has a consistent ontology or only one individual is left. The critical point here is
obviously the process of grouping of individuals. This problem is closely related to finding
a similarity measure for individuals.

From the computation of individual islands in Figure 4.1, it is clear that the individual
islands for two individuals have the same individual island ABox if both individuals are
connected by a (chain of) SHI-unsplittable role assertion(s). However, this approach
might be too naive for instance retrieval, especially if the number of individuals shared
by one individual island is quite small.

Therefore, we propose a similarity measure. Graphs of different individual island ABoxes
might be

”
structurally equivalent“, and thus, entail the same set of atomic concept de-

scriptions for the root node (individual). This idea is formalized below. First, we define
a graph view of individual islands.

Definition 4.10 (Individual Island Graph):
Given an ontology O = 〈T,R,A〉 and an individual island ISLa = 〈T,R,Aisl, a〉, the in-
dividual island graph (for ISLa) is a tuple IIGa = 〈N,E, φ, σ, root〉, such that 〈N,E, φ, σ〉
is the ABox graph of Aisl and root = a.

Proposition 4.3 (Individual Island Graphs Are Unique):
Given a SHI-ontology O = 〈T,R,A〉 and two individual island graphs for an individual
a ∈ NInd(A), 〈N1,E1, φ1, σ1, root1〉 and 〈N2,E2, φ2, σ2, root2〉, both individual island
graphs are identical.

Proof of Proposition 4.3. Easy to see, in particular, we have root1 = root2, since, by
Definition 4.10, we have two islands for the same individual.

Given the result in Proposition 4.3, we refer to the individual island graph of an individual
island in the remaining part of this thesis. Our similarity measure over individual islands
is based on the definition of homomorphism over labeled graphs. First, we define the
notion of successors in Definition 4.11.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 79

Definition 4.11 (ABox Graph Neighbor):
Given an ABox graph GA = 〈N,E, φ, σ〉 and an individual node a1 ∈ N, then an indi-

vidual node a2 ∈ N is called ρ-neighbor of a1, denoted a1
ρ−→GA a2, if

ρ ={R | R ∈ σ(a1, a2)} ∪ {R− | R ∈ σ(a2, a1)}.

Given an individual island graph IIGa1 = 〈N,E, φ, σ, root〉 and an individual node a1 ∈
N, then an individual node a2 ∈ N is called ρ-neighbor of a1, denoted a1

ρ−→IIGa a2, if
a2 ∈ N is a ρ-neighbor of a1 with respect to 〈N,E, φ, σ〉.

The formal notion of homomorphisms between individual island graphs is introduced in
Definition 4.12. The criterion for homomorphisms is that the set of assigned concept
descriptions is equal for nodes and their mapped nodes, and furthermore, that all nodes
have the same kind of successors as their mapped nodes.

Definition 4.12 (Individual Island Graph Homomorphism):
Given an individual island graph IIGa1 = 〈N1,E1, φ1, σ1, root1〉 and an individual island
graph IIGa2 = 〈N2,E2, φ2, σ2, root2〉, an individual island graph homomorphism from
IIGa1 to IIGa2 is a total function θ : N1 → N2, such that

• θ(root1) = root2,

• for all nodes n ∈ N1, we have φ1(n) = φ2(θ(n)), and

• ∀n1, n1∗ ∈ N1 we have that, if n1
ρ−→IIGa1 n1∗, then θ(n1)

ρ−→IIGa2 θ(n1∗).

We use the definition of homomorphisms over individual islands graphs to formally define
similarity over individual island graphs.

Definition 4.13 (Individual Island Graph Similarity):
Given an individual island graph IIGa1 = 〈N1,E1, φ1, σ1, root1〉 and an individual island
graph IIGa2 = 〈N2,E2, φ2, σ2, root2〉, we say that IIGa1 and IIGa2 are similar if there
exists a homomorphism from IIGa1 to IIGa2 and there exists a homomorphism from
IIGa2 to IIGa1 .

In Figure 4.3, we show two similar individual islands, one individual island for individual
c1 and one individual island for individual c4 from Example 3.12. In addition, we show
a homomorphism from IIGc1 to IIGc4 , indicated by dashed lines, and a homomorphism
from IIGc4 to IIGc1 , indicated by dotted lines

For the sake of completeness, in Definition 4.14, we formally extend our similarity measure
over individual islands.

Definition 4.14 (Individual Island Similarity):
Given an individual island ISLa1 with IIGa1 and an individual island ISLa2 with IIGa2 ,
we say that ISLa1 and ISLa2 are similar if IIGa1 and IIGa2 are similar.

In the following, we show that similar individual islands indeed entail the same set of
atomic concept descriptions for their root nodes. To show this, we formally define the

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 80

Figure 4.3 Example individual islands for c1 and c4 (plus homomorphism) in Exam-
ple 3.12

sue

c4

teaches

takes

mae

eanani

c1

teaches

takes

ann

outcome of applying a homomorphism to an interpretation in Definition 4.15, and show
in Lemma 4.2 that using the homomorphism a model for an individual island can be
rewritten to a model for each similar individual island.

Definition 4.15 (Homomorphism Interpretation):
Given an interpretation I = 〈∆I , ·I〉 and a homomorphism θ, the homomorphism inter-
pretation of I under θ, denoted with Iθ, is defined as the interpretation Iθ = 〈∆Iθ , ·Iθ〉,
such that:

• ∆Iθ = ∆I and

• ·Iθ(x) = 
·I(x) if x ∈ CN,

·I(x) if x ∈ RN,

·I(θ(x)) if x ∈ IN.

Lemma 4.2 (Homomorphism Interpretation on Individual Islands):
Given two individual islands ISLa1 = 〈T,R,Aisl1 , a1〉 and ISLa2 = 〈T,R,Aisl2 , a2〉, a
homomorphism θ from ISLa2 to ISLa1 , and an interpretation I = 〈∆I , ·I〉, such that
I � ISLa1 , we have Iθ � ISLa2 .

Proof of Lemma 4.2. We know that Iθ � 〈T,R,Aisl2 〉 if Iθ is a model for T, R, and Aisl2 .
This is shown for each component:

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 81

• Iθ � T: By contradiction: Assume there exists a concept inclusion axiom C1 v
C2 ∈ T, such that Iθ 2 C1 v C2. From I � T, we know that for all δ ∈ ∆I , we
have δ ∈ CI1 =⇒ δ ∈ CI2 . Since, by Definition 4.15, we have ∆I = ∆Iθ and an
unchanged set of concept description labels for each domain element, we conclude
that δ ∈ CIθ1 =⇒ δ ∈ CIθ2 for all δ ∈ ∆Iθ . Contradiction with Iθ 2 C1 v C2.

• Iθ � R: We need to show that Iθ satisfies all role inclusions axioms and role
transitivity axioms in R.

– Role inclusion axioms: By contradiction: Assume there exists a role inclusion
axiom R1 v R2, such that Iθ 2 R1 v R2. Thus, we have that RIθ1 * RIθ2 ,
which means that there exists two domain elements δ1, δ2 ∈ ∆Iθ , such that
(δ1, δ2) ∈ RIθ1 and (δ1, δ2) /∈ RIθ2 . By Definition 4.15, we know that δ1, δ2 ∈ ∆I .
Since the role description labels are unchanged by Definition 4.15, we have that
(δ1, δ2) ∈ RI1 and (δ1, δ2) /∈ RI2 . Contradiction, since we assume that I � R
and thus I � R1 v R2.

– Role transitivity axioms: Same argumentation as before, since the transfor-
mation from Definition 4.15 does not change the role labels of any domain
element, transitive connections are retained.

• Iθ � Aisl2 : We need to show that Iθ satisfies all concept assertion axioms and role
assertion axioms in Aisl2 . By contradiction:

– Assume Iθ 2 C(a3), such that C(a3) ∈ Aisl2 : We know aIθ3 /∈ CIθ , and thus,
by Definition 4.15, (θ(a3))

I /∈ CI . This yields I 2 C(θ(a3)). However, by
Definition 4.12, we know C(θ(a3)) ∈ Aisl1 and hence, by I � Aisl1 , we must have
I � C(θ(a3)). Contradiction.

– Assume Iθ 2 R(a3, a4), such that R(a3, a4) ∈ Aisl2 : We know (aIθ3 , a
Iθ
4) /∈

RIθ , and thus, by Definition 4.15, ((θ(a3))
I , (θ(a4))

I) /∈ RI . This yields I 2
R(θ(a3), θ(a4)). However, by Definition 4.12, we know R(θ(a3), θ(a4)) ∈ Aisl1

and hence, by I � Aisl1 , we must have I � R(θ(a3), θ(a4)). Contradiction.

In Lemma 4.3, we show that we can perform instance checking on one individual island
and then, informally speaking, transfer the results to all similar individual islands.

Lemma 4.3 (Homomorphic Individual Islands Instance Checking):
Given two individual islands, ISLa1 = 〈T,R,Aisl1 , a1〉 and ISLa2 = 〈T,R,Aisl2 , a2〉, such
that ISLa1 is similar to ISLa2 , then, for all atomic concept descriptions C, ISLa1 � C(a1)
=⇒ ISLa2 � C(a2).

Proof of Lemma 4.3. By contraposition: We have to show that ISLa2 2 C(a2) =⇒
ISLa1 2 C(a1). Assume that ISLa2 2 C(a2). Thus, there exists an interpretation I, such
that I � ISLa2 and I 2 C(a2). Without loss of generality, let θ be any homomorphism

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 82

between ISLa1 and ISLa2 . By Lemma 4.2, we know that Iθ � ISLa1 since ISLa1 is
similar to ISLa2 . Then it is easy to see that Iθ 2 C(a1), since by Definition 4.12 we have
θ(a1) = a2. Thus ISLa1 2 C(a1).

In Theorem 4.3, we summarize the main result about individual island similarity.

Theorem 4.3 (Similar Individual Islands Instance Checking):
Given two similar individual islands ISLa1 and ISLa2 , for all atomic concept descriptions
C, ISLa1 � C(a1) if and only if ISLa2 � C(a2).

Proof of Theorem 4.3. By application of Lemma 4.3.

In the following, we discuss the computation of similarity of islands. In general, the prob-
lem of deciding whether a homomorphism between two graphs exists is a hard problem.
If the decision whether two graphs are similar becomes too complex, then the similarity
measure over islands does not have any performance gain. Although we already have one
important advantage, since we know, during homomorphism search for individual islands,
that one root node should be mapped to the other root node, we propose another idea
how to further overcome performance problems as follows.

We try to approximate (non-)similarity of islands with a set of criteria. We focus on
domain-specific approaches. First, we introduce a simple integrity constraint for similar
islands.

Proposition 4.4 (Similar Islands Integrity Constraint):
Given an individual island ISLa1 = 〈T,R,Aisl1 , a1〉 and an individual island ISLa2 =
〈T,R,Aisl2 , a2〉, we have that ISLa1 and ISLa2 are similar to each other only if

{C | C(a1) ∈ Aisl1 } = {C | C(a2) ∈ Aisl2 }.

Proof of Proposition 4.4. If ISLa1 and ISLa2 are similar to each other, then there exists a
homomorphism θ from ISLa1 to ISLa2 , and vice versa. By Definition 4.12, we must have
θ(a1) = a2 and therefore φ1(a1) = φ2(a2). By construction of individual island graphs in
Definition 4.10, we can conclude that {C | C(a1) ∈ Aisl1 } = {C | C(a2) ∈ Aisl2 }.

In practice, the integrity constraint of Proposition 4.4 rejects lots of islands immediately
as dissimilar, because their root individuals are labeled with different concept sets. The
integrity constraint can be further extended by making sure that, in addition, both root
nodes have the same kinds of direct successors. This idea is further discussed below, in
Section 4.3.

Before we continue, we would like to relate similarity of individual islands with the results
from [DFK+09]. The similarity of individual islands gives rise to a similarity relation
among individuals. Usually, reasoning about similar individuals can be performed on one
representative individual directly.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 83

In [DFK+09], the idea is to initially merge all individuals which have the same set of
concept assertions. Once this merging yields inconsistencies - because the individuals
turn out to be dissimilar - then the individual merging is undone. The similarity criteria
in [DFK+09] is (for the sake of heuristics) chosen to be based on the set of concept
assertions for each individual. Our individual island similarity approach can be seen as
a generalization of these results. We have shown a formal foundation on why sets of
individuals are similar and how to use the similarity during reasoning. Furthermore,
we do not need a refinement step, since we identify dissimilar individuals as dissimilar
immediately.

4.3 One-Step Nodes

In this section, we discuss a data structure which allows us to quickly decide, whether two
individual islands are similar or not. Although we can use the homomorphism approach
directly, we would like to introduce a simpler data structure. To be more precise, the
data structure is used to detect several dissimilar islands immediately, and only if the
data structure fails to show dissimilarity, then we apply further techniques to find a
homomorphism.

The basic idea is to define a notion of so-called pseudo node neighbors, which represent the
directly asserted successors of a named individual in an ABox. Then, for each individual in
the ABox, the information about all pseudo node successors plus the information about
the original individual is combined, to obtain so-called one-step nodes. In addition to
similarity detection, these one-step nodes can be used to answer instance checking and
instance retrieval queries directly.

First, in Definition 4.16, we formally define a pseudo node successor for an individual
with respect to an ABox.

Definition 4.16 (Pseudo Node Successor):
Given an ABox A, a pseudo node successor of an individual a ∈ NInd(A) is a pair
pnsa,A = 〈rs, cs〉, such that ∃a2 ∈ Ind(A) with

1. ∀R ∈ rs.(R(a, a2) ∈ A ∨R−(a2, a) ∈ A),

2. ∀C ∈ cs.C(a2) ∈ A, and

3. rs and cs are maximal.

The third criteria (maximality) is important to ensure that for each pair of named indi-
viduals 〈a, a2〉 ∈ NInd(A)×NInd(A), we have that individual a2 is exactly one pseudo
node successor for individual a.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 84

Example 4.1 (Example for Pseudo Node Successors):
Given an ontology OEx4.1 = 〈TEx4.1,REx4.1,AEx4.1〉 as follows

TEx4.1 = {GraduateStudent v Student}
REx4.1 = {headOf v memberOf}
AEx4.1 = {

Department(ee), P rofessor(mae),

UndergraduateCourse(c4), UndergraduateCourse(c5),

Student(sam), Student(sue), Student(zoe),

headOf(mae, ee),

teaches(mae, c4), teaches(mae, c5),

takes(sam, c4), takes(sue, c5), takes(zoe, c5)

},

the following are pseudo node successors:

• pnsmae,AEx4.11 = 〈{headOf}, {Department}〉,

• pnsmae,AEx4.12 = 〈{teaches}, {UndergraduateCourse}〉, and

• pnsc5,AEx4.13 = 〈{teaches−}, {Professor}〉.

Next, we combine all pseudo node successors of a named individual a in an ABox A, the
reflexive role assertions for a, and the directly asserted concepts of a, in order to create a
summarization representative, called one-step node.

Definition 4.17 (One-Step Node):
Given an ontology O = 〈T,R,A〉 and an individual a ∈ NInd(A), the one-step node of
a for A, denoted osna,A , is a tuple osna,A = 〈rootconset, reflset,pnsset〉, such that
rootconset = {C|C(a) ∈ A}, reflset = {R|R(a, a) ∈ A ∨ R−(a, a) ∈ A}, and pnsset
is the set of all pseudo node successors of individual a. The set of all possible one-step
nodes is denoted OSN.

Example 4.2 (Example for One-Step Nodes):
Given ontology OEx4.1 = 〈TEx4.1,REx4.1,AEx4.1〉 from Example 4.1, one-step nodes are:

osnmae,AEx4.1 =〈{Professor}, ∅, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉

osnc5,AEx4.1 =〈{Student}, ∅,
{〈{takes−}, {Student}〉, 〈{teaches−}, {Professor}〉}〉.

Definition 4.18 (One-Step Node Similarity):
Two individuals a1 and a2 are called one-step node similar for an ABox A if osna1,A =
osna2,A .

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 85

In order to apply tableau-based reasoning techniques to one-step nodes, we need to have
some kind of serialization for one-step nodes into an ontology-based representation. This
serialization is formally defined in Definition 4.19 for pseudo node successors and in Defini-
tion 4.20 for one-step nodes. Please note that we cannot use the original individual names
of the pseudo node successors. Our intention is to abstract away from these individuals
names for the sake of similarity among one-step nodes.

Definition 4.19 (Pseudo Node Successor ABox Realization):
Given a pseudo node successor pnsa,A = 〈rs, cs〉 and an individual a2, the ABox realiza-
tion of pnsa,A with respect to a2, denoted ABoxa2(pnsa,A), is

ABoxa2(pnsa,A) =
⋃
C∈cs

{C(a2)} ∪
⋃
R∈rs

{R(a, a2)}.

Definition 4.20 (One-Step Node ABox Realization):
Given a one-step node osna,A = 〈rootconset, reflset,pnsset〉, let a1, ..., an be individ-
uals distinct with a, such that n = |pnsset|. Furthermore, let f be a bijective function
from pnsset to {a1, ..., an}. An ABox realization of osna,A , denoted ABox(osna,A), is

ABox(osna,A) ={C(a) | C ∈ rootconset}∪
{R(a, a) | R ∈ reflset}∪⋃
pnsa,A∈pnsset

ABoxf(pns
a,A)(pnsa,A).

Example 4.3 (Example for One-Step Node Serialization):
An example serialization for the one-step node osnmae,AEx4.1 from Example 4.2 is

ABox(osnmae,AEx4.1) = {Professor(mae),
headOf(mae, newa), teaches(mae, newb)}.

Based on this one-step node serialization technique, we define entailment over one-step
nodes in Definition 4.21 and soundness and completeness with respect to instance checking
in Definition 4.22.

Definition 4.21 (One-Step Node Entailment):
Given a TBox T, a RBox R, and a one-step node osna,A for an individual a ∈ NInd(A),
we say that osna,A entails a concept assertion C(a), denoted osna,A �T,R C(a), if we
〈T,R, ABox(osna,A)〉 � C(a). If T and R are clear from the context, then both are
omitted and we denote concept assertion entailment with osna,A � C(a).

Definition 4.22 (Instance Checking Soundness and Completeness for One-Step Nodes):
Given an ontologyO = 〈T,R,A〉 and a one-step node osna,A for individual a ∈ NInd(A),
we say that osna,A is sound for instance checking in ontology O if for all atomic concept
descriptions C ∈ AtCon, osna,A � C(a) =⇒ 〈T,R,A〉 � C(a). We say that osna,A

is complete for instance checking in ontology O if for all atomic concept descriptions
C ∈ AtCon, 〈T,R,A〉 � C(a) =⇒ osna,A � C(a).

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 86

The important instrument to prove soundness and completeness is the definition of a
homomorphism into the source ABox. This homomorphism is formally defined in Defini-
tion 4.23.

Definition 4.23 (One-Step Node Homomorphism):
Given

• an ABox A and its ABox graph GA = 〈N1,E1, φ1, σ1〉,

• an individual a ∈ NInd(A), and

• a one-step node osna,A with GABox(osna,A) = 〈N2,E2, φ2, σ2〉,

a one-step node homomorphism from osna,A to A is a total function θ : N2 → N1, such
that

• θ(a) = a,

• for all nodes n ∈ N2, we have φ2(n) = φ1(θ(n)), and

• ∀n1, n1∗ ∈ N2, we have that if n1
ρ−→GABox(osna,A) n1∗, then θ(n1)

ρ−→GA θ(n1∗).

In Lemma 4.4, we show that, whenever such a homomorphism exists, then any model of
the source ontology can be rewritten (see Definition 4.15) to a model over the one-step
node serialization.

Lemma 4.4 (Homomorphism Interpretation on One-Step Nodes):
Given

• an ontology O = 〈T,R,A〉,

• a one-step node osna,A for an individual a ∈ NInd(A),

• a homomorphism θ from osna,A to A, and

• an interpretation I = 〈∆I , ·I〉, such that I � O,

Iθ � 〈T,R, ABox(osna,A)〉.

Proof of Lemma 4.4. We have to show that Iθ � 〈T,R, ABox(osna,A)〉. This entailment
is true if Iθ is a model for T, R, and ABox(osna,A). It is easily seen that the proof can
be shown in the same style as the proof for Lemma 4.2.

Using Lemma 4.4, it is straightforward to prove soundness of instance checking in Lemma 4.5.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 87

Lemma 4.5 (One-Step Node Entailment is Sound for Instance Checking):
Given an ontology O = 〈T,R,A〉 and a one-step node osna,A for an individual a ∈
NInd(A), osna,A is sound for instance checking in ontology O.

Proof of Lemma 4.5. We have to show that osna,A � C(a) =⇒ 〈T,R,A〉 � C(a).
By contraposition: We obtain 〈T,R,A〉 2 C(a) =⇒ osna,A 2 C(a). We assume
〈T,R,A〉 2 C(a). Thus, there exists an interpretation I, such that I � 〈T,R,A〉, but
I 2 C(a). By Definition 4.16, Definition 4.17 and Definition 4.20, there must exist
a homomorphism θ from ABox(osna,A) to A. By Lemma 4.4, we can conclude that
Iθ � osna,A . By Iθ 2 C(a) (which follows from I 2 C(a), θ(a) = a, and the unchanged
concept labels of the domain elements of I in Iθ), we obtain osna,A 2 C(a).

It is clear that not every one-step node is complete for instance checking. However, in case
the one-step node coincides with the individual island, then we can show that instance
checking over the one-step node is even complete. For this, we define so-called splittable
one-step nodes, for which each role assertion to a direct neighbor is SHI-splittable.

Definition 4.24 (Splittable One-Step Node):
Given an ontology O = 〈T,R,A〉, an individual a ∈ NInd(A), and a one-step node
osna,A = 〈rootconset, reflset,pnsset〉, we say that osna,A is splittable if for each
〈rs, cs〉 ∈ pnsset, a fresh individual a2 /∈ Ind(A), and for each R ∈ rs, the role as-
sertion axiom R(a, a2) is SHI-splittable with respect to ontology O2 =〈T,R,A2〉 with

A2 ={C(a) | C ∈ rootconset} ∪ {C(a2) | C ∈ cs} ∪ {R(a, a2)}.

In Lemma 4.6 and Proposition 4.5, we show the actual proofs of completeness, by using
coincidence of one-step nodes with individual islands.

Lemma 4.6 (Splittable One-Step Node Entailment Is Complete for Instance Checking):
Given an ontology O = 〈T,R,A〉 and an individual a ∈ NInd(A) with a splittable
one-step node osna,A = 〈rootconset, reflset,pnsset〉, osna,A is complete for instance
checking in ontology O.

Proof of Lemma 4.6. We have to show that, given a concept description C ∈ AtCon, we
have 〈T,R,A〉 � C(a) =⇒ osna,A � C(a). Assuming 〈T,R,A〉 � C(a), by Theorem 4.1,
we know that ISLa � C(a) from 〈T,R,A〉 � C(a). Thus, it is enough to show that
ISLa � C(a) =⇒ osna,A � C(a). By contraposition: We obtain osna,A 2 C(a) =⇒
ISLa 2 C(a). Assuming osna,A 2 C(a), we know that there exists an interpretation I,
such that I � osna,A and I 2 C(a). By Definition 4.17 and since osna,A is splittable,
there exists a homomorphism θ from ABox(osna,A) to Aisl of ISLa , and vice versa. Since
there exists a θ from ABox(osna,A) to Aisl, we know that Iθ � ISLa . From Iθ 2 C(a)
(unchanged concept sets for domain elements), we can conclude ISLa 2 C(a).

One-step nodes cannot only be used as a compact representation for instance checking
and retrieval, but also for the problem of relation checking. Since all direct neighbors

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 88

are represented as pseudo node successors, we can easily define a special completeness
criterion for relation entailment in Proposition 4.5. In addition, such a criterion can be
important as a filter when answering conjunctive queries [GHLS07].

Proposition 4.5 (One-Step Node Entailment is Complete for Relation Checking):
Given

• an ontology O = 〈T,R,A〉,

• a role description R,

• two individuals a1 ∈ NInd(A) and a2 ∈ NInd(A),

• a one-step node osna1,A for individual a1, and

• a one-step node osna2,A for individual a2,

O � R(a1, a2) =⇒ (osna1,A � ∃R.>(a1) ∧ osna2,A � ∃R−.>(a2)).

Proof of Proposition 4.5. Easy to see, since all role assertions for a1 and its direct neigh-
bors are represented as a pseudo node successor.

In Example 4.4 we show two one step nodes and their intuition.

Example 4.4 (Example for One-Step Node Relation Entailment):
Given the two one-step nodes osnmae,AEx4.1 and osnc5,AEx4.1 , as defined in

osnmae,AEx4.1 =〈{Professor}, ∅, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉

osnc5,AEx4.1 =〈{Student}, ∅,
{〈{takes−}, {Student}〉, 〈{teaches−}, {Professor}〉}〉,

we have for instance that individual mae must have at least one teaches-successor and
individual c5 cannot have any named teaches-successor (but has a teaches-predecessor).

We come back to the original intention of one-step nodes, the use as integrity check for
individual island similarity. In Proposition 4.6, we show that two individual islands are
only similar to each other if the one-step nodes for their individuals are similar.

Definition 4.25 (Similar One-Step Nodes):
Given two one-step nodes osna1,A = 〈rootconset1, reflset1,pnsset1〉 and osna2,A =
〈rootconset2, reflset2,pnsset2〉, we say that osna1,A is similar to osna2,A if and only
if rootconset1 = rootconset2, reflset1 = reflset2, and pnsset1 = pnsset2.

Proposition 4.6 (Similar Islands Integrity with One-Step Nodes):
Given an individual island ISLa1 = 〈T,R,Aisl1 , a1〉 and an individual island ISLa2 =
〈T,R,Aisl2 , a2〉, plus the one-step nodes osna1,A = 〈rootconset1, reflset1,pnsset1〉 and
osna2,A = 〈rootconset2, reflset2,pnsset2〉, we have that ISLa1 and ISLa2 are similar
to each other only if osna1,A and osna2,A are similar to each other.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 89

Proof of Proposition 4.6. If ISLa1 and ISLa2 are similar to each other, then there exists
a homomorphism θ from ISLa1 to ISLa2 , and vice versa. By Definition 4.12, it is easy
to see that we have rootconset1 = rootconset2, reflset1 = reflset2, and pnsset1 =
pnsset2.

Given Proposition 4.6, we can avoid computing homomorphisms for pairs of individual
islands (individuals), if their one-step nodes are not similar.

4.4 Reasoning Optimization

In the following, we look at an example to discuss the optimization of instance checking
and instance retrieval by the techniques introduced in this chapter.

Example 4.5 (Example Ontology for Island Reasoning):
The example ontology OEx4.5 = 〈TEx4.5,REx4.5,AEx4.5〉 is defined as follows

TEx4.5 = {
Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,
GraduateStudent v ∀takes.GraduateCourse,
UndergraduateCourse u Chair v ⊥, GraduateCourse u Chair v ⊥,
UndergraduateCourse v Course,GraduateCourse v Course,

Student u Chair v ⊥,> v ∀takes.Course
}

REx4.5 = {headOf v memberOf, teaches ≡ isTaughtBy−}
AEx4.5 = {

Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 90

Figure 4.4 Individual relationships and splittability for Example 4.5

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf
headOf

memberOf

c4 c5

teaches
teaches teaches

takes takes takes takes takes

The extended ∀-info structure for TEx4.5 and REx4.5 is:

extinfo∀TEx4.5,REx4.5(R) =


{¬Department} if R = headOf,

{¬Course, Course,GraduateCourse} if R = takes,

∅ otherwise.

The relationships among individuals of AEx4.5 are depicted in Figure 4.4. Please note
that only role assertions are used to build the graph, since we only want to emphasize the
relationship between the ABox individuals. SHI-splittable role assertions are indicated
with a dashed line. For instance, the role assertion takes(ani, c1) is not SHI-splittable
because the concept description GraduateCourse can be propagated via role description
takes. Please note that all these role assertions would be SHI-splittable if we had a
disjointness axiom for GraduateCourse and UndergraduateCourse. However, to show
the behavior of reasoning in case of SHI-unsplittability, we omitted the disjointness axiom
here.

4.4.1 Instance Checking

For instance checking, we are given an ontologyO = 〈T,R,A〉, an atomic concept descrip-
tion C, and an individual a ∈ NInd(A), and we would like to find out, whether O � C(a).
The process of instance checking is done in two steps. First, we take the one-step node
osna,A of individual a and check, whether osna,A � C(a). If yes, then we are done, since
by Lemma 4.5, we know that one-step nodes are sound for instance checking with respect
to the input ontology O. If osna,A 2 C(a), then we distinguish two cases. First, if osna,A

is splittable, then we know, by Lemma 4.6, that we have O 2 C(a). Otherwise, if osna,A

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 91

is not splittable, then we load the individual island ISLa for individual a and perform
instance checking over ISLa .

As an example for instance checking, we would like to check, whether the individual ann
is an instance of concept description Chair with respect to the ontology OEx4.5. The
one-step node osnann,AEx4.5 is defined as follows:

osnann,AEx4.5 =〈{Professor}, ∅, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉.

One possible one-step node realization of osnann,AEx4.5 is

ABox(osnann,AEx4.5) = {Professor(ann), headOf(ann, a1), teaches(ann, a2)}.

It is easy to see that we have 〈T,R, ABox(osnann,AEx4.5)〉 � Chair(ann), and thus we
have ABox(osnann,AEx4.5) �TEx4.5,REx4.5 Chair(ann) and by soundness of one-step node
reasoning OEx4.5 � Chair(ann).

As a second example for instance checking, we would like to check, whether the individual
c1 is an instance of concept description Chair with respect to the ontology OEx4.5. The
one-step node osnc1,AEx4.5 is as follows:

osnc1,AEx4.5 =〈{UndergraduateCourse}, ∅, {〈{teaches−}, {Professor}〉,
〈{takes−}, {Student}〉}〉.

One possible one-step node realization of osnc1,AEx4.5 is

ABox(osnc1,AEx4.5) = {UndergraduateCourse(c1), teaches(a1, c1,), takes(a2, c1)}.

It is easy to see that we have 〈T,R, ABox(osnc1,AEx4.5)〉 2 Chair(c1). In this case, the one-
step node does not indicate entailment, and since osnc1,AEx4.5 is not a splittable one-step
node, we should refer to the individual island of individual c1. However, another simple
instance check can help us to avoid using the individual island here. It is easy to see that we
have 〈T,R, ABox(osnc1,AEx4.5)〉 � ¬Chair(c1), by disjointness of UndergraduateCourse
and Chair. And this means, by Lemma 4.5, that we have OEx4.5 � ¬Chair(c1). Thus,
in some cases, the

”
negated instance check“ for one-step nodes can also help us to avoid

performing reasoning on (more complex) individual islands. However, if the negated
instance check fails, and the one-step node is unsplittable, then we really have to use
sound and complete individual islands.

4.4.2 Instance Retrieval

In the following, we discuss instance retrieval optimization over ontologies. This is a direct
extension of instance checking, by using one-step node similarity in addition. The first
naive approach would be to apply instance checking techniques to each named individual

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 92

in the ABox. For ontology OEx4.5, we would have to perform 17 instance checks in that
case. However, in Section 4.3, we have introduced the notion of one-step node similarity.
The idea is that similar one-step nodes entail the same set of concept descriptions for the
named root individual. Given the set of all one-step nodes for an input ontology, we can
reduce the number of instance checks.

For example, assume that we would like to perform instance retrieval for the concept
description Chair with respect to ontology OEx4.5. First, we retrieve the one-step node
for each named individual in AEx4.5. The resulting one-step nodes are shown below:

osnani,AEx4.5 = osnsam,AEx4.5 = osnsue,AEx4.5 = osnzoe,AEx4.5 = 〈{Student}, ∅,
{〈{takes}, {UndergraduateCourse}〉}〉

osnean,AEx4.5 = 〈{Student}, ∅,
{〈{takes}, {UndergraduateCourse}〉, 〈{takes}, {GraduateCourse}〉}〉

osneva,AEx4.5 = osnnoa,AEx4.5 = 〈{Student}, ∅,
{〈{takes}, {GraduateCourse}〉}〉

osnc1,AEx4.5 = osnc4,AEx4.5 = osnc5,AEx4.5 = 〈{UndergraduateCourse}, ∅,
{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnc2,AEx4.5 = osnc3,AEx4.5 = 〈{GraduateCourse}, ∅,
{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnann,AEx4.5 = osnmae,AEx4.5 = 〈{Professor}, ∅,
{〈{headOf}, {Department}〉, 〈{teaches−}, {UndergraduateCourse}〉}〉

osneve,AEx4.5 = 〈{Professor}, ∅,
{〈{memberOf}, {Department}〉, 〈{teaches−}, {GraduateCourse}〉}〉

osncs,AEx4.5 = 〈{Department}, ∅,
{〈{headOf−}, {Professor}〉, 〈{memberOf−}, {Professor}〉}〉

osnee,AEx4.5 = 〈{Department}, ∅,
{〈{headOf−}, {Professor}〉}〉.

4. ISLANDS, SIMULATIONS AND ONE-STEP NODES 93

Instead of 17 instance checks for 17 named individuals, we are left with 9 instance checks
over 9 similar one-step nodes. For ontologies with a larger assertional part, similarity of
one-step nodes reduces the number of instance checks usually by orders of magnitudes.
These results are shown in Chapter 6.

By performing instance checks for concept description Chair over the 9 one-step nodes, we
can conclude that individual ann and individual mae are instances of Chair. Additional
instance checks for concept description ¬Chair yields that c1, c2, c3, c4, c5, ani, ean,
eva, noa, sam, sue and zoe are instances of concept description ¬Chair, and therefore
are not instances of concept description Chair if the input ontology is consistent. After
one-step node retrieval, we are left to check three individuals for being an instance of
concept description Chair, or not: cs, ee and eve. Usually, one would have to perform
instance checks over the three individual islands. However, since the corresponding one-
step nodes for these three individuals are splittable, we do not need to do any further
checks, since the one-step nodes are already sound and complete for reasoning in OEx4.5.

4.5 Concluding Remarks

Given our results about ABox modularizations from Chapter 3, we have defined an opti-
mized way to perform instance checking for a given individual and a given atomic concept
description. Given an input individual, we extract a subset of ABox assertions, such that
the subset is worst-case sufficient to ensure sound and complete instance checking.

Tableau-based description logic reasoning systems are usually implemented based on effi-
cient main memory data structures. Our island extraction can release the main memory
burden for solving the instance checking problem. The average size of individual islands
is evaluated in Chapter 6.

In addition, we have discussed how to optimize instance retrieval over islands. We have in-
troduced a similarity measure, in order to reduce the number of instance checks necessary
to perform instance retrieval.

In order to determine individual island similarity, we have introduced a data structure
called one-step nodes. These one-step nodes can be used as a kind of proxy to answer
queries immediately in a sound (and in many cases complete) way, as well.

5. UPDATES 94

Chapter 5: Updates

In order to support stream-like processing of ontologies, incremental reasoning and updat-
able data structures will become increasingly important in the future. In the literature,
there exist different semantics for updates over description logic ontologies. This is similar
to research results in the belief revision literature, see for instance [Neb94], where the au-
thors differentiate between belief bases and belief sets. For ontologies, there exists a lot of
research about semantic updates, addressing directly the underlying model(s). Here, we
focus on so-called syntactic updates in the style of [HWPS06]. Syntactic updates do not
address the model(s) directly, but only the assertions and axioms describing the model(s).

In Section 5.1, we formalize a set of syntactic update operations over ontologies. In
particular, we define operations to add and retract assertions from the TBox, RBox, and
ABox.

In Section 5.2, we define an abstract split decision system, which helps us to decide SHI-
splittability with respect to ontologies. This abstract split decision system is motivated by
the data structures introduced for more efficient instance checking and instance retrieval
in Chapter 4.

In Section 5.3, we define updatable data structures for reasoning over updatable ontolo-
gies. In detail, we introduce sound structures for TBox classification and TBox disjoint-
ness, complete structures for ∀-propagation management and role management. These
structures are gradually adjusted under syntactic ontology updates.

Based on the updatable structures from Section 5.3, we propose a concrete implementation
of a split decision system in Section 5.4.

In Section 5.5, we use the above results to propose an updatable one-step node map and
an updatable island map.

This chapter is concluded with Section 5.6.

5.1 Syntactic Update Definitions

In the following, we define updates on ontologies. We distinguish updates of axioms in
TBoxes, RBoxes, and ABoxes, and define an update for each kind of axiom by using
update functions over ontologies. The input of an update function is an ontology, and the
output is a modified ontology, such that either an assertion is added or retracted. The
intuition of these update definitions is not hard to understand. However, in order to to
ease proofs and implementation of our algorithms, we provide rigorous definitions at this
point.

5. UPDATES 95

The definition of updates as a function is convenient, since we would like to compose
several updates and could even discuss histories, i.e., past states of an ontology. We start
with the addition and retraction of ABox assertion axioms in Definition 5.1, 5.2 and 5.3.

Definition 5.1 (Syntactic ABox Concept Assertion Addition, Retraction and Update):
Given a concept assertion Cu(au), a syntactic ABox concept assertion update is a function
upd : SO → SO, such that

• upd = upd ‖+Cu(au)‖ : SO → SO (called syntactic ABox concept assertion addi-
tion), defined as upd ‖+Cu(au)‖ (〈T,R,A〉) = 〈T,R,A ∪ {Cu(au)}〉, or

• upd = upd ‖−Cu(au)‖ : SO → SO (called syntactic ABox concept assertion retrac-
tion), defined as upd ‖−Cu(au)‖ (〈T,R,A〉) = 〈T,R,A \ {Cu(au)}〉.

In Definition 5.2 and below, we use upd as a placeholder for any update function.

Definition 5.2 (Syntactic ABox Role Assertion Addition, Retraction and Update):
Given a role assertion Ru(au1, au2), a syntactic ABox role assertion update is a function
upd : SO → SO, such that

• upd = upd ‖+Ru(au1, au2)‖ : SO → SO (called syntactic ABox role assertion addi-
tion), defined as upd ‖+Ru(au1, au2)‖ (〈T,R,A〉) = 〈T,R,A ∪ {Ru(au1, au2)}〉, or

• upd = upd ‖−Ru(au1, au2)‖ : SO → SO (called syntactic ABox role assertion re-
traction), defined as upd ‖−Ru(au1, au2)‖ (〈T,R,A〉) = 〈T,R,A \ {Ru(au1, au2)}〉.

Definition 5.3 (Syntactic ABox Update):
A syntactic ABox update is a function upd : SO → SO, such that upd is one of
upd ‖+Cu(au)‖, upd ‖−Cu(au)‖, upd ‖+Ru(au1, au2)‖, or upd ‖−Ru(au1, au2)‖.

In Example 5.1, we show the effect of syntactic ABox updates in practice.

Example 5.1 (Syntactic ABox Update):
Assume that we are given an ontology O = 〈T,R,A〉, with

A = {UndergraduateStudent(ani), takes(ani, c1), Course(c1)}.

If ani graduates, i.e. we have to represent that she is not an UndergraduateStudent any-
more, but a GraduateStudent, we can perform the following two syntactic ABox updates
on O: upd ‖−UndergraduateStudent(ani)‖ and upd ‖+GraduateStudent(ani)‖. The
ontology obtained by applying both updates is 〈T,R,A2〉 =

upd ‖+GraduateStudent(ani)‖ (upd ‖−UndergraduateStudent(ani)‖ (O)),

where

A2 = {GraduateStudent(ani), takes(ani, c1), Course(c1)}.

5. UPDATES 96

Next, we define update functions on the RBox of an ontology. In Definition 5.4, role
inclusion updates are introduced and in Definition 5.5 we define role transitivity updates.
These two updates are summarized as syntactic RBox updates in Definition 5.6.

Definition 5.4 (Syntactic RBox Role Inclusion Addition, Retraction and Update):
Given a role inclusion Ru1 v Ru2, a syntactic RBox role inclusion update is a function
upd : SO → SO, such that

• upd = upd ‖+Ru1 v Ru2‖ : SO → SO (called syntactic RBox role inclusion addi-
tion), defined as upd ‖+Ru1 v Ru2‖ (〈T,R,A〉) = 〈T,R ∪ {Ru1 v Ru2},A〉, or

• upd = upd ‖−Ru1 v Ru2‖ : SO → SO (called syntactic RBox role inclusion retrac-
tion), defined as upd ‖−Ru1 v Ru2‖ (〈T,R,A〉) = 〈T,R \ {Ru1 v Ru2},A〉.

Definition 5.5 (Syntactic RBox Role Transitivity Addition, Retraction and Update):
A syntactic RBox role transitivity update is a function upd : SO → SO, such that

• upd = upd ‖+Trans(Ru)‖ : SO → SO (called syntactic RBox role transitivity
addition), defined as upd ‖+Trans(Ru)‖ (〈T,R,A〉) = 〈T,R∪{Trans(Ru)},A〉, or

• upd = upd ‖−Trans(Ru)‖ : SO → SO (called syntactic RBox role transitivity
retraction), defined as upd ‖−Trans(Ru)‖ (〈T,R,A〉) = 〈T,R \ {Trans(Ru)},A〉.

Definition 5.6 (Syntactic RBox Update):
A syntactic RBox update is a function upd : SO → SO, such that upd is one of:
upd ‖+Ru1 v Ru2‖, upd ‖−Ru1 v Ru2‖, upd ‖+Trans(Ru)‖, or upd ‖−Trans(Ru)‖.

We proceed with the formal definition of update functions on the TBox of an ontology.
In Definition 5.7, TBox concept inclusion updates are introduced.

Definition 5.7 (Syntactic TBox Concept Inclusion Addition, Retraction and Update):
Given a general concept inclusion Cu1 v Cu2, a syntactic TBox concept inclusion update
is a function upd : SO → SO, such that

• upd = upd ‖+Cu1 v Cu2‖ : SO → SO (called syntactic TBox concept inclusion
addition), defined as upd ‖+Cu1 v Cu2‖ (〈T,R,A〉) = 〈T ∪ {Cu1 v Cu2},R,A〉, or

• upd = upd ‖−Cu1 v Cu2‖ : SO → SO (called syntactic TBox concept inclusion
retraction), defined as upd ‖−Cu1 v Cu2‖ (〈T,R,A〉) = 〈T \ {Cu1 v Cu2},R,A〉.

Definition 5.8 (Syntactic TBox Update):
A syntactic TBox update is a function upd : SO → SO, such that the update function
upd is either upd ‖+Cu1 v Cu2‖ or upd ‖−Cu1 v Cu2‖.

In Definition 5.9, we combine all updates to syntactic ontology updates.

Definition 5.9 (Syntactic Ontology Update):
A syntactic ontology update is a function upd : SO → SO, such that upd is a syntactic
TBox update, a syntactic RBox update, or a syntactic ABox update.

5. UPDATES 97

Definition 5.10 (Applicability of Syntactic Ontology Updates):
A syntactic ontology update upd : SO → SO is applicable to an ontology O if O 6=
upd (O).

By Definition 5.10, we only allow updates which really change the ontology. For instance,
removal of an axiom is only allowed if the axiom is present in O, and addition of an axiom
is only allowed if the axiom is not yet present in O. In the following we only consider
applicable syntactic ontology updates.

Given the syntactic ontology updates introduced above we define a so-called ontology
state. Informally speaking, an ontology state describes a snapshot of an ontology, together
with the information how that snapshot was obtained from an empty ontology, i.e. by a
history of syntactic ontology updates. Although we do not make explicit use of the
history below and hence could define our algorithms directly over ontologies, we think
that the abstraction towards an ontology state points out that: in general we would like
touch/look at the assertions in an ontology anymore, but define (general) data structures
only based on an initial (empty) ontology and the update functions. This makes the
design of incremental algorithms easier.

Definition 5.11 (Ontology State):
An ontology state OS = 〈O, history 〉 is inductively defined as follows:

1. The pair 〈O, history 〉 is an initial ontology state if O = 〈∅, ∅, ∅〉 and history = � is
an empty list of syntactic ontology updates.

2. The pair 〈upd (O), upd ◦ history 〉 is an ontology state if

• 〈O, history 〉 is an ontology state and

• upd is a syntactic ontology update applicable to O.

In Definition 5.12, we extend syntactic update functions from ontologies to ontology states.

Definition 5.12 (Ontology State Update):
Given an ontology state 〈O, history 〉 and a syntactic ontology update upd , an ontology
state update, denoted 〈O, history 〉 ↑ upd , is defined as

〈O, history 〉 ↑ upd = 〈upd (O), upd ◦ history 〉.

In Example 5.2, we show two examples for ontology states.

Example 5.2 (Ontology State):
Given the ontology O = 〈T,R,A〉, where

T ={> v ∀memberOf−.P erson},
R ={headOf v memberOf},
A ={headOf(ann, cs), Department(cs)},

the following are ontology states:

5. UPDATES 98

• 〈O, history1〉, such that

history1 =upd ‖+Department(cs)‖
◦ upd ‖+headOf v memberOf‖
◦ upd

∥∥+> v ∀memberOf−.P erson
∥∥

◦ upd ‖+headOf(ann, cs)‖
◦�

• 〈O, history2〉, such that

history2 =upd ‖+Department(cs)‖
◦ upd ‖−Professor(ann)‖
◦ upd ‖+headOf v memberOf‖
◦ upd

∥∥+> v ∀memberOf−.P erson
∥∥

◦ upd ‖+headOf(ann, cs)‖
◦ upd ‖+Professor(ann)‖
◦�.

5.2 Abstract Split Decision System

In Chapter 4, we identified a set of data structures for optimized instance checking and
retrieval. The two main structures are

• one-step node maps for fast query answering/individual island similarity measure
and

• individual island maps for fast main memory instance checking.

In addition, we recapitulate auxiliary structures for the determination of SHI-splittability
as follows:

• TBox classification structure,

• TBox disjointness structure,

• ∀-info structure,

• RBox classification structure, and

• RBox transitivity structure.

5. UPDATES 99

In the following, we explicitly define these data structures over ontology states and then
propose updatable instantiations. We start with the TBox classification structure. The
definition of SHI-splittable ABox splits, in Definition 3.18, shows that we actually need a
sound TBox classification structure, i.e. it is only important that we can show that all used
concept subsumptions really hold in an ontology state. If we disregard some subsumptions,
then we only miss additional ABox splits. Therefore, and since the computation of a sound
TBox classification can be done more efficiently, we focus on the computation of a sound
TBox classification only.

Definition 5.13 (Sound TBox Classification Structure):
Given an ontology state OS = 〈O, history 〉, a set αstcsOS ⊆ GCIs is a sound TBox classifi-
cation structure for OS if

C1 v C2 ∈ αstcsOS =⇒ O � C1 v C2.

We only need soundness for the TBox disjointness structure as well. If we disregard some
entailed TBox disjointness axioms, we might miss some valid ABox splits. However, for
the sake of efficiency, it might be worth in practice. We investigate this assumption below.
Here, we just state that the TBox disjointness structure should be sound. Of course, to
detect more ABox splits, in an actual implementation one could enforce completeness as
well.

Definition 5.14 (Sound TBox Disjointness Structure):
Given an ontology state OS = 〈O, history 〉, a set αstdsOS ⊆ Con ×Con is a sound TBox
disjointness structure for OS if (C1, C2) ∈ αstdsOS =⇒ O � C1 � C2.

In Chapter 4, the basic structure for managing propagations in the description logic ALC
is the ∀-info structure. In opposition to the TBox structures above, here completeness is
important. If the ∀-info structure has more entries than necessary, then we might only
miss some ABox splits again because we apply the check for too many role assertions in the
ABox. A perfect ∀-info structure would be sound and complete (and easy to compute) .
But in order to follow the style of sound or complete data structures, we focus on complete
∀-info structures.

Definition 5.15 (Complete ∀-info Structure):
Given an ontology state OS = 〈〈T,R,A〉, history 〉, a set αcfisOS ⊆ Rol×Con is a complete

∀-info structure for OS if ∀R.C ∈ clos (T) =⇒ (R,C) ∈ αcfisOS .

Since we only want to have a complete ∀-info structure, we can also release soundness for
our definitions of RBox classification and transitivity, which are used for the extension to
the description logic SHI.

Definition 5.16 (Complete RBox Classification Structure):
Given an ontology state OS = 〈〈T,R,A〉, history 〉, a set αcrcsOS ⊆ Rol×Rol is a complete
RBox classification structure for OS if rc〈T,R,A〉 ⊆ αcrcsOS .

Definition 5.17 (Complete RBox Transitivity Structure):
Given an ontology state OS = 〈〈T,R,A〉, history 〉, a set αcrtsOS ⊆ Rol×Rol is a complete
RBox transitivity structure for OS if rtc〈T,R,A〉 ⊆ αcrtsOS .

5. UPDATES 100

Last, but not least, we define the main updatable structures for split management in
ontology states: one-step node maps and island maps.

Definition 5.18 (Sound and Complete One-Step Node Map Structure):
Given an ontology state OS = 〈〈T,R,A〉, history 〉, a function fOS : IN → OSN is a
sound and complete one-step node map structure for OS if a ∈ NInd(A) ⇐⇒ fOS (a) =
osna,A .

The complete split dependency structure defined in Definition 5.19 below is an interme-
diate structure which manages all dependencies between individuals in an ontology, i.e.
a pair of two individuals is in the split dependency structure if these two individuals are
related by a SHI-unsplittable role assertion in the ontology state.

Definition 5.19 (Complete Split Dependency Structure):
Given an ontology state OS = 〈〈T,R,A〉, history 〉, a set SOS ⊆ IN × IN is a complete
split dependency structure for OS if ∀a1, a2.((∃R ∈ Rol.(R(a1, a2) ∈ A ∧R(a1, a2) is not
SHI-splittable with respect to 〈T,R,A〉)) =⇒ (a1, a2) ∈ SOS).

Definition 5.20 (Sound and Complete Island Map Structure):
Given an ontology state OS = 〈〈T,R,A〉, history 〉, a function fOS : IN → ℘(IN) is
a sound and complete island map structure for OS if for each named individual a ∈
NInd(A), 〈T,R,LoadAs (fOS (a)), a〉 is an individual island for 〈T,R,A〉, where

LoadAs (inds) ={C(a) ∈ A | a ∈ inds}∪
{R(a1, a2) ∈ A | {a1, a2} ⊆ inds}.

In Chapter 3, we have defined SHI-splittability with respect to ontologies. In this chapter,
we have introduced abstractions, by allowing for incompleteness and unsoundness, for the
sake of efficiency. In the following, we define SHI-splittability with respect to these
incomplete or unsound data structures, and show that each split in our abstraction is also
a split with respect to the ontology. First, we define an abstract split decision system,
which is constructed from the basic abstract data structures introduced above.

Definition 5.21 (Abstract Split Decision System):
Given

• an ontology state OS = 〈〈T,R,A〉, history 〉,

• a sound TBox classification structure αstcsOS for OS ,

• a sound TBox disjointness structure αstdsOS for OS ,

• a complete ∀-info structure αcfisOS for,

• a complete RBox classification structure αcrcsOS for OS , and

• a complete RBox transitivity structure αcrtsOS for OS ,

the tuple asdsOS = 〈αstcsOS , αstdsOS , α
cfis
OS , α

crcs
OS , α

crts
OS ,A〉 is called abstract split decision system

for OS .

5. UPDATES 101

For an abstract split decision system, we define split-safe role assertions in Definition 5.22.
The intuition is that any split-safe role assertion for an ontology state is for sure SHI-
splittable with respect to the underlying ontology. In addition, there might exist other
SHI-splittable role assertions which are not identified as split-safe, due to unsoundness
or incompleteness. Definition 5.22, follows the pattern introduced in Definition 3.18.

Definition 5.22 (Split-Safe Role Assertion):
Given an abstract split decision system asdsOS = 〈αstcsOS , αstdsOS , α

cfis
OS , α

crcs
OS , α

crts
OS ,A〉 for an

ontology state OS = 〈〈T,R,A〉, history 〉 and a role assertion R(a1, a2) ∈ A, the role
assertion R(a1, a2) is called split-safe with respect to asdsOS if

1. for each (R,R2) ∈ αcrcsOS , R2 /∈ αcrtsOS ,

2. for each (R2, C) ∈ αcfisOS , such that (R,R2) ∈ αcrcsOS ,

• C = ⊥ or

• there exists a concept description C2, such that C2(a2) ∈ A and C2 v C ∈ αstcsOS
or

• there exists a concept description C2, such that C2(a2) ∈ A and (C2, C) ∈ αstdsOS ,

and

3. for each (R2, C) ∈ αcfisOS , such that (R−, R2) ∈ αcrcsOS ,

• C = ⊥ or

• there exists a concept description C2, such that C2(a1) ∈ A and C2 v C ∈ αstcsOS
or

• there exists a concept description C2, such that C2(a1) ∈ A and (C2, C) ∈ αstdsOS .

In Lemma 5.1, we show that any split-safe role assertion for an abstract split decision
system is SHI-splittable with respect to the underlying ontology.

Lemma 5.1 (Split Safe Role Assertion):
Given an abstract split decision system asdsOS = 〈αstcsOS , αstdsOS , α

cfis
OS , α

crcs
OS , α

crts
OS ,A〉 for an

ontology state OS = 〈〈T,R,A〉, history 〉 and a role assertion R(a1, a2) ∈ A, R(a1, a2) is
SHI-splittable with respect to 〈T,R,A〉 if R(a1, a2) is split-safe with respect to asdsOS .

Proof of Lemma 5.1. By contradiction: Assume that role assertion R(a1, a2) is split-safe
with respect to asdsOS and R(a1, a2) is not SHI-splittable with respect to 〈T,R,A〉.
Then, by Definition 3.18, we have three cases:

1. There exists a role R2, such that O � R v R2 and R2 is transitive with respect to
O:

Since R(a1, a2) is split-safe with respect to asdsOS , and αcrtsOS is a complete RBox
transitivity structure for OS , we conclude that R cannot have a subsuming transi-
tive role. Contradiction.

5. UPDATES 102

2. There exists a C ∈ extinfo∀T,R(R) such that

• C 6= ⊥ and

• for all concept descriptions C2, such that C2(a2) ∈ A, we have T 2 C2 v C and

• for all concept descriptions C2, such that C2(a2) ∈ A, we have T 2 CuC2 v ⊥.

Since αcfisOS is a complete ∀-info structure for OS and αcrcsOS is a complete RBox

classification structure forOS , there must exist aR2 ∈ Rol such that (R2, C) ∈ αcfisOS
and (R,R2) ∈ αcrcsOS . However, since R(a1, a2) is split-safe with respect to asdsOS ,
we have that

• C = ⊥ or

• there exists a concept description C2, such that C2(a2) ∈ A and C2 v C ∈ αstcsOS
or

• there exists a concept description C2, such that C2(a2) ∈ A and (C2, C) ∈ αstdsOS .

Contradiction by soundness of αstcsOS and αstdsOS .

3. There exists a C ∈ extinfo∀T,R(R−) such that

• C 6= ⊥ and

• for all concept descriptions C2, such that C2(a1) ∈ A, we have T 2 C2 v C and

• for all concept descriptions C2, such that C2(a1) ∈ A, we have T 2 CuC2 v ⊥.

Since αcfisOS is a complete ∀-info structure for OS and αcrcsOS is a complete RBox

classification structure forOS , there must exist aR2 ∈ Rol such that (R2, C) ∈ αcfisOS
and (R−, R2) ∈ αcrcsOS . However, since R(a1, a2) is split-safe with respect to asdsOS ,
we have that

• C = ⊥ or

• there exists a concept description C2, such that C2(a1) ∈ A and C2 v C ∈ αstcsOS
or

• there exists a concept description C2, such that C2(a1) ∈ A and (C2, C) ∈ αstdsOS .

Contradiction by soundness of αstcsOS and αstdsOS .

5.3 Syntactic Update Structures

We have defined necessary criteria for all update structures over ontology states, and in
the remaining part we formally define these structures in an updatable way. The idea
usually is to define a structure for the empty ontology state and then define a transition
for each syntactic ontology update.

5. UPDATES 103

5.3.1 Updatable Sound TBox Classification Structure

In the following, we define an updatable sound TBox classification structure. The idea is
to read off all obvious subsumptions from a general concept inclusion axiom, without the
need for complex reasoning. In Definition 5.23, we define how to determine these obvious
classification consequences of a concept inclusion.

Definition 5.23 (Obvious Classification Consequences of a General Concept Inclusion):
Given a general concept inclusion C1 v C2, the set of obvious classification consequences,
denoted occ [C1 v C2], is defined as a set, such that C3 v C4 ∈ occ [C1 v C2] if and only
if

• C1 = Ca,1t ...tCa,l and C2 = Cb,1u ...uCb,m, and ∃i ∈ {1, ..., l}.∃j ∈ {1, ...,m}.C3 =
Ca,i ∧ C4 = Cb,j or

• C1 = Ca,1t ...tCa,l and C2 = Cb,1u ...uCb,m, and ∃i ∈ {1, ..., l}.∃j ∈ {1, ...,m}.C4 =
nnf(¬Ca,i) ∧ C3 = nnf(¬Cb,j).

Please note that in Definition 5.23, we also include the case of conjunctions/disjunctions
with one element. In general, it is possible to capture more sound consequences without
additional reasoning, by more sophisticated syntactical analysis, for instance anytime
classification shown in [SBK+07]. Thus, more sophisticated algorithms can increase the
number of SHI-splittable role assertions. However, in our work we have followed the
simple approach for determining obvious classification consequences.

An example for obvious classification consequences of a general concept inclusion is given
in Example 5.3.

Example 5.3 (Obvious Classification Consequences):
We have, for instance,

occ [Chair v Person u ∃headOf.Department] =

{
Chair v Person,¬Person v ¬Chair,
Chair v ∃headOf.Department,
∀headOf.¬Department v ¬Chair
}.

In Proposition 5.2, we show that the results from Definition 5.23 are indeed sound con-
sequences. But first, we show in Proposition 5.1 that interpretations carry over from
concept inclusions to their obvious classification consequences.

Proposition 5.1 (Obvious Classification Consequences of a General Concept Inclusion):
Given a general concept inclusion C1 v C2 and the set of obvious classification con-
sequences occ [C1 v C2] for C1 v C2, for every interpretation I and each C3 v C4 ∈
occ [C1 v C2], I � C1 v C2 =⇒ I � C3 v C4.

5. UPDATES 104

Proof of Proposition 5.1. Since C3 v C4 ∈ occ [C1 v C2], we can distinguish two cases:

• C1 = Ca,1t ...tCa,l and C2 = Cb,1u ...uCb,m, and ∃i ∈ {1, ..., l}.∃j ∈ {1, ...,m}.C3 =
Ca,i ∧ C4 = Cb,j: By I � C1 v C2, we have (Ca,1 t ... t Ca,l)I ⊆ (Cb,1 u ... u Cb,l)I .
Since we have C3 = Ca,i and C4 =Cb,j, we can conclude CI3 ⊆ CI4 . This yields
I � C3 v C4.

• C1 = Ca,1t ...tCa,l and C2 = Cb,1u ...uCb,m, and ∃i ∈ {1, ..., l}.∃j ∈ {1, ...,m}.C4 =
nnf(¬Ca,i) ∧ C3 = nnf(¬Cb,j): Analogously to the first case.

Proposition 5.2 (Obvious Classification Consequences of an Ontology):
Given an ontology O =〈T,R,A〉, for all C1 v C2 ∈ T and for all C3 v C4 ∈ occ [C1 v C2],
O � C3 v C4.

Proof of Proposition 5.2. For each interpretation I, such that I � O, we know that for
each C1 v C2 ∈ T, we have I � C1 v C2, and by Proposition 5.1, we know that
I � C3 v C4 for each C3 v C4 ∈ occ [C1 v C2]. Thus, for each C3 v C4 ∈ occ [C1 v C2],
we have O � C3 v C4.

In the following, we use obvious classification consequences of a concept inclusion axiom
to define an updatable sound TBox classification structure. First, we define an updatable
sound classification snapshot in Definition 5.24.

For the initial ontology state there exist no classification consequences, and for each
syntactic TBox update we adjust the sound classification snapshot. Please note the usage
of multisets in Definition 5.24. This is necessary, since some concept subsumptions might
be entailed by several TBox inclusion axioms, which has to be taken into account when
retracting a TBox axiom from the ontology state, i.e. we have to know, whether an obvious
classification consequence is still entailed, or not.

Definition 5.24 (Updatable Sound TBox Classification Snapshot):
An updatable sound TBox classification snapshot for an ontology state OS = 〈O, history 〉,
denoted stclss [OS], is a multiset over GCIs, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let stclss [〈〈∅, ∅, ∅〉,�〉] = Ξ.

• Given an updatable sound TBox classification snapshot stclss [〈O, history 〉] and an
syntactic ontology update upd , we let stclss [OS ↑ upd] =

stclss [〈O, history 〉]
⊎
↑MS (occ [Cu1 v Cu2]) if upd = upd ‖+Cu1 v Cu2‖ ,

stclss [〈O, history 〉] \ ↑MS (occ [Cu1 v Cu2]) if upd = upd ‖−Cu1 v Cu2‖ ,
stclss [〈O, history 〉] otherwise.

5. UPDATES 105

Lemma 5.2 (Updatable Sound TBox Classification Snapshot Constraint):
Given an updatable sound TBox classification snapshot stclss [〈〈T,R,A〉, history 〉] and
two atomic concept descriptions C1 ∈ AtCon and C2 ∈ AtCon,

stclss [〈〈T,R,A〉, history 〉] (C1 v C2) =

|{C3 v C4 ∈ T | C1 v C2 ∈ occ [C3 v C4]}|.

Proof of Lemma 5.2. By induction on the construction of ontology states:

• Induction base:

For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, we have stclss [〈〈∅, ∅, ∅〉,�〉] = Ξ, and
thus stclss [〈〈T,R,A〉, history 〉] (C1 v C2) = 0. Since T = ∅, we have |{C3 v C4 ∈
T | C1 v C2 ∈ occ [C3 v C4]}| = 0. We obtain 0 = 0, for each C1 and C2.

• Induction step:

Let 〈T2,R2,A2〉 = upd (〈T,R,A〉). We assume

stclss [〈〈T,R,A〉, history 〉] (C1 v C2) =

|{C3 v C4 ∈ T | C1 v C2 ∈ occ [C3 v C4]}|

and have to show that

stclss [〈upd (〈T,R,A〉), upd ◦ history 〉] (C1 v C2) =

|{C3 v C4 ∈ T2 | C1 v C2 ∈ occ [C3 v C4]}|.

It is easily seen by case analysis on the syntactic ontology updates that the value
of stclss [〈upd (〈T,R,A〉), upd ◦ history 〉] (C1 v C2) is increased (or decreased) by
one, whenever a new general concept inclusion axiom entails C1 v C2 as an obvious
classification consequence, by Proposition 5.2. The same argumentation is true for
syntactic TBox retractions.

Given a sound TBox classification snapshot, we would like to define an updatable sound
TBox classification over ontology states. Formally, we compute the transitive closure over
all obvious classification consequences and adapt the transitive closure during updates,
e.g., if a new general concept inclusion is added, we saturate the transitive closure. In
order to keep the transitive closure updatable we need some kind of dependency structure
to keep track which obvious classification consequences are used for computing transitive
conclusions. This is formally defined in Definition 5.25.

Definition 5.25 (Updatable Sound TBox Classification Structure):
An updatable sound TBox classification structure for an ontology state OS , denoted βstcsOS ,
is a function βstcsOS : GCIs → ℘(GCIs), defined inductively as follows:

5. UPDATES 106

Figure 5.1 Updating sound TBox classification structures

Input: Updatable sound TBox classification structure βstcsOS and an syntactic ontology
update upd

Output: βstcsOS↑upd

Algorithm:

Let βstcsOS↑upd = βstcsOS
Let minus =↓MS (stclss [OS])\ ↓MS (stclss [OS ↑ upd])

Let plus =↓MS (stclss [OS ↑ upd])\ ↓MS (stclss [OS])

For C1 v C2 ∈minus do

Set βstcsOS↑upd (C3 v C4) = n.d., if C1 v C2 ∈ βstcsOS↑upd (C3 v C4)

For C1 v C2 ∈ plus do

Set βstcsOS↑upd (C1 v C2) = {C1 v C2}
While there exists three concept descriptions C1, C2, C3, and ya ⊆ ℘(GCIs), and

yb ⊆ ℘(GCIs), such that βstcsOS↑upd (C1 v C2) = xa, β
stcs
OS↑upd (C2 v C3) = xb and

C1 v C3 /∈ FD(βstcsOS↑upd),

Set βstcsOS↑upd (C1 v C3) = xa ∪ xb

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βstcsOS = ∅.

• For each other ontology state, βstcsOS is computed as in Figure 5.1.

The algorithm in Figure 5.1 can be explained as follows. First, the set of new and obso-
lete classification consequences is computed, respectively, and stored in the sets plus and
minus. All inferred general inclusion axioms depending on obsolete classification conse-
quences are removed and the new basic classification consequences are added. At last, a
saturation phase is executed, which completes the transitive closure over the remaining
obvious classification consequences.

In Proposition 5.3, we show that the updatable sound TBox classification structure from
Definition 5.25 can be used as a sound TBox classification structure for each ontology
state.

Proposition 5.3 (Updatable Sound TBox Classification Structure):
For each ontology state OS , the set FD(βstcsOS) is a sound TBox classification structure
for OS .

Proof of Proposition 5.3. We have to show that for all ontology states OS = 〈O, history 〉,
we have C1 v C2 ∈ FD(βstcsOS) =⇒ O � C1 v C2.

By construction of the algorithm in Figure 5.1, we know that each C1 v C2 ∈ FD(βstcsOS)
is an obvious classification consequence of a general concept inclusion axiom in the TBox

5. UPDATES 107

(or derived from a set of obvious classification consequences and their transitive closure).
By Lemma 5.2, we can conclude that O � C1 v C2.

Example 5.4 (Sound TBox Classification Update):
Given an ontology state OS = 〈OEx5.4, history 〉, with an example ontology OEx5.4 =
〈TEx5.4,REx5.4,AEx5.4〉 defined as

TEx5.4 = {B v A u ∃has.D,C v B},
REx5.4 = {},
AEx5.4 = {},

we have that

stclss [〈OEx5.4, history 〉] = {
B v A → 1,¬A v ¬B → 1,

B v ∃has.D → 1,∀has.¬D v ¬B → 1,

C v B → 1,¬B v ¬C → 1

}

and

βstcs〈OEx5.4,history 〉 = {
B v A → {B v A},
¬A v ¬B → {¬A v ¬B},
B v ∃has.D → {B v ∃has.D},
∀has.¬D v ¬B → {∀has.¬D v ¬B},
C v B → {C v B},
¬B v ¬C → {¬B v ¬C},
C v A → {C v B,B v A},
¬A v ¬C → {¬A v ¬B,¬B v ¬C},
C v ∃has.D → {C v B,B v ∃has.D},
∀has.¬D v ¬C → {∀has.¬D v ¬B,¬B v ¬C}
}.

If we perform the syntactic ontology update upd ‖−B v A u ∃has.D‖ on OS , we obtain

βstcs〈OEx5.4,history 〉↑upd ‖−BvAu∃has.D‖ = {
C v B → {C v B}
¬B v ¬C → {¬B v ¬C}
},

since all entries referring to obvious classification consequences of B v A u ∃has.D, i.e.
referring to B v A, ¬A v ¬B, B v ∃has.D, and ∀has.¬D v ¬B, are removed.

5. UPDATES 108

Please note that the computation of the transitive closure might be quite time consuming,
and there is some storage overhead for materializing all sound subsumptions together
with the dependencies. But since we would like to compute a sound TBox classification
structure only, we could stop the saturation phase at any time if some memory/runtime
constraint is violated. The results obtained so far are still sound.

5.3.2 Updatable Sound TBox Disjointness Structure

In the following, we define an updatable sound TBox disjointness structure. The idea is
to extract all obvious disjointness consequences from a concept inclusion axiom, without
the need for complex reasoning. In Definition 5.26, we describe how to determine these
obvious disjointness consequences from a concept inclusion axiom.

Definition 5.26 (Obvious Disjointness Consequences of a General Concept Inclusion):
Given a general concept inclusion C1 v C2 and its normal form > v Cnegnorm, the
set of obvious disjointness consequences, denoted odc [C1 v C2], is defined as a set over
Con × Con, such that (nnf(C3), nnf(C4)) ∈ odc [C1 v C2] if and only if Cnegnorm =
Ca,1 u Ca,2 u ... u Ca,n and there exists an i ∈ {1, ..., n}, such that

• Ca,i = ¬C3 t ¬C4,

• Ca,i = ¬C4 t ¬C3,

• Ca,i = ¬C3 t ¬C4 t ⊥, or

• Ca,i = ¬C4 t ¬C3 t ⊥.

The definition of obvious disjointness consequences can be changed to capture more sound
disjointness consequences without additional reasoning. However, the approach in Defi-
nition 5.26 is the one we have used for our evaluation. In Proposition 5.5, we show that
the results from Definition 5.26 are indeed sound consequences. But first, we show in
Proposition 5.4 that interpretations carry over from concept inclusion axioms to their
obvious disjointness consequences.

Proposition 5.4 (Obvious Disjointness Consequences of a General Concept Inclusion):
Given a general concept inclusion C1 v C2 and the set of obvious disjointness consequences
odc [C1 v C2] for C1 v C2, for every interpretation I = 〈∆I , ·I〉 and each (C3, C4) ∈
odc [C1 v C2], I � C1 v C2 =⇒ I � C3 � C4.

Proof of Proposition 5.4. Let > v Cnegnorm be the normal form of C1 v C2. By Defini-
tion 5.26, we can distinguish four cases:

• Cnegnorm = Ca,1 u Ca,2 u ... u Ca,n and Ca,i = ¬C3 t ¬C4: From I � C1 v C2,
we can conclude I � > v Cnegnorm. Thus, by Definition 2.15, we have ∆I ⊆
CIa,1 ∩ CIa,2 ∩ ... ∩ CIa,n and especially ∆I ⊆ CIa,i. This yields ∆I ⊆ ¬CI3 ∪ ¬CI4 and

we obtain CI3 ∩ CI4 ⊆ ∅. Thus, we have I � C3 � C4.

5. UPDATES 109

• Cnegnorm = Ca,1 u Ca,2 u ... u Ca,n and Ca,i = ¬C4 t ¬C3: analogously.

• Cnegnorm = Ca,1 u Ca,2 u ... u Ca,n and Ca,i = ¬C3 t ¬C4 t ⊥: analogously, since
⊥I = ∅.

• Cnegnorm = Ca,1 u Ca,2 u ... u Ca,n and Ca,i = ¬C4 t ¬C3 t ⊥: analogously.

Proposition 5.5 (Obvious Disjointness Consequences of an Ontology):
Given an ontology O =〈T,R,A〉, for all C1 v C2 ∈ T and for all (C3, C4) ∈ odc [C1 v C2],
O � C3 � C4.

Proof of Proposition 5.5. For each interpretation I, such that I � O, we know that I �
C1 v C2 for each C1 v C2 ∈ T, and by Proposition 5.4, we know that I � C3 � C4 for
each (C3, C4) ∈ odc [C1 v C2]. Thus, O � C3�C4 for each (C3, C4) ∈ odc [C1 v C2].

In Definition 5.27, we use obvious disjointness consequences of a general concept inclusion
to define an updatable sound TBox disjointness structure. For the initial ontology state
there exist no disjointness consequences and for each syntactic TBox update, we adjust
the obvious disjointness consequences for the ontology state. For the same reason as
in Definition 5.24 we use multisets again, in order to handle consequences entailed by
multiple general concept inclusions.

Definition 5.27 (Updatable Sound TBox Disjointness Structure):
Given an ontology state OS , an updatable sound TBox disjointness structure for OS ,
denoted βstdsOS , is a multiset over Con ×Con, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βstds〈〈∅,∅,∅〉,�〉 = Ξ.

• Given an updatable sound TBox disjointness structure βstds〈O,history 〉 and an applicable

syntactic ontology update upd , we let βstdsOS↑upd =
βstds〈O,history 〉

⊎
↑MS (odc [Cu1 v Cu2]) if upd = upd ‖+Cu1 v Cu2‖ ,

βstds〈O,history 〉\ ↑MS (odc [Cu1 v Cu2]) if upd = upd ‖−Cu1 v Cu2‖ ,
βstcs〈O,history 〉 otherwise.

Lemma 5.3 (Updatable Sound TBox Disjointness Structure Constraint):
Given an updatable sound TBox disjointness structure βstds〈〈T,R,A〉,history 〉 and two concept
descriptions C1 ∈ Con and C2 ∈ Con,

βstds〈〈T,R,A〉,history 〉(C1, C2) =

|{C3 v C4 ∈ T | (C1, C2) ∈ odc [C3 v C4]}|.

Proof of Lemma 5.3. By induction on the construction of ontology states:

5. UPDATES 110

• Induction base:

For 〈〈∅, ∅, ∅〉,�〉, βstds〈〈∅,∅,∅〉,�〉 = Ξ, and thus we have βstds〈〈T,R,A〉,history 〉(C1, C2) = 0. Since

T = ∅, we also have |{C3 v C4 ∈ T | (C1, C2) ∈ odc [C3 v C4]}| = 0. We obtain
0 = 0, for each (C1, C2).

• Induction step:

Let 〈T2,R2,A2〉 = upd (〈T,R,A〉). We assume

βstds〈〈T,R,A〉,history 〉(C1, C2) = |{C3 v C4 ∈ T | (C1, C2) ∈ odc [C3 v C4]}|

and have to show that

βstds〈upd (〈T,R,A〉),upd ◦history 〉(C1, C2) =

|{C3 v C4 ∈ T2 | (C1, C2) ∈ odc [C3 v C4]}|.

It is easily seen by case analysis on the syntactic ontology updates that the value of
βstds〈upd ([〈T,R,A〉),upd ◦history 〉](C1, C2) is increased (or decreased) by one, whenever a new

general concept inclusion axiom entails (C1, C2) as an obvious disjointness conse-
quence (or an entailing general concept inclusion axiom is removed).

In Proposition 5.6, we show that the updatable sound TBox disjointness structure can be
used as a sound TBox disjointness structure for each ontology state.

Proposition 5.6 (Updatable Sound TBox Disjointness Structure):
For each ontology state OS , the set ↓MS (βstdsOS) is a sound TBox disjointness structure for
OS .

Proof of Proposition 5.6. By Definition 5.14, we have to show that for all ontology states
OS = 〈〈T,R,A〉, history 〉, we have (C1, C2) ∈↓MS (βstdsOS) =⇒ 〈T,R,A〉 � C1 � C2.

By contradiction: Assume that there exists a (C1, C2) ∈ βstdsOS , such that 〈T,R,A〉 2
C1 � C2. By Lemma 5.3, we know that (C1, C2) ∈ βstdsOS if and only if there exists a
C3 v C4 ∈ T, such that (C1, C2) ∈ odc [C3 v C4]. By Proposition 5.5, we can conclude
that 〈T,R,A〉 � C1 � C2. Contradiction.

5.3.3 Updatable Complete ∀-info Structure

Next, we define an updatable complete ∀-info structure. In Definition 5.28, we describe
how to extract all possible ∀-propagations from a given general concept inclusion axiom.

Definition 5.28 (∀-Concept Description Closure of a General Concept Inclusion):
Given a general concept inclusion C1 v C2, the ∀-concept description closure of C1 v C2,
denoted fac [C1 v C2], is defined as a set, such that (R,C3) ∈ fac [C1 v C2] if and only
if ∀R.C3 ∈ (clos (¬C1) ∪ clos (C2)).

5. UPDATES 111

The extension from concept inclusions to ontology states is straightforward, given Defini-
tion 5.28. We define an updatable ∀-info structure for ontology states in Definition 5.29.
Again, we make use of multisets as the basic data structure.

Definition 5.29 (Updatable ∀-Info Structure):
An updatable ∀-info structure for an ontology state OS = 〈O, history 〉, denoted βcfisOS , is
a multiset over Rol ×Con, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βcfis〈〈∅,∅,∅〉,�〉 = Ξ.

• Given an updatable ∀-info structure βcfis〈O,history 〉 and an syntactic ontology update

upd , we let βcfis〈O,history 〉↑upd =
βcfis〈O,history 〉

⊎
↑MS (fac [Cu1 v Cu2]) if upd = upd ‖+Cu1 v Cu2‖ ,

βcfis〈O,history 〉\ ↑MS (fac [Cu1 v Cu2]) if upd = upd ‖−Cu1 v Cu2‖ ,
βcfis〈O,history 〉 otherwise.

Lemma 5.4 (Updatable ∀-Info Structure Constraint):
Given an updatable ∀-info structure βcfis〈〈T,R,A〉,history 〉, a concept description C ∈ Con, and
a role description R ∈ Rol,

βcfis〈〈T,R,A〉,history 〉(R,C) =

|{C2 v C3 ∈ T | (R,C) ∈ fac [C2 v C3]}|.

Proof of Lemma 5.4. By induction on the construction of ontology states:

• Induction base:

For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, βcfis〈〈∅,∅,∅〉,�〉 = Ξ, and we can conclude

βcfis〈〈T,R,A〉,history 〉(R,C) = 0. Since T = ∅, we have |{C2 v C3 ∈ T | (R,C) ∈
fac [C2 v C3]}| = 0. We obtain 0 = 0, for each (R,C).

• Induction step:

Let 〈T2,R2,A2〉 = upd (〈T,R,A〉). We assume

βcfis〈O,history 〉(R,C) = |{C2 v C3 ∈ T | (R,C) ∈ fac [C2 v C3]}|

and have to show that

βcfis〈upd (O),upd ◦history 〉(R,C) =

|{C2 v C3 ∈ T2 | (R,C) ∈ fac [C2 v C3]}|.

It is easily seen by case analysis on the syntactic ontology updates that the value
of βcfis〈upd ([〈T,R,A〉),upd ◦history 〉](R,C) is increased (or decreased) by one, whenever a new

general concept inclusion axiom has (R,C) in its ∀-concept description closure (or
a containing general concept inclusion axiom is removed).

5. UPDATES 112

The results from Lemma 5.4 are summarized in Proposition 5.7, where we show that
an updatable complete ∀-info structure is indeed a complete ∀-info structure for each
ontology state.

Proposition 5.7 (Updatable ∀-Info Structure):
For each ontology state OS = 〈〈T,R,A〉, history 〉, the set ↓MS (βcfisOS) is a complete ∀-info
structure for OS .

Proof of Proposition 5.7. We have to show that ∀R.C ∈ clos (T) =⇒ (R,C) ∈↓MS (βcfisOS).
Assuming ∀R.C ∈ clos (T), we know by Definition 2.20 that there exists a C2 v C3 ∈
T, such that (R,C) ∈ fac [C2 v C3]. By Lemma 5.4, we conclude that (R,C) ∈↓MS
(βcfisOS).

5.3.4 Updatable Complete RBox Structures

In the following, we define RBox-related structures. Since the RBox is usually rather
small, and the computation is not so expensive, we stick to sound and complete imple-
mentations below. However, it should be kept in mind that actually only completeness is
necessary. In Definition 5.30, we define an updatable complete (and sound) RBox classifi-
cation structure. For each each syntactic TBox and RBox update, we compute the set of
role subsumptions from scratch. Please note that this approach is not updatable literally.
We leave the investigation for real updatable complete RBox structures for future work.

Definition 5.30 (Updatable Complete RBox Classification Structure):
An updatable complete RBox classification structure for an ontology state OS , denoted
βcrcsOS , is a multiset over Rol ×Rol, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βcrcs〈〈∅,∅,∅〉,�〉 = Ξ.

• Given an updatable complete RBox classification βcrcs〈O,history 〉 and an syntactic ontol-

ogy update upd , we let βcrcsOS↑upd (R1, R2) ={
1 if (R1, R2) ∈ rcupd (O),

0 otherwise.

The proof of completeness in Proposition 5.8 is straightforward.

Proposition 5.8 (Updatable Complete RBox Classification Structure):
For all ontology states OS = 〈O, history 〉, we have that ↓MS (βcrcsOS) is a complete RBox
classification structure for OS .

Proof of Proposition 5.8. We have to show that O � R1 v R2 =⇒ (R1, R2) ∈↓MS (βcrcsOS).
By Definition 5.30, we recompute the whole role hierarchy on each syntactical TBox and
RBox update and then add (R1, R2) to βcrcsOS if and only if O � R1 v R2.

5. UPDATES 113

Next, we define an updatable complete RBox transitivity structure. Due to the same
reason as above, we compute the whole RBox transitivity structure again from scratch
for each syntactical TBox and RBox update. We think this is reasonable, since RBoxes
are usually rather small.

Definition 5.31 (Updatable Complete RBox Transitivity Structure):
An updatable complete RBox transitivity structure for an ontology state OS , denoted βcrtsOS ,
is a multiset over Rol, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βcrts〈〈∅,∅,∅〉,�〉 = Ξ.

• Given an updatable complete RBox transitivity structure βcrcs〈O,history 〉 and an syntactic

ontology update upd , we let βcrtsOS↑upd (R1) ={
1 if R1 ∈ rtcupd (O),

0 otherwise.

The proof of completeness in Proposition 5.9 is again straightforward.

Proposition 5.9 (Updatable Complete RBox Transitivity Structure):
For all ontology states OS = 〈O, history 〉, we have that ↓MS (βcrtsOS) is a complete RBox
transitivity structure for OS .

Proof of Proposition 5.9. We have to show that for all R1, we have O � Trans(R1) =⇒
R1 ∈↓MS (βcrtsOS). By Definition 5.31, we recompute all role transitivities on each syntactical
TBox and RBox update and then add R1 to βcrcsOS if and only if O � Trans(R1).

At this point we have defined all important basic data structures necessary for determining
SHI-splittability in an incremental way.

5.4 Updatable Split Decision System

In the following, we define one concrete implementation of the abstract split decision
system from Definition 5.21, by use of the syntactic update structures introduced above.

Definition 5.32 (Updatable Split Decision System):
Given an ontology state OS = 〈〈T,R,AOS 〉, history 〉, the tuple

updsds(OS) = 〈FD(βstcsOS), ↓MS (βstdsOS), ↓MS (βcfisOS), ↓MS (βcrcsOS), ↓MS (βcrtsOS),AOS 〉

is called updatable split decision system for OS .

Theorem 5.1 (Updatable Split Decision System):
For each ontology state OS , the updatable split decision system updsds(OS) is an ab-
stract split decision system for OS .

5. UPDATES 114

Proof of Theorem 5.1. By Proposition 5.3, Proposition 5.6, Proposition 5.7, Proposi-
tion 5.8, and Proposition 5.9.

We introduce the notion of a split set in Definition 5.33. The idea is to capture all split-
safe assertions with respect to an ontology state in a set and then define upper bounds on
role assertions which can be affected (in terms of split-safety) during a syntactic ontology
update. The motivation is to define/reduce the number of checks during the application
of an ontology update. This upper bound is further defined in Definition 5.34.

Definition 5.33 (Split Set):
Given an updatable split decision system

updsds(OS) = 〈FD(βstcsOS), ↓MS (βstdsOS), ↓MS (βcfisOS), ↓MS (βcrcsOS), ↓MS (βcrtsOS),AOS 〉

for an ontology state OS = 〈〈T,R,AOS 〉, history 〉, the split set for updsds(OS), denoted
spls(updsds(OS)), is defined as

spls(updsds(OS)) = {R(a1, a2) ∈ AOS | R(a1, a2) is split-safe for updsds(OS)}.

Definition 5.34 (Update Split Difference Bound):
Given an updatable split decision system updsds(OS) for an ontology state OS and a
syntactic ontology update upd : SO → SO, an update split difference bound, denoted
sdf(updsds(OS), upd), is a set S of role assertions, such that

S ⊇(spls(updsds(OS ↑ upd))	 spls(updsds(OS))).

With update split difference bounds, we capture (a superset of) all role assertions, whose
split-safety can change during a syntactic ontology update. For all role assertions in the
split difference bound, we need to check split-safety after the update. In the following,
we derive update split difference bounds for each syntactic ontology update. Please note
that the update split difference bounds for most syntactic ontology updates are easy to
derive. However, for the sake of completeness, we provide each of these bounds with a
lemma and a short proof.

5.4.1 Difference Bounds for Syntactic ABox Updates

Lemma 5.5 (Update Split Difference Bound for Role Assertion Updates):
Given an ontology state OS = 〈〈T,R,AOS 〉, history 〉, the set S = {Ru(au1, au2)} is
an update split difference bound for upd ‖+Ru(au1, au2)‖ and upd ‖−Ru(au1, au2)‖ on
updsds(OS).

Proof of Lemma 5.5. Split-safety of a role assertion R(a1, a2) can be decided based on
the current TBox, RBox and the concept assertions for individual a1 and and individual
a2. Since upd ‖+Ru(au1, au2)‖ and upd ‖−Ru(au1, au2)‖ only change the ABox, i.e. all
TBox and RBox based structures are unchanged after the update, and in addition no

5. UPDATES 115

concept assertion for any individual is changed, we have that S = {Ru(au1, au2)} is an
update split difference bound for the syntactic ontology updates upd ‖+Ru(au1, au2)‖ and
upd ‖−Ru(au1, au2)‖ on updsds(OS).

Lemma 5.6 (Update Split Difference Bound for Concept Assertion Updates):
Given an ontology state OS = 〈〈T,R,AOS 〉, history 〉, S = {Rx(au, ax1) | Rx(au, ax1) ∈
AOS} ∪ {Rx(ax1, au) | Rx(au, ax1) ∈ AOS} is an update split difference bound for the
syntactic ontology updates upd ‖+Cu(au)‖ and upd ‖−Cu(au)‖ on updsds(OS).

Proof of Lemma 5.6. First, please note that Cu is an atomic concept description. Split-
safety of a role assertion R(a1, a2) can be decided based on the current TBox, RBox and
the concept assertions for individual a1 and and individual a2. Since upd ‖+Cu(au)‖ and
upd ‖−Cu(au)‖ only change the ABox, i.e. all TBox and RBox based structures are un-
changed after the update, and in addition only the concept assertions for individual au are
changed, it holds that S = {Rx(au, ax1) | Rx(au, ax1) ∈ AOS}∪{Rx(ax1, au) | Rx(au, ax1) ∈
AOS} is an update split difference bound for upd ‖+Ru(au1, au2)‖ and upd ‖−Ru(au1, au2)‖
on updsds(OS).

5.4.2 Difference Bounds for Syntactic RBox Updates

Lemma 5.7 (Update Split Difference Bound for Role Inclusion Updates):
Given an ontology state OS = 〈〈T,R,AOS 〉, history 〉, S = {Rx(ax1, ax2) | Rx(ax1, ax2) ∈
AOS ∧ Rx ∈ dr} is an update split difference bound for the syntactic ontology updates
upd ‖+Ru1 v Ru2‖ and upd ‖−Ru1 v Ru2‖ on updsds(OS) = 〈FD(βstcsOS), ↓MS (βstdsOS), ↓MS
(βcfisOS), ↓MS (βcrcsOS), ↓MS (βcrtsOS),AOS 〉, where

dr ={R | ∃Ry ∈ Rol.(R,Ry) ∈ (↓MS (βcrcsOS↑upd)	 ↓MS (βcrcsOS))}∪
{R | ∃Ry ∈ Rol.(Ry, R) ∈ (↓MS (βcrcsOS↑upd)	 ↓MS (βcrcsOS))}∪
{R | R ∈ (↓MS (βcrtsOS↑upd)	 ↓MS (βcrtsOS))}.

Proof of Lemma 5.7. Split-safety of a role assertion R(a1, a2) can be decided based on the
current TBox, RBox, and the concept assertions for individual a1 and and individual a2.
The syntactic ontology updates upd ‖+Ru1 v Ru2‖ and upd ‖−Ru1 v Ru2‖ change only
the RBox, i.e. all TBox based structures and the ABox are unchanged after the update.
Thus, we only need to check all role assertions with new/obsolete super/sub roles and
new/obsolete transitive roles.

Lemma 5.8 (Update Split Difference Bound for Role Transitivity Updates):
Given an ontology state OS = 〈〈T,R,AOS 〉, history 〉, the set

S = {Rx(ax1, ax2) | Rx(ax1, ax2) ∈ AOS ∧Rx ∈ dr}
is an update split difference bound for upd ‖+Trans(Ru)‖ and upd ‖−Trans(Ru)‖ on
updsds(OS) = 〈FD(βstcsOS), ↓MS (βstdsOS), ↓MS (βcfisOS), ↓MS (βcrcsOS), ↓MS (βcrtsOS),AOS 〉, where

dr ={R | ∃Ry ∈ Rol.(Ry ∈ (↓MS (βcrtsOS↑upd)	 ↓MS (βcrtsOS)) ∧ (R,Ry) ∈↓MS (βcrcsOS↑upd))}.

5. UPDATES 116

Proof of Lemma 5.8. Split-safety of a role assertion R(a1, a2) can be decided based on
the current TBox, RBox and the concept assertions for individual a1 and individual a2.
The syntactic ontology updates upd ‖+Trans(Ru)‖ and upd ‖−Trans(Ru)‖ change only
the RBox, i.e. all TBox based structures and the ABox are unchanged after the update.
Thus, we only need to check all role assertions with roles being new/obsolete subroles of
transitive roles.

5.4.3 Difference Bounds for Syntactic TBox Updates

Lemma 5.9 (Update Split Difference Bound for Concept Inclusion Updates):
Given an ontology state OS = 〈〈T,R,AOS 〉, history 〉, the set

S ={Rx(ax1, ax2) | Rx(ax1, ax2) ∈ AOS ∧Rx ∈ dr}∪
{Rx(ax1, ax2) | {C | C(ax1) ∈ AOS ∨ C(ax2) ∈ AOS} ∩ dc 6= ∅}

is an update split difference bound for the updates upd = upd ‖+Cu1 v Cu2‖ and upd =
upd ‖−Cu1 v Cu2‖ on updsds(OS) = 〈FD(βstcsOS), ↓MS (βstdsOS), ↓MS (βcfisOS), ↓MS (βcrcsOS), ↓MS
(βcrtsOS),AOS 〉, where

dc ={C | ∃Cy ∈ AtCon.C v Cy ∈ FV AL(βstcsOS↑upd)	 FD(βstcsOS)}∪
{C | ∃Cy ∈ AtCon.(C,Cy) ∈↓MS (βstdsOS↑upd)	 ↓MS (βstdsOS)}∪
{C | ∃Cy ∈ AtCon.(Cy, C) ∈↓MS (βstdsOS↑upd)	 ↓MS (βstdsOS)}

dr ={R | ∃C.(R,C) ∈↓MS (βcfisOS↑upd)	 ↓MS (βcfisOS)}∪
{R | ∃Ry ∈ Rol.(Ry ∈ (↓MS (βcrtsOS↑upd)	 ↓MS (βcrtsOS)) ∧ (R,Ry) ∈↓MS (βcrcsOS↑upd))}.

Proof of Lemma 5.9. Split-safety of a role assertion R(a1, a2) can be decided based on the
current TBox, RBox and the concept assertions for individual a1 and and individual a2.
The syntactic ontology updates upd ‖+Cu1 v Cu2‖ and upd ‖−Cu1 v Cu2‖ only change
the TBox, i.e. all the RBox based structures and the ABox are unchanged after the
update. The only exception is the introduction/removal of transitive roles. Thus, we only
need to check all role assertions, such that

1. new sound concept subsumption relationships exist (or become obsolete),

2. new sound disjointness relationships exist (or become obsolete),

3. new potential ∀-propagations exist (or become obsolete), or

4. new transitive super roles exist (or become obsolete).

In Definition 5.35, we define a structure containing all individual pairs which are connected
by a non-split-safe role assertion with respect to an updatable split decision system.

5. UPDATES 117

Definition 5.35 (Updatable Complete Split Dependency Structure):
An updatable complete split structure for an ontology state OS = 〈O, history 〉, denoted
βaboxsplOS , is a multiset over IN × IN, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βaboxspl〈〈∅,∅,∅〉,�〉(a2, a2) = 0, for each a1 ∈ IN
and for each a2 ∈ IN.

• Given an updatable complete split dependency structure βaboxspl〈O,history 〉 and a syntactic

ontology update upd , we let βaboxsplOS↑upd be the result of the algorithm in Figure 5.2.

The implementation of the algorithm in Figure 5.2 is directly motivated by the upper
split difference bounds proved for each syntactic ontology update.

In Theorem 5.2, we show that the proposed updatable complete split dependency structure
is a complete split dependency structure for all ontology states.

Theorem 5.2 (Updatable Split Dependency Structure):
For all ontology states OS = 〈〈T,R,A〉, history 〉, ↓MS (βaboxsplOS) is a complete split depen-
dency structure for OS .

Proof of Theorem 5.2. To show: if ∃R ∈ Rol.R(a1, a2) ∈ A ∧ R(a1, a2) is not SHI-
splittable with respect to 〈T,R,A〉 =⇒ (a1, a2) ∈↓MS (βaboxsplOS). By induction on the
construction of ontology states:

• Induction base: For the initial ontology state the statement is true trivially, since
A = ∅.

• Induction step: By Lemma 5.5, Lemma 5.6, Lemma 5.7, Lemma 5.8 and Lemma 5.9,
for each syntactic ontology update we recompute all potentially changed dependen-
cies for the new ontology state.

5.5 Updatable Reasoning Structures

5.5.1 Updatable One-Step Node Map Structure

In the following, we define an updatable one-step node map structure, motivated by one-
step node maps from Section 4.3. Please recall that one-step nodes are defined as efficient
equality measures for individual islands. Furthermore, one-step nodes can be used as a
kind of proxy structure to answer queries fast in a sound and possibly complete way.

5. UPDATES 118

Figure 5.2 Updating split dependency structures

Input: Updatable complete split dependency structure βaboxsplOS , an updatable split

decision system updsds(OS) = 〈FD(βstcsOS), ↓MS (βstdsOS), ↓MS (βcfisOS), ↓MS (βcrcsOS), ↓MS
(βcrtsOS),AOS 〉 syntactic ontology update upd

Output: Updatable complete split dependency structure βaboxsplOS↑upd

Algorithm:

Let toupdate = ∅
If upd = upd ‖+Cu(au)‖ or upd = upd ‖−Cu(au)‖ then

toupdate = {Rx(au, ax1) | Rx(au, ax1) ∈ AOS} ∪ {Rx(ax1, au) | Rx(au, ax1) ∈
AOS}

Else if upd = upd ‖+Ru(au1, au2)‖ or upd = upd ‖−Ru(au1, au2)‖ then

toupdate = {Ru(au1, au2)}
Else if upd = upd ‖+Ru1 v Ru2‖ or upd = upd ‖−Ru1 v Ru2‖ then

toupdate = {Rx(ax1, ax2) | Rx(ax1, ax2) ∈ AOS ∧ Rx ∈ dr}, where dr is
defined as in Lemma 5.7

Else if upd = upd ‖+Trans(Ru)‖ or upd = upd ‖−Trans(Ru)‖ then

toupdate = {Rx(ax1, ax2) | Rx(ax1, ax2) ∈ AOS ∧ Rx ∈ dr}, where dr is
defined as in Lemma 5.8

Else if upd = upd ‖+Cu1 v Cu2‖ or upd = upd ‖−Cu1 v Cu2‖ then

toupdate = {Rx(ax1, ax2) | Rx(ax1, ax2) ∈ AOS ∧ Rx ∈ dr} ∪ {Rx(ax1, ax2) |
{C | C(ax1) ∈ AOS ∨ C(ax2) ∈ AOS} ∩ dc 6= ∅}, where dr and dc are
defined as in Lemma 5.9.

Let βaboxsplOS↑upd = βaboxsplOS

For R(a1, a2) ∈ toupdate

let βaboxsplOS↑upd (a1, a2) = |{R(a1, a2) ∈ AOS↑upd | R(a1, a2) is not split-safe with
respect to updsds(OS ↑ upd)}|

Definition 5.36 (Updatable One-Step Node Map Structure):
An updatable one-step node map structure for an ontology state OS = 〈O, history 〉, de-
noted βosnmapOS , is a function βosnmapOS : IN → OSN, defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βosnmap〈〈∅,∅,∅〉,�〉(a) = n.d. for each a ∈ IN.

• Given an updatable one-step node map structure βosnmapOS and an syntactic ontology
update upd , we let βosnmapOS↑upd be the result of the algorithm in Figure 5.3.

5. UPDATES 119

Given the definition of one-step nodes in Definition 4.17, the algorithm in Figure 5.3 is
self explaining. Whenever we have a syntactic ABox update, then we recompute all the
affected one-step nodes. For syntactic ABox concept assertion updates, we compute the
one-step nodes for the updated individual (the individual occurs in the concept assertion
axiom) and all its neighbors. For syntactic ABox role assertion updates, we compute the
one-step nodes for both updated individuals (the individuals occur in the role assertion
axiom). We use two sets in the algorithm: toupdate is used to manage all individuals
whose one-step nodes need to be recomputed, and todelete contains all individuals which
need to be removed from the one-step node map, because the ABox does not contain ABox
assertions for them anymore.

Figure 5.3 Updating one-step node maps

Input: Updatable one-step node map structure βosnmap〈O,history 〉, syntactic ontology update
upd

Output: Updatable one-step node map structure βosnmap〈upd (O),upd ◦history 〉

Algorithm:

Let toupdate = todelete = ∅
Let 〈T2,R2,A2〉 = upd (〈T,R,A〉)
If upd = upd ‖+Cu(au)‖ or upd = upd ‖−Cu(au)‖ then

toupdate = toupdate ∪ {au} ∪ {a | a is a neighbor of au in A2}
Else if upd = upd ‖+Ru(au1, au2)‖ or upd = upd ‖−Ru(au1, au2)‖ then

toupdate = {au1, au1}
todelete = Ind(A) \ Ind(A2)

Let

βosnmap〈upd (O),upd ◦history 〉(a) =


osna,A2 if a ∈ toupdate ∧ a /∈ todelete,

n.d. if a ∈ todelete,

βosnmap〈O,history 〉(a) otherwise

In Theorem 5.3, we show that the updatable one-step node map structure from Defini-
tion 5.36 is a one-step node map structure for each ontology state.

Theorem 5.3 (Updatable One-Step Node Map Structure):
For each ontology state OS = 〈〈T,R,A〉, history 〉, the updatable one-step node map
structure βosnmapOS is a sound and complete one-step node map structure for OS .

Proof of Theorem 5.3. We have to show that for each named individual a ∈ NInd(A),
βosnmapOS (a) = osna,A . By induction on the construction of ontology states:

5. UPDATES 120

• Induction base: For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, we have A = ∅ and
NInd(A) = ∅.

• Induction step: Let 〈T2,R2,A2〉 = upd (〈T,R,A〉). We assume that for each indi-
vidual a ∈ NInd(A), βosnmapOS (a) = osna,A and have to show that for each individual
a ∈ NInd(A2), β

osnmap
〈upd (O),upd ◦history 〉(a) = osna,A2 .

The one-step nodes for an individual a are based on its concept assertion axioms, the
concept assertion axioms of the direct neighbors and the role assertions for a. For
each syntactic ontology update, we determine all concerned individuals and their
neighbors in the set toupdate. Furthermore, if an individual is removed from the
ABox, we also remove it from the updatable one-step node map.

5.5.2 Updatable Island Map Structure

In the following, we define an updatable island map structure, motivated by individual
island maps from Section 4.3. Please recall that individual island maps are used for sound
and complete instance checking and instance retrieval.

Definition 5.37 (Updatable Island Map Structure):
An updatable island map structure for an ontology state OS = 〈O, history 〉, denoted
βislmapOS , is a function βislmapOS : IN → ℘(IN), defined inductively as follows:

• For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, let βislmap〈〈∅,∅,∅〉,�〉(a) = ∅ for each a ∈ IN.

• Given an updatable island map structure βislmap〈O,history 〉 and an syntactic ontology up-

date upd , we let βislmap〈upd (O),upd ◦history 〉 be the result of the algorithm in Figure 5.4.

The algorithm in Figure 5.4 is self-explaining, given the results about updatable split
decision systems. In each syntactic ontology update, we compute the set of all individuals,
denoted indaff , for which a role assertion was changed from split-safe to non-split-safe,
and vice versa. Then, for each individual island, which contains an assertion about an
individual in indaff , we recompute the individual island and update the updatable island
map structure.

Theorem 5.4 (Updatable Island Map Structure):
For each ontology state OS = 〈〈T,R,A〉, history 〉, the updatable island map structure
βislmapOS can be used as a sound and complete island map structure for OS .

Proof of Theorem 5.4. We have to show that for each named individual a ∈ NInd(A),
we have that 〈T,R,LoadAs (βislmapOS (a)), a〉 is an individual island for 〈T,R,A〉, where

LoadAs (inds) ={C(a) ∈ A | a ∈ inds} ∪ {R(a1, a2) ∈ A | {a1, a2} ⊆ inds}.

5. UPDATES 121

Figure 5.4 Updating island maps

Input: Updatable island map structure βislmap〈〈T,R,A〉,history 〉, syntactic ontology update upd ,

βaboxspl〈〈T,R,A〉,history 〉 and βaboxspl〈upd (〈T,R,A〉),upd ◦history 〉

Output: Updatable island map structure βislmap〈upd (〈T,R,A〉),upd ◦history 〉

Algorithm:

Let 〈T2,R2,A2〉 = upd (〈T,R,A〉)
Let diff =↓MS (βaboxspl〈〈T,R,A〉,history 〉)	 ↓MS (βaboxspl〈upd (〈T,R,A〉),upd ◦history 〉)

Let indaff = {a1 | ∃a2 ∈ IN.(a1, a2) ∈ diff ∨ (a2, a1) ∈ diff}
Let indstoRecompute = indaff ∪ {a | (βislmap〈O,history 〉(a) ∩ indaff) 6= ∅}

Set βislmap〈upd (〈T,R,A〉),upd ◦history 〉 = βislmap〈〈T,R,A〉,history 〉
For each a ∈ indstoRecompute

• Use the algorithm from Figure 4.1 to compute the individual island
〈T2,R2,Aisl, a〉 for individual a with respect to ontology 〈T2,R2,A2〉
• Set βislmap〈upd (O),upd ◦history 〉(a) = Ind(Aisl)

By induction on the construction of ontology states:

• Induction base: For the initial ontology state 〈〈∅, ∅, ∅〉,�〉, we have A = ∅ and thus
Ind(A) = ∅.

• Induction step:

Let 〈T2,R2,A2〉 = upd (〈T,R,A〉). We assume that for each a ∈ NInd(A), we
have that 〈T,R,LoadAs (βislmapOS (a)), a〉 is an individual island for 〈T,R,A〉, and
we have to show that for each named individual a ∈ NInd(A2), we have that the
structure 〈T2,R2,LoadAs (βislmap〈upd (〈T,R,A〉),upd ◦history 〉(a)), a〉 is an individual island for

〈T2,R2,A2〉.

Since the updatable complete split structure βaboxsplOS is a complete split dependency

structure for the ontology state 〈〈T,R,A〉, history 〉 and βaboxspl〈upd (〈T,R,A〉),upd ◦history 〉 is

a complete split dependency structure for 〈upd (〈T,R,A〉), upd ◦ history 〉, we can
conclude that the set diff in the algorithm in Figure 5.4 contains a superset of all
individual pairs whose split-safety changed during the syntactic ontology update.
Since all islands with role assertions between individuals from diff are recomputed,
we have for each individual a ∈ NInd(A2), that 〈T2,R2,LoadAs (βislmapOS (a)), a〉 is
an individual island for 〈T2,R2,A2〉.

5. UPDATES 122

5.6 Concluding Remarks

In Chapter 5, we have defined updatable algorithms for the computation of individual
islands and one-step nodes. We use a class of syntactic ontology updates in order to
formalize addition and retraction of assertions from TBoxes, ABoxes, and RBoxes of an
ontology. Although these kind of updates are not full updates, in the sense of model-based
updates, we think that our proposal can be a first step towards reasoning over dynamic
ontologies.

We have defined an abstract split decision system, which can be used to determine SHI-
splittable role assertions under syntactic ontology updates. The abstract split decision
system uses unsound plus incomplete data structures. This allows us to improve effi-
ciency of implementations for our update algorithms. Furthermore, we provide a concrete
updatable instantiation of an abstract split decision system.

Updates on the data structures can still be quite time-consuming. While updates on the
assertional part of the ontology have only local effects, the impact of a TBox or RBox
axiom can be immense. For instance, assume there is an update on a role description
in the upper part of the role hierarchy, in the worst case a universal role description
(subsuming all other role descriptions). In this case, all role assertions in the ABox
have to be reevaluated for SHI-splittability. However, this cannot be avoided as long as
soundness and completeness of reasoning has to be ensured.

6. SYSTEM DESCRIPTION AND EVALUATION 123

Chapter 6: System Description and
Evaluation

In Chapter 6, we describe a prototypical implementation of the algorithms introduced
in order to improve performance of query answering over description logic ontologies. In
particular, we implement a system which is based on syntactic ontology updates from
Chapter 5. Furthermore, we evaluate our modularization techniques with respect to test
ontologies.

In Section 6.1, we introduce a client-server architecture which is used to perform efficient
instance checking and instance retrieval over ontologies in practice. We describe the
internal data management in the prototype and implementation issues. In addition, we
describe how query answering is performed.

In Section 6.2, we evaluate research hypothesis with respect to test ontologies. We show
that our modularization techniques can be used in order to release the main memory
dependency from description logic reasoning systems. We investigate granularity of mod-
ularizations as well as scalability of our updatable data structures. We use two ontologies
for evaluation. We introduce a real world ontology which is used to evaluate our tech-
niques with respect to real world domain knowledge. A benchmark ontology is used to
show further applicability results and provide first scalability statistics for our updatable
data structures.

6.1 System Description

6.1.1 General Structure

In the following, we provide a general overview over the prototype. We have implemented
the algorithms for updatable reasoning over SHI-ontologies using the programming lan-
guage Java. We used the description logic reasoner Racer [HMW04] for our evaluation.

The prototype consists of two parts: a server module and client modules (also called
nodes). While the server module is used for updating the internal representation of the
current ontology state, the client modules are used for reasoning. The structure of the
modules is depicted in Figure 6.1. Modules are described in detail below.

6. SYSTEM DESCRIPTION AND EVALUATION 124

Figure 6.1 Module structure of the system

Server

Node 1

Query Manager

DL Reasoner

Node 2

Query Manager

DL Reasoner

Node n

Query Manager

DL Reasoner

N
o

d
e

Sch
ed

u
ler

Update Handler

Data Management

Query Answering

6.1.2 Data Loading and Management

The update handler module contains the implementation for loading data sets and invokes
all necessary updates on internal data structures. For both parts of the ontology, termi-
nological part and assertional part, we enable different kinds of data sources as input. In
the following, we always cover addition and retraction of facts if we mention loading.

For the terminological part, we provide an interface to load assertions from OWL files.
The parsing of OWL files is performed with help of a Java API called OWLAPI, see
[HB09] for details. Please note that the order of loading facts from an OWL file is
determined by OWLAPI. Thus, if assertions should be loaded in a particular order, then
these assertions have to be distributed over different OWL files. Furthermore, to the best
of our knowledge, OWLAPI will always load the whole OWL file into main memory, even
if OWLAPI is only used for parsing. This has to be kept in mind, when dealing with
large ontologies. In addition, we have developed a SAX-based OWL parser, for OWL files
which do not fit into main memory.

For the assertional part of an ontology, we allow loading data from three different data
sources. First, loading from OWL files is supported as well. However, due to the con-
straints mentioned above, we allow two additional data sources.

We allow to load ABox assertions from text files in a comma separated value (CSV)
format. An example for the format is given in Figure 6.2. Each line is preceded by an
identifier CA or RA indicating, whether the assertion is a concept assertion axiom or
a role assertion axiom. For concept assertion axioms, the second entry in a line is an

6. SYSTEM DESCRIPTION AND EVALUATION 125

Figure 6.2 Example for a comma separated value input file

CA, ann , P r o f e s s o r
CA, eve , P r o f e s s o r
CA, c1 , UndergraduateCourse
CA, c2 , GraduateCourse
. . .

RA, teaches , ann , c1
RA, teaches , eve , c2
. . .

individual name and the third entry in a line is an atomic concept description. Negated
concept names are denoted by concept^-. For role assertion axioms, the second entry is
a role description, the third entry is the first individual name and the fourth entry is the
second individual name of the role assertion axiom.

Furthermore, we implemented ABox assertion loading directly from a database. Concept
assertion axioms and role assertion axioms can be loaded from tables respectively.

The interface of the update handler module is summarized in Figure 6.3. In order to
extend our update handler module to different input formats, such as KRSS [PSS93] or
KIF [GF92], one has to implement an interface for stepwise converting assertions into our
in-memory representation.

Figure 6.3 Informal interface of the Update Handler module

UpdateHandler

SQL Loader

CSV Loader

OWL LoaderOWL file

CSV file

Database

The implementation of most of the updatable data structures from Chapter 5 is rather
straightforward, given a library for multisets in Java that we have developed.

6. SYSTEM DESCRIPTION AND EVALUATION 126

Figure 6.4 Structure of the Data Management module

Data Management

TBox Management

RBox Management

ABox Management

Main
memory

External
storage

In Figure 6.4, the general data management is depicted. While TBox and RBox are kept
in main memory, the ABox is serialized to a database. In our prototypical implementation,
we used the relational database management system MySQL, see [WA02]. Apart from
the assertional data, we also serialize

• the identifiers of one-step nodes for each individual and

• information about splittability of role assertions.

For each serialized data structure, we have implemented caching algorithms, in order to
avoid working on external memory directly for each update. During our experiments, a
segmented least recently used cache, see for instance [KLW94], turned out to be most
efficient. There exist two separate least recently used caches, one called probationary and
the other one called protected.

Whenever an element is missed, i.e. the element cannot be found in the cache and has to
be loaded from external memory, the element is put at the end of the probationary cache
after loading. If there is a hit on an element, i.e. the element is already present in one of
the two segments, then the element is moved to the end of the protected segment. Thus,
elements which end up in the protected segment have been at least used twice. This seems
like a good trade off between simple least recently used caching algorithms and (hard-
to-implement) least often used caching algorithms. For details about the serialization of
both caches see [KLW94].

6.1.3 Query Answering

The query answering process is performed in client modules. These clients (nodes) can
run on distributed machines. All necessary assertions for reasoning on individuals are

6. SYSTEM DESCRIPTION AND EVALUATION 127

distributed among these nodes. Each node determines local solutions, which are commu-
nicated back to the server. The server combines the pre-filtered results and decides about
additional refine steps. The scenario is described in detail below.

6.1.3.1 Preparation Step

Before query answering can take place, we need to prepare some data structures and
distribute them to client modules. In particular, we serialize all cached data, such as
ABox cache and one-step node cache, to the disk. Furthermore, we determine the minimal
set of distinct (with respect to similarity) one-step nodes.

This step is straightforward, since our implementation of one-step node maps in Java
allows us to determine the range of the one-step node map function immediately. Thus,
we have a set of n distinct once step nodes, which can be used for query answering over
all named individuals.

Since reasoning over a one-step node is independent from other one-step nodes, the process
can be easily parallelized. We use a set of m client modules, prepared in advance, such
that each client module is capable of reasoning over one-step nodes. The server module
sends n

m
one-step nodes to each client module. Each client module prepares an internal

representation and sets up a local ontology with a representation of all local one-step
nodes. In our experiments, we have used the description logic reasoning system Racer, in
order to reason over one-step nodes with respect to terminological knowledge.

6.1.3.2 Instance Checking

Given an atomic concept description C and a named individual a ∈ NInd(A), we have to
find out, whether the current ontology state entails C(a). First, we read off the one-step
node for a, then we determine the responsible client module for the one-step node osna,A

of a. The instance checking query for the one-step node is forwarded to the responsible
client module.

The client module then determines, with help of a description logic reasoner, whether
the corresponding one-step node entails C for the root individual, or the one-step node
entails ¬C for the root individual. In addition, the client module decides, whether the
one-step node is splittable or not. Depending on the outcome, the client module performs
the following:

• If osna,A �T,R C(a), then the client module returns a message to the server indicat-
ing that a is an instance of concept description C.

• Else if osna,A �T,R ¬C(a) or osna,A 2T,R C(a) and osna,A is splittable, then the
client module returns a message to the server indicating that a is not an instance
of concept description C.

6. SYSTEM DESCRIPTION AND EVALUATION 128

• Otherwise, the client module loads the individual island of individual a from the
server, performs instance checking on the individual island and then returns a mes-
sage to the server about the outcome of the sound and complete instance check.

6.1.3.3 Instance Retrieval

Given an atomic concept description C, we have to find all named individuals which
are an instance of C with respect to the current ontology state. The server module
sends a request to all client modules to evaluate their one-step nodes and the associated
individuals. Each client module determines locally three sets of individuals:

• syes: Contains all named individuals a ∈ NInd(A), such that osna,A �T,R C(a).

• sno: Contains all named individuals a ∈ NInd(A), such that osna,A �T,R ¬C(a) or
osna,A 2T,R C(a), such that osna,A is splittable.

• sopen: NInd(A) \ (syes ∪ sno).

The set syes contains obvious solutions, the set sno contains obvious non-solutions, and
all the individuals in sopen have to be checked further by individual instance checking in
the client modules. Afterwards, the result, i.e a set of named individuals, is sent back to
the server module. In the end, the server module computes the union of all answers from
all client modules.

6.2 Evaluation

We have used two benchmark ontologies for evaluation of our modularization techniques:
one synthetic benchmark introduced in [GPH05] and a real world multimedia annotation
ontology used in the CASAM project and introduced in [GMN+09]. The results for both
ontologies are outlined below.

6.2.1 LUBM

The Lehigh University Benchmark, short LUBM, is a synthetic ontology developed to
benchmark knowledge base systems with respect to large OWL applications. The ontol-
ogy is situated in the university domain. The background knowledge, i.e. the terminology,
is described in a schema called Univ-Bench, see [GPH05] for an overview over the his-
tory, different versions and the predecessor Univ 1.0. The expressivity of the ontology
is chosen to be in OWL Lite, which corresponds to the description logic SHIF . How-
ever, the de facto expressivity is lower. For instance, the ontology does not introduce any
cardinality/functionality expressions on roles.

6. SYSTEM DESCRIPTION AND EVALUATION 129

The terminology defines 43 classes and 32 properties (including 25 object properties and 7
datatype properties). The datatype properties are ignored in our experiments. According
to [TV03], this ontology can be categorized as a “description logic-style” ontology which
has a moderate number of classes but several restrictions and properties per class. The
terminology of LUBM is rather simple.

While the terminological part of LUBM is static, the assertional part is dynamic in size
and can be generated as big as necessary/desired. There exists a small tool written in
Java, called Univ-Bench Artificial Data Generator. Given a number n as input, the tool
generates n different universities, containing information about individuals, e.g. students,
professors, publications and courses. The basic unit of a University is a Department. The
number of departments varies by university. To make data creation more random, one
can manually set a seed number as input to the data generator.

The dataset we have used for our experiments was generated by the Univ-Bench artificial
data generator with the following parameters:

java −c l a s spa th D:\ r e s ea r ch \ o n t o l o g i e s \MYLUBM
edu . l e h i g h . swat . bench . uba . Generator
−univ 1000 −seed 0
−onto f i l e : / univ−bench . owl

In Figure 6.5, we show the number of individuals in the dataset, for different numbers
of universities. It can be seen that the number of individuals increases almost linearly
with the number of universities. Around 30 percent of the individuals in the dataset
are publications, another 30 percent are undergraduate students, 10 percent are graduate
students, 10 percent are courses and graduate courses. The remaining 20 percent of the
individuals are for instance professors, assistants and departments. For more details about
the data distribution, see [GPH05].

Figure 6.5 Number of individuals in LUBM

0
500.000

1.000.000
1.500.000
2.000.000
2.500.000

0 20 40 60 80 100

ind
ivid

ual
s

universities

6. SYSTEM DESCRIPTION AND EVALUATION 130

In Figure 6.6, the number of ABox assertions is shown. Most of the role assertions in
the ontology cover the enrollment into a course (around 45 percent of the role assertions),
being a publication author (around 22 percent of the role assertions) or being a member of
an organization (around 15 percent of the role assertions). The remaining role assertions
cover facts like, for instance, teaching a course or having a master degree from a university.

Figure 6.6 Number of ABox assertions in LUBM

0
2.500.000
5.000.000
7.500.000

10.000.000

0 20 40 60 80 100

ass
ert

ion
s

universities

Since the number of individuals, as well as the number of ABox assertions is almost linear
in the number of universities, LUBM seems like an adequate general, synthetic basis for
instance checking and instance retrieval queries. LUBM is especially useful to evaluate
scalability of our algorithms with a growing size of the ABox.

In the following, we investigate the efficiency of ABox modularization techniques from
Chapter 3. The most important measure for efficiency seems to be the amount of SHI-
splittable role assertions, i.e. how many of the role assertions can be broken up. First of
all, please note that component-based modularization of the assertional LUBM dataset
yields one big module, i.e. each individual is connected to each other individual by a
chain of role assertions. This is true for any number of universities. The connection
between different universities is mainly because of degree-relationships between people
and universities. Since only one ABox module is obtained, we do not provide any further
statistics for component-based modularization.

The results for SHI-splittability (from Definition 3.18) with respect to LUBM are shown
in Figure 6.7 with the label std. The dataset for LUBM 1, i.e. only one university,
contains 49336 role assertions, out of which 49082 are SHI-splittable. This means that
only 0.5 percent of the role assertions are SHI-unsplittable. This ratio does not change
with a growing number of universities. Almost all SHI-unsplittable role assertions have
transitive roles, e.g. the role suborganizationOf. In addition, role assertions with the role
headOf are also SHI-unsplittable, since, for instance, the not obvious concept description
Chair can be propagated.

6. SYSTEM DESCRIPTION AND EVALUATION 131

Figure 6.7 Percentage of unsplittable role assertions in LUBM

0,00%
0,20%
0,40%
0,60%

1 2 3rol
e a

sse
rtio

n
un

spl
itta

bil
ity

universities

std
ext

We have investigated an extended SHI-splittability criteria, such that role assertions
with transitive roles are splittable if all propagated concept descriptions are enforced by
simple domain- or range-restrictions. In this case, without further proof, role assertions
over transitive roles can be split up as well. The result for this extended splittability
criterion are shown in Figure 6.7 with the label ext. For the extended criterion and one
university, only 15 role assertions (out of 49336, 0.03 percent) turn out to be unsplittable.
All these 15 role assertions contain the role headOf. For more universities, the ratio of
unsplittable role assertions remains the same, since each department introduces exactly
one head of the department.

Given the set of splittable role assertions, we can determine the number of ABox modules
for different LUBM datasets. The results are shown in Figure 6.8.

Figure 6.8 Number of modules in LUBM

10000
20000
30000
40000
50000
60000

1 2 3

nu
mb

er
of

mo
du

les

universities

std
ext

For component-based modularization, one big module is obtained, since each individ-
ual is related to each other individual by a chain of role assertions. With respect to
SHI-splittability, we obtain 16920 modules for one university and 37748 modules for two
universities. With the extended criterion for splittability, i.e. improved handling of tran-
sitive roles, the number of modules can be further increased, as expected. For instance,
for one university we obtain 17159 modules, instead of 16920. Please remember that the

6. SYSTEM DESCRIPTION AND EVALUATION 132

number of individuals in one university is 17174. Each ABox module contains in average
1.01 individuals.

In order to further evaluate the quality of ABox modules, we show the average size
(measured in number of ABox assertions) of the modules in Figure 6.9. For component-
based modularization, the module is as big as the whole ABox (not shown). With respect
to SHI-splittability, the average size is between three and four ABox assertions per ABox
module.

Figure 6.9 Average size of modules in LUBM

1
2
3
4
5
6

1 2 3

ave
rag

e
mo

du
le s

ize

universities

std

ext

Next, we evaluated the number of distinct one-step nodes for different number of uni-
versities. The result is shown in Figure 6.10. Please recall that we compute a one-step
node for each individual and then use a similarity relation among one-step nodes to group
one-step nodes together. It can be seen that the number of distinct one-step nodes is
relatively constant - compared to the linear number of individuals. Thus, in this case,
one-step nodes can indeed be a candidate for a proxy reasoning structure, which exploits
the local similarity to group individuals.

In Figure 6.10, we show the percentage of distinct complete one-step nodes as well. Around
99 percent of the one-step nodes are complete for each LUBM dataset. Thus, for 99 percent
of the one-step nodes we can perform sound and complete reasoning over individuals
directly.

Another evaluation measure is load time. The load time covers loading data from external
memory (here: CSV files), applying the update algorithms introduced in Chapter 5 and
serializing the data to a database representation. We process the terminological part first
and afterwards the assertional part is loaded.

6. SYSTEM DESCRIPTION AND EVALUATION 133

Figure 6.10 Number of distinct one-step nodes for LUBM

200
230
260
290
320

20 40 60 80 100on
e s

tep
 no

des

universities

osn

compl. osn

Figure 6.11 Load time for LUBM

0
20
40
60
80

100

0 20 40 60 80 100loa
d t

im
e i

n m
in

universities

The load time (using incremental updates) is shown for different numbers of universities
in Figure 6.11. We add the ABox assertions from each university step by step. It can be
seen that the curve is almost linear. We conjecture two main reasons for non-linearity:

1. The underlying database implementation cannot guarantee linear-time inserts. This
is probably because the relational database system needs to update all indices for
each update. While there exist optimization techniques, such as index update delay
for bulk insertions, these techniques only perform well if the system does not read
data during the bulk update phase. However, during syntactic ontology updates
our algorithms work directly on the database representation (apart from caching).

2. For some assertional ABox updates, the system needs to reload all assertions for
an individual from the database. Some role assertion sets for individuals, e.g. for
all the University-individuals, grow linearly over time. Thus, single updates can
already become more expensive with a growing number of universities.

6. SYSTEM DESCRIPTION AND EVALUATION 134

Figure 6.12 Main memory used for loading LUBM

0
10
20
30
40
50
60

20 40 60 80 100

me
mo

ry
in

MB

universities

The main memory used by the prototypical implementation during the loading phase is
shown in Figure 6.12. Since we have implemented our prototype with the Java program-
ming language, statistics with respect to main memory are easily misunderstood. Java
uses the concept of garbage collection, where objects are not deallocated directly. There
exists a separate thread in the background which keeps track of all object references.
Whenever an object is not referenced anymore, the garbage collector might decide, once
active, to free the memory used by the object.

The programmer (program) has almost no control over the garbage collection process.
Thus, any memory snapshot obtained might not represent the total amount of used mem-
ory. The results in Figure 6.12 show that our implementation uses around 45 MB during
the load process. This memory is used for caching ABox assertions, one-step nodes and
the terminological part in main memory.

Figure 6.13 Time for instance retrieval for Chair and different number of nodes

0
2
4
6

20 40 60 80 100

tim
e i

n s
eco

nd
s

universities

1 node
2 nodes
4 nodes

6. SYSTEM DESCRIPTION AND EVALUATION 135

In Figure 6.13, we show the instance retrieval time for the concept description Chair and
different numbers of universities. It can be seen that for one client node, the instance
retrieval time grows linearly with the number of universities. Once we increase the number
of client nodes, the instance retrieval time is reduced. Since the initial filter step can be
distributed easily - because of the independence of distinct one step nodes - the retrieval
time for four nodes is almost 1

4
compared to one node. Retrieval tests for other atomic

concept descriptions yield similar results.

In Figure 6.14, we show instance retrieval times for the concept descriptions Chair (top)
and University (bottom) for up to 10000 universities (one node only). For retrieving
all the Chair-instances from the ontology, the time increases linearly with the number
of universities (linear number of answers). The query answering time for retrieving all
the University-instances is constant (constant number of answers). Please note that
our experiments indicate that the underlying database system is dominating the instance
retrieval time for the Chair-query. The actual determination of the solution islands takes
less than one second even for 10000 universities.

Figure 6.14 Instance retrieval times for LUBM 10000

6.2.2 CASAM Multimedia Content Ontology

The CASAM project is focused on computer-aided semantic annotation of multimedia
content. The novelty is the aggregation of human and machine knowledge. For a detailed
discussion of the research objectives, see [GMN+10], [PTP10], and [CLHB10]. Within

6. SYSTEM DESCRIPTION AND EVALUATION 136

Figure 6.15 Excerpt of the MCO concept classification

Thing

MCO-Thing

BoundingBoxMultimediaContent MultimediaSegment SegmentLocator

AudioContent

ImageContent

...

AudioSegment

ImageSegment

...

AudioLocator

ImageLocator

...

Figure 6.16 Excerpt of the MCO role classification

nextTextSegment

nextTextContent

depicts

hasInterpretation

associatedWith

correlatesWith

belongsTo

o

d

m

the CASAM project, there is a need to define an expressive annotation language which
allows for typical-case reasoning systems. The proposed annotation language is defined
by the so-called Multimedia Content Ontology, short MCO, introduced in [GMN+09].
Inspired by the MPEG-7 standard, see [IF02], strictly necessary elements describing the
structure of multimedia documents are extracted. The intention is to exploit quantita-
tive and qualitative time information in order to relate co-occurring observations about
events in videos. Co-occurrences are detected either within the same or between different
modalities, i.e. text, audio and speech, regarding the video shots.

In the following, we present small excerpts of MCO as far as relevant for understanding
our evaluation results. A part of the concept classification is shown in Figure 6.15.

An excerpt of the role classification is shown in Figure 6.16. The role descriptions are
used to relate multimedia objects with each other. Please note that role description
correlatesWith and its subroles are used to represent quantitative information as quali-
tative information. The roles d, m, and o are derived from the Allen-relations [All83], and
represent disjoint, meets, and overlapping relations, respectively. The role descriptions
depicts and hasInterpretation map individuals of the MCO to observations/elements of an
analysis module. Different interpretations are related for instance by the role description
associatedWith. For more details about MCO please refer to [GMN+09].

6. SYSTEM DESCRIPTION AND EVALUATION 137

Figure 6.17 MCO ABox example

m1

vc1 ac1

vs1

as1 as2

vl2 vl1 al1 al2

hasLogicalDecomposition

hasMediaDecomposition
hasMediaDecomposition

hasSegmentLocator

m d m

MultimediaDocument

AudioContentVideoContent

VideoSegment

AudioSegment

hasSegmentLocator

AudioLocatorVideoLocator

An excerpt of a multimedia document described with MCO is depicted in Figure 6.17.
The ABox excerpt contains the description of a multimedia document m1, which has
video and audio content. The video content, named vc1, has a video segment vs1. The
audio content, named ac1, is decomposed into several audio segments, such as as1 and
as2. Each segment is associated with a locator and the locators are related by qualitative
spatial/temporal relations.

For our evaluation with respect to MCO, we have a number of multimedia documents
from the CASAM project. The source ontologies can be found in [CAS10]. The set of
test ontologies contains documents with identifiers ranging from 1 to 14. Each document is
decomposed into several so-called delta files. Each delta represents additional information
about the document of concern. We evaluated our modularization techniques with respect
to all documents. Here we only show the results for Document 1, since for all the other
documents we obtained very similar statistics.

In Figure 6.18, we show the number of individuals in the dataset, with an increasing delta.
It can be seen that most individuals are introduced in the first delta files. The remaining
delta files only introduce additional ABox assertions about already known individuals.
The number of ABox assertions for different delta is also shown in Figure 6.18. Please
note that the number of individuals, as well as the number of ABox assertions is not linear
in the number of delta. Thus, a MCO document cannot be directly used for evaluation
purposes. At least one would have to consider the number of individuals up to the delta
to extract more clear scalability results.

6. SYSTEM DESCRIPTION AND EVALUATION 138

Figure 6.18 Number of individuals and ABox assertions in Document 1

0
300
600
900

1 5 10 15 20

ind
ivid

ual
s

delta

0
400
800

1.200
1.600
2.000

1 5 10 15 20

ass
ert

ion
s

delta

In the following, we investigate the efficiency of ABox modularization techniques from
Chapter 3. First of all, please note that component-based modularization of Document
1 yields one big module. This is true for all the other documents as well. Since only one
ABox module is obtained, we do not provide any further statistics for component-based
modularization.

The results for SHI-splittability (from Definition 3.18) with respect to MCO Document
1 are shown in Figure 6.19 with the label std. The dataset for delta 1 contains 524 role
assertions, out of which 504 are SHI-splittable. This means that only 3 percent of the
role assertions are SHI-unsplittable. This ratio decreases with a growing number of
deltas, because only SHI-splittable role assertions are added. All SHI-unsplittable role
assertions have the transitive role nextTextContent. In addition, no other kinds of role
assertions are SHI-unsplittable.

Figure 6.19 Percentage of unsplittable role assertions in Document 1

0,00%
1,00%
2,00%
3,00%
4,00%
5,00%

1 5 10 15 20

rol
e a

sse
rtio

n
un

spl
itta

bil
ity

delta

std

ext

Again, we have investigated an extended SHI-splittability criteria, such that role asser-
tions with transitive roles are splittable if all propagated concept descriptions are enforced

6. SYSTEM DESCRIPTION AND EVALUATION 139

by simple domain- or range-restrictions. The result for the extended splittability criterion
are shown in Figure 6.19 with the label ext. For the extended criterion and any delta, no
more role assertion is unsplittable, i.e. all role assertions in the ontology can be split up.

Figure 6.20 Number of modules in Document 1

0
200
400
600

1 5 10 15 20

nu
mb

er
of

mo
du

les

delta

std

ext

Given the set of splittable role assertions, we can determine the number of ABox modules
for different delta. The results are shown in Figure 6.20. For component-based mod-
ularization, one big module is obtained, since each individual is related to each other
individual by a chain of role assertions. With respect to SHI-splittability, we obtain
326 modules for five delta and 545 modules for 20 delta. With the extended criterion
for splittability, i.e. improved handling of transitive roles, the number of modules can be
further increased, as expected. For instance, for five delta we obtain 346 modules, instead
of 326. Please remember that the number of individuals with five delta is 346. Each ABox
module contains in average one individual.

In order to further evaluate the quality of ABox modules, we show the average size
(measured in number of ABox assertions) of the modules in Figure 6.21. For component-
based modularization, the module is as big as the whole ABox (not shown). With respect
to SHI-splittability, the average size is between two and three ABox assertions per ABox
module.

Figure 6.21 Average size of modules in Document 1

0
1
2
3
4

1 5 10 15 20

ave
rag

e
mo

du
le

siz
e

delta

std
ext

6. SYSTEM DESCRIPTION AND EVALUATION 140

Figure 6.22 Number of distinct one-step nodes for Document 1

0
30
60
90

120

1 5 10 15 20on
e s

tep
 no

de
s

delta

osn

compl. osn

Next, we have evaluated the number of distinct one-step nodes for different number of
delta. The result is shown in Figure 6.22. It can be seen that the number of distinct
one-step nodes is relatively constant - after most individuals are introduced in the third
and fourth delta. Thus, in this case, one-step nodes can indeed be a candidate for a
proxy reasoning structure, which exploits the local similarity to group individuals. In
Figure 6.22, we show the percentage of distinct complete one-step nodes as well. Around
98 percent of the one-step nodes are complete for each LUBM delta. Thus, for 98 percent
of the one-step nodes we can perform sound and complete reasoning over individuals
directly.

We do not provide any scalability statistics for the MCO ontology here, since the number
of assertions is so small that one document is loaded within few seconds by our prototypical
implementation.

7. CONCLUSIONS 141

Chapter 7: Conclusions

The main goal of this thesis was to release the main memory dependency from tableau-
based description logic reasoning systems. We focused on the semi-expressive description
logic SHI, which can be seen as a first step towards more expressive description logics.

The modularization of the assertional part of ontologies was our main idea. We have
derived a criterion, called SHI-splittability, for the modularization of the ABox of an
input ontology. The main technique used for modularization of ABoxes are ABox splits,
which break up an role assertions in an ABox if particular conditions are satisfied. Role
assertions can be broken up if, for instance, only obvious information is propagated. A
graph component-based modularization can be used to extract a set of modules out of the
ABox after breaking up all SHI-splittable role assertions. Traditional description logic
algorithms can then be used to reason over these ABox modules.

One might think that additional axioms in an ontology always makes reasoning more
hard. An interesting side effect is that our modularization techniques show that additional
axioms in the TBox can help to reduce the average size of ABox modules, and thus, can
reduce instance checking and instance retrieval times.

Based on modularization techniques, we have introduced the notion of individual islands
for individuals in ABoxes. These individual islands can be used for sound and complete
instance checking. Our evaluation shows that these individual islands are usually quite
small and fit into main memory.

In order to improve instance retrieval over description logic ontologies, we have introduced
a similarity measure over individual islands. Similarity among individual islands can be
used to significantly reduce the number of instance checks necessary for instance retrieval.
Our evaluation showed that many individual islands are similar to each other - for a
synthetic benchmark ontology as well as a real world multimedia ontology.

Please note that similarity of two individual (islands) is not only a means to optimize in-
stance retrieval. It could also be used to create statistics about individuals in an ontology,
i.e., create a kind of summarization. These summarizations can be even more important
in stream-like data processing, such that differences between summarizations can give the
user details about differences of ontology (ABox) snapshots.

We think that in the future updates over ontologies and stream-like processing of ontolo-
gies will become more important. Therefore, we have provided updatable data structures
which enable incremental modularization of the assertional part of ontologies. Our eval-
uation showed that our prototypical implementation scales for the test ontologies. Last
but not least, we have described our prototypical implementation in detail.

7. CONCLUSIONS 142

During the creation of the thesis, additional related work was published. We think that
this work underlines the importance of our results and that our contribution is still valu-
able to the research community. We summarize some of the related work below.

In [LW10], the authors investigate inseparability of ontologies with respect to a given
signature. This technique, for the lightweight description logic EL, can possibly be used
in order to extract modules from ontologies and also in order to define similarity of
modules with respect to a signature. In [KLPW10], the authors apply similar techniques
in order to define decompositions of ontologies. It is shown that the decomposition is
tractable for the description logic EL and not more complex than concept subsumption
for more expressive description logics. The main difference to our results is that we focused
on ABox modularization directly for semi-expressive ontologies and use pure syntactical
analysis in order to define modules (or decompositions). Furthermore, we have already
considered updating modularizations.

In [TL10], the authors propose an index data structure for RDF data. The intention is to
find similarities over instances in the RDF dataset by using bisimulations, i.e. something
quite similar to our approach based on graph homomorphisms. The authors group bisim-
ilar graph substructures, in order to reduce the complexity of query answering. The main
difference to our modularization techniques is that we take the terminology into account
for modularizing ABoxes. And then we try to find similarities among the (already small)
modules. Furthermore, we focus on a semi-expressive description logic - not a plain graph
structure. Updating the structure index is still open work in [TL10].

Another line of research leads to the approximation of reasoning over description logic
ontologies. In [TGH10], it is discussed how approximate reasoning techniques can be used
for more efficient instance retrieval. The main contribution of [TGH10] is the extension
of efficient instance retrieval techniques for non-atomic concept assertions. They use so-
called approximate extensions in order to reduce instance retrieval to atomic concepts.
In [RPZ10], approximation of very expressive TBoxes is discussed. The authors convert
input ontologies into EL++-ontologies and then use reasoning results over these EL++-
ontologies for reasoning over the input ontology.

We think that these recent developments confirm the research goals stated at the begin-
ning of this thesis. Due to the increased interest in the development of Semantic Web
applications, efficient instance retrieval and query answering becomes more important
every day. Our work can be seen as another step towards more efficient reasoning on the
Semantic Web.

In the following, we would like to discuss interesting directions for future work. The effec-
tiveness of our modularization techniques can be further improved. For instance, TBox
modularization techniques can contribute to smaller ABox modularizations. If we are able
to split up the TBox into different modules, we could create one ABox modularization
for each TBox module. Since each TBox module only contains a subset of assertions
from the original TBox, it is clear that additional role assertions become SHI-splittable.
However, it needs to be shown whether the overhead of several ABox modularizations in
parallel, one for each TBox module, actually pays off. In addition, we think that further

7. CONCLUSIONS 143

optimizations of our modularization techniques are possible. So far, we focused on the
entailment of atomic concept descriptions. The number of SHI-splittable role assertions
might increase if the vocabulary is known and restricted beforehand.

An extension from the semi-expressive description logic SHI to SHIQ should be possible.
Although our proof techniques are not directly applicable, we think that a syntactical
analysis of the TBox and RBox can be used to identify a set of SHIQ-unsplittable role
assertions. Our homomorphism-based similarity criteria for individuals cannot be directly
applied in the presence of cardinality restrictions. Further extensions, for instance to
SHOIQ, might be possible, but will surely require a lot of work and sophisticated analysis
techniques.

Another direction for future work is the focus on more expressive query languages. While
we focus on instance checking and instance retrieval, the next natural step is conjunctive
query answering [GHLS07]. We think that query answering with respect to the class
of grounded conjunctive queries, i.e. solutions are only bound to named individuals in
the ABox, is straightforward. One would have to combine the results from sound (and
complete reasoning) in order to identify possible variable bindings. The extension to
standard conjunctive queries is without doubt much harder.

Since rules over ontologies have become more important recently, it would be interesting
to implement a rule-based query answering engine on top of our ABox modularizations.
We already performed first tests. By syntactical analysis of rule bodies we decided which
individual islands have to be extended/merged. The first results are quite encouraging.

Finally, more comprehensive experimental studies are required. Recently published work
[SCH10] on new data generation algorithms for synthetic test ontologies might be a good
place to start from. In general, we believe that our results carry over to other ontologies.
However there exist scenarios, especially extensive use of transitive roles, which make it
much harder to find fine-grained ABox modularizations.

REFERENCES 144

References

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite Family and Relations. J. Artif. Intell. Res.
(JAIR), 36:1–69, 2009.

[AFWZ02] Alessandro Artale, Enrico Franconi, Frank Wolter, and Michael Za-
kharyaschev. A Temporal Description Logic for Reasoning over Conceptual
Schemas and Queries. In Proceedings of the European Conference on Log-
ics in Artificial Intelligence, JELIA ’02, pages 98–110, London, UK, 2002.
Springer-Verlag.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, 1983.

[Baa90] Franz Baader. Terminological cycles in KL-ONE-based knowledge represen-
tation languages. In Proceedings of the eighth National conference on Artifi-
cial intelligence - Volume 1, AAAI’90, pages 621–626. AAAI Press, 1990.

[Baa96] Franz Baader. Using Automata Theory for Characterizing the Semantics
of Terminological Cycles. Annals of Mathematics and Artificial Intelligence,
18(2–4):175–219, 1996.

[Baa99] Franz Baader. Logic-Based Knowledge Representation. In Artificial Intelli-
gence Today, pages 13–41. Springer-Verlag, 1999.

[Baa02] Franz Baader. Terminological Cycles in a Description Logic with Existential
Restrictions. LTCS-Report LTCS-02-02, Chair for Automata Theory, Insti-
tute for Theoretical Computer Science, Dresden University of Technology,
Germany, 2002. See http://lat.inf.tu-dresden.de/research/reports.html.

[BBH96] Franz Baader, Martin Buchheit, and Bernhard Hollander. Cardinality re-
strictions on concepts. Artificial Intelligence, 88(1-2):195–213, 1996.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope. In Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence IJCAI-05, Edinburgh, UK, 2005. Morgan-Kaufmann
Publishers.

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope further. In Kendall Clark and Peter F. Patel-Schneider, editors, In
Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and
Directions, 2008.

REFERENCES 145

[BBM+92] Ronald J. Brachman, Alexander Borgida, Deborah L. McGuinness, Peter F.
Patel-Schneider, and Lori Alperin Resnick. The CLASSIC Knowledge Rep-
resentation System or, KL-ONE: The Next Generation. In FGCS, pages
1036–1043, 1992.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook. Cambridge
University Press, New York, NY, USA, 2007.

[Bec04] Dave Beckett. RDF/XML Syntax Specification (Revised).
www.w3.org/TR/REC-rdf-syntax/, 2004.

[BH91] Franz Baader and Bernhard Hollunder. KRIS: Knowledge Representation
and Inference System. SIGART Bulletin, 2(3):8–14, 1991.

[BHLW03] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata for
description logics. In Moshe Vardi and Andrei Voronkov, editors, Proceedings
of the 10th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2003), volume 2850 of Lecture Notes in
Computer Science, pages 1–32. Springer, 2003.

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as Ontol-
ogy Languages for the Semantic Web. In Dieter Hutter and Werner Stephan,
editors, Mechanizing Mathematical Reasoning, volume 2605 of Lecture Notes
in Computer Science, pages 228–248. Springer, 2005.

[BKM99] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common
subsumers in description logics with existential restrictions. In IJCAI’99:
Proceedings of the 16th International Joint Conference on Artifical Intel-
ligence, pages 96–101, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[BKvH03] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An
Architecture for Storing and Querying RDF Data and Schema Informa-
tion. In Dieter Fensel, James A. Hendler, Henry Lieberman, and Wolfgang
Wahlster, editors, Spinning the Semantic Web, pages 197–222. MIT Press,
2003.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, 284(5):34–43, 2001.

[Bli89] Wayne D. Blizard. Multiset Theory. Notre Dame Journal of Formal Logic,
30(1):36–66, 1989.

[BM07] Dan Brickley and Libby Miller. The Friend Of A Friend (FOAF) vocabulary
specification. http://xmlns.com/foaf/spec/, November 2007.

[BS85] Ronald J. Brachman and James G. Schmolze. An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9(2):171–216, 1985.

REFERENCES 146

[BS00] F. Baader and U. Sattler. Tableau Algorithms for Description Logics. In
R. Dyckhoff, editor, Proceedings of the International Conference on Auto-
mated Reasoning with Tableaux and Related Methods (Tableaux 2000), vol-
ume 1847 of Lecture Notes in Artificial Intelligence, pages 1–18, St Andrews,
Scotland, UK, 2000. Springer-Verlag.

[BS01] Franz Baader and Ulrike Sattler. An Overview of Tableau Algorithms for
Description Logics. Studia Logica, 69(1):5–40, 2001.

[BS03] Alexander Borgida and Luciano Serafini. Distributed Description Logics:
Assimilating Information from Peer Sources. J. Data Semantics, 1:153–184,
2003.

[BW97] Alexander Borgida and Grant E. Weddell. Adding Uniqueness Constraints
to Description Logics (Preliminary Report). In François Bry, Raghu Ra-
makrishnan, and Kotagiri Ramamohanarao, editors, DOOD, volume 1341 of
Lecture Notes in Computer Science, pages 85–102. Springer, 1997.

[CAS10] Test Documents CASAM. MCO test documents. http://http://www.sts.tu-
harburg.de/˜wandelt/casamtest.zip, 2010.

[CDGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-
erini, and Riccardo Rosati. DL-Lite: Tractable description logics for ontolo-
gies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005),
pages 602–607, 2005.

[CdK08] Ronald Cornet and Nicolette de Keizer. Forty years of SNOMED: A literature
review. BMC Med Inform Decis Mak, 8 Suppl 1:S2, 2008.

[CLHB10] Chris Creed, Peter Lonsdale, Robert Hendley, and Russell Beale. Synergistic
annotation of multimedia content. In Proceedings of the 2010 Third Interna-
tional Conference on Advances in Computer-Human Interactions, ACHI ’10,
pages 205–208, Washington, DC, USA, 2010. IEEE Computer Society.

[DFK+07] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum, Edith
Schonberg, Kavitha Srinivas, and Li Ma. Scalable semantic retrieval through
summarization and refinement. In AAAI’07: Proceedings of the 22nd national
conference on Artificial intelligence, pages 299–304. AAAI Press, 2007.

[DFK+09] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg, and
Kavitha Srinivas. Scalable highly expressive reasoner (SHER). Web Se-
mantics: Science, Services and Agents on the World Wide Web, 7(4):357 –
361, 2009. Semantic Web challenge 2008.

[DLN+98] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic
operator for description logics. Artif. Intell., 100(1-2):225–274, 1998.

[DM00] Francesco M. Donini and Fabio Massacci. Exptime tableaux for ALC. Artif.
Intell., 124:87–138, November 2000.

REFERENCES 147

[DS05] Andreas Doms and Michael Schroeder. GoPubMed: exploring PubMed with
the Gene Ontology. Nucleic Acids Research, 33(Web-Server-Issue):783–786,
2005.

[FKM+06] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha
Srinivas. The Summary Abox: Cutting Ontologies Down to Size. In Isabel
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Mike Uschold, and Lora Aroyo, editors, The Semantic Web - ISWC
2006, volume 4273 of Lecture Notes in Computer Science, pages 343–356.
Springer Berlin / Heidelberg, 2006.

[Fra11] Franz Inc. Allegrograph. http://www.franz.com/agraph/, 2011.

[FS06] Ulrich Furbach and Natarajan Shankar, editors. Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-
20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer Science.
Springer, 2006.

[GF92] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version
3.0 Reference Manual. Technical Report Logic-92-1, Stanford University,
Stanford, CA, USA, 1992.

[GFW08] Marcos André Gonçalves, Edward A. Fox, and Layne T. Watson. Towards
a digital library theory: a formal digital library ontology. Int. J. on Digital
Libraries, 8(2):91–114, 2008.

[GHKS09] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler.
Extracting Modules from Ontologies: A Logic-Based Approach. In Heiner
Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors, Mod-
ular Ontologies, volume 5445 of Lecture Notes in Computer Science, pages
159–186. Springer, 2009.

[GHLS07] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive
Query Answering in the Description Logic SHIQ. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007), 2007.

[GHS08] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of Conjunctive
Queries in SHOQ. In Proceedings of the 11th International Conference on
the Principles of Knowledge Representation and Reasoning (KR 2010), pages
252–262. AAAI Press/The MIT Press, 2008.

[GMN+09] O. Gries, R. Möller, A. Nafissi, K. Sokolski, and M. Rosenfeld. CASAM
Domain Ontology. Technical report, Hamburg University of Technology,
2009.

[GMN+10] Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokol-
ski, and Michael Wessel. A Probabilistic Abduction Engine for Media Inter-
pretation Based on Ontologies. In Pascal Hitzler and Thomas Lukasiewicz,

REFERENCES 148

editors, RR, volume 6333 of Lecture Notes in Computer Science, pages 182–
194. Springer, 2010.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[GPSK06] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur.
Modularity and web ontologies. In Proceedings of KR-2006, pages 198–209.
AAAI Press, 2006.

[GR10] Birte Glimm and Sebastian Rudolph. Status QIO: Conjunctive query entail-
ment is decidable. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Conference (KR 2010), 2010.

[Gru09] Tom Gruber. Ontology. In Ling Liu and M. Tamer Özsu, editors, Encyclo-
pedia of Database Systems, pages 1963–1965. Springer US, 2009.

[Gua98] N. Guarino. Formal Ontology in Information Systems: Proceedings of the 1st
International Conference June 6-8, 1998, Trento, Italy. IOS Press, Amster-
dam, The Netherlands, 1st edition, 1998.

[HB09] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for
working with OWL 2 ontologies. In Rinke Hoekstra and Peter F. Patel-
Schneider, editors, OWLED, volume 529 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009.

[HH08] Zhisheng Huang and Frank Harmelen. Using Semantic Distances for Rea-
soning with Inconsistent Ontologies. In Proceedings of the 7th International
Conference on The Semantic Web, ISWC ’08, pages 178–194, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[HKP+09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider,
and Sebastian Rudolph. OWL 2 Web Ontology Language Primer. W3C
Recommendation, World Wide Web Consortium, October 2009.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible
SROIQ. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty,
editors, Proceedings, Tenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2006), Lake District of the United
Kingdom, pages 57–67. AAAI Press, 2006.

[HM04] Volker Haarslev and Ralf Moeller. Optimization Techniques for Retrieving
Resources Described in OWL/RDF Documents: First Results. In Ninth
International Conference on the Principles of Knowledge Representation and
Reasoning, KR 2004, pages 2–5, 2004.

[HM08] Volker Haarslev and Ralf Möller. On the Scalability of Description Logic
Instance Retrieval. J. Autom. Reason., 41(2):99–142, 2008.

REFERENCES 149

[HMS04] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ-Description
Logic to Disjunctive Datalog Programs. In Didier Dubois, Christopher A.
Welty, and Mary-Anne Williams, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Ninth International Conference
(KR2004), Whistler, Canada, pages 152–162. AAAI Press, 2004.

[HMW04] V. Haarslev, R. Möller, and M. Wessel. Querying the Semantic Web with
Racer + nRQL. In Proceedings of the KI-2004 International Workshop on
Applications of Description Logics (ADL’04), Ulm, Germany, September 24,
2004.

[Hor98] Ian Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixth International Con-
ference (KR’98), pages 636–647. Morgan Kaufmann Publishers, San Fran-
cisco, California, June 1998.

[HS99] Ian Horrocks and Ulrike Sattler. A Description Logic with Transitive and
Inverse Roles and Role Hierarchies. J. Log. Comput., 9(3):385–410, 1999.

[HS01] Ian Horrocks and Ulrike Sattler. Ontology Reasoning in the SHOQ(D) De-
scription Logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001, pages 199–204. Morgan Kaufmann, 2001.

[HS07] Ian Horrocks and Ulrike Sattler. A Tableau Decision Procedure for SHOIQ.
J. Autom. Reason., 39(3):249–276, 2007.

[HST00a] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expres-
sive Description Logics. Logic Journal of the IGPL, 8(3):239–264, 2000.

[HST00b] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with Individ-
uals for the Description Logic SHIQ. In CADE-17: Proceedings of the 17th
International Conference on Automated Deduction, pages 482–496, London,
UK, 2000. Springer-Verlag.

[HT73] John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph
manipulation [H] (Algorithm 447). Commun. ACM, 16(6):372–378, 1973.

[HVHT05] Zhisheng Huang, Frank Van Harmelen, and Annette Ten Teije. Reason-
ing with inconsistent ontologies. In Proceedings of the 19th International
Joint Conference on Artificial intelligence, pages 454–459, San Francisco,
CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[HWPS06] Christian Halaschek-Wiener, Bijan Parsia, and Evren Sirin. Description
Logic Reasoning with Syntactic Updates. In Robert Meersman and Zahir
Tari, editors, OTM Conferences (1), volume 4275 of Lecture Notes in Com-
puter Science, pages 722–737. Springer, 2006.

REFERENCES 150

[IF02] ISO/IEC15938-5FCD. Multimedia Content Description Interface (MPEG-7).
http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm, 2002.

[Kir06] Atanas Kiryakov. OWLIM: Balancing between scalable repository and light-
weight reasoner. In Proc. of WWW2006, Edinburgh, Scotland, 2006.

[KKS09] Sebastian Ryszard Kruk, Ewelina Kruk, and Katarzyna Stankiewicz. Eval-
uation of Semantic and Social Technologies for Digital Libraries. In Sebas-
tian Ryszard Kruk and Bill McDaniel, editors, Semantic Digital Libraries,
pages 203–214. Springer, 2009.

[KL04] Eldar Karabaev and Carsten Lutz. Mona as a DL Reasoner. In Volker
Haarslev and Ralf Möller, editors, Description Logics, volume 104 of CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

[KLPW10] Boris Konev, Carsten Lutz, Denis Ponomaryov, and Frank Wolter. Decom-
posing Description Logic Ontologies. In Fangzhen Lin and Ulrike Sattler,
editors, Proceedings of the 12th International Conference on Principles of
Knowledge Representation and Reasoning (KR2010). AAAI Press, 2010.

[KLW94] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching
strategies to improve disk system performance. Computer, 27(3):38–46, 1994.

[KN03] Yevgeny Kazakov and Hans De Nivelle. Subsumption of concepts in FL0
with respect to descriptive semantics is PSPACE-complete. In In Proc. DL
03. http://CEUR-WS.org/Vol-81, 2003.

[Knu81] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminu-
merical Algorithms, 2nd Edition. Addison-Wesley, 1981.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability
in knowledge representation and reasoning. Computational Intelligence, 3:78–
93, 1987.

[Luk08] Thomas Lukasiewicz. Expressive probabilistic description logics. Artif. In-
tell., 172(6-7):852–883, 2008.

[Lut03] C. Lutz. Description Logics with Concrete Domains—A Survey. In Philippe
Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, edi-
tors, Advances in Modal Logics Volume 4. King’s College Publications, 2003.

[LW10] Carsten Lutz and Frank Wolter. Deciding inseparability and conservative
extensions in the description logic EL. Journal of Symbolic Computation,
45(2):194–228, 2010.

[Min74] Marvin Minsky. A Framework for Representing Knowledge. Technical report,
MIT-AI Laboratory, Cambridge, MA, USA, 1974.

REFERENCES 151

[Mot08] Boris Motik. KAON2 - Scalable Reasoning over Ontologies with Large Data
Sets. ERCIM News, 2008(72), 2008.

[MP06] Lutz Maicher and Jack Park, editors. Charting the Topic Maps Research
and Applications Landscape, First International Workshop on Topic Maps
Research and Applications, TMRA 2005, Leipzig, volume 3873 of Lecture
Notes in Computer Science. Springer, 2006.

[MW88] David Maier and David Scott Warren. Computing with Logic: Logic Pro-
gramming with Prolog. Benjamin/Cummings, 1988.

[Neb94] Bernhard Nebel. Base Revision Operations and Schemes: Semantics, Repre-
sentation, and Complexity. In Proceedings of the 11th European Conference
on Artificial Intelligence, pages 341–345. John Wiley and Sons, August 1994.

[PS98] Peter F. Patel-Schneider. DLP System Description. In Enrico Franconi,
Giuseppe De Giacomo, Robert M. MacGregor, Werner Nutt, and Christo-
pher A. Welty, editors, Description Logics, volume 11 of CEUR Workshop
Proceedings. CEUR-WS.org, 1998.

[PSH07] Peter F. Patel-Schneider and Ian Horrocks. A comparison of two modelling
paradigms in the Semantic Web. J. Web Sem., 5(4):240–250, 2007.

[PSS93] Peter F. Patel-Schneider and B. Swartout. Description-Logic Knowledge
Representation System Specification. Technical report, KRSS Group of the
ARPA Knowledge Sharing Effort, November 1993.

[PTP10] Katerina Papantoniou, George Tsatsaronis, and Georgios Paliouras. KDTA:
Automated Knowledge-Driven Text Annotation. In José L. Balcázar,
Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, ECML/P-
KDD (3), volume 6323 of Lecture Notes in Computer Science, pages 611–614.
Springer, 2010.

[PTZ09] Jeff Z. Pan, Edward Thomas, and Yuting Zhao. Completeness Guaranteed
Approximations for OWL-DL Query Answering. In Bernardo Cuenca Grau,
Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, Description Logics,
volume 477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[Qui68] Ross Quillian. Semantic memory. In Semantic Information Processing, pages
216–270. MIT Press, 1968.

[RDE+07] Kurt Rohloff, Mike Dean, Ian Emmons, Dorene Ryder, and John Sumner.
An evaluation of triple-store technologies for large data stores. In Proceedings
of the 2007 OTM Confederated international conference on On the move to
meaningful internet systems - Volume Part II, OTM’07, pages 1105–1114,
Berlin, Heidelberg, 2007. Springer-Verlag.

[Rei77] Raymond Reiter. On Closed World Data Bases. In Logic and Data Bases,
pages 55–76, 1977.

REFERENCES 152

[RPZ10] Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness Preserving Approxi-
mation for TBox Reasoning. In Maria Fox and David Poole, editors, AAAI.
AAAI Press, 2010.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementation
of VAMPIRE. AI Commun., 15:91–110, August 2002.

[SBK+07] Stefan Schlobach, E. Blaauw, M. El Kebir, Annette ten Teije, Frank van
Harmelen, S. Bortoli, M. C. Hobbelman, K. Millian, Y. Ren, S. Stam,
P. Thomassen, R. C. van het Schip, and W. van Willigem. Anytime Classifi-
cation by Ontology Approximation. In Ruzica Piskac, Frank van Harmelen,
and Ning Zhong, editors, New Forms of Reasoning for the Semantic Web,
volume 291 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: preliminary
report. In Proceedings of the 12th International Joint Conference on Artifi-
cial intelligence - Volume 1, pages 466–471, San Francisco, CA, USA, 1991.
Morgan Kaufmann Publishers Inc.

[SCH10] Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks. How Incomplete
is your Semantic Web Reasoner? In Proc. of the 20th Nat. Conf. on Artificial
Intelligence (AAAI 10), pages 1431–1436. AAAI Publications, 2010.

[Smo88] Gert Smolka. A Feature Logic with Subsorts. LILOG-Report, 33:–1–1, 1988.

[Spa07] Bastian Spanneberg. Prototypische Implementierung eines Triple-Store-
basierten ALC-Reasoners. Technical report, Hamburg University of Tech-
nology, 2007.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–
53, 2007.

[SS89] Manfred Schmidt-Schaubß. Subsumption in KL-ONE is undecidable. In
Proceedings of the first international conference on Principles of knowledge
representation and reasoning, pages 421–431, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

[SSS91] Manfred Schmidt-Schauss and Gert Smolka. Attributive concept descriptions
with complements. Artif. Intell., 48:1–26, February 1991.

[Str05] Umberto Straccia. Towards a Fuzzy Description Logic for the Semantic Web
(Preliminary Report). In Asunción Gómez-Pérez and Jérôme Euzenat, edi-
tors, ESWC, volume 3532 of Lecture Notes in Computer Science, pages 167–
181. Springer, 2005.

[TGH10] Tuvshintur Tserendorj, Stephan Grimm, and Pascal Hitzler. Approximate
Instance Retrieval on Ontologies. In Database and Expert Systems Applica-
tions DEXA 2010, Bilbao, Spain, pages 503–511, 2010.

REFERENCES 153

[TL10] Duc Thanh Tran and Guenter Ladwig. Structure Index for RDF Data. In
Proceedings of the Workshop on Semantic Data Management (SemData) at
the 36th International Conference on Very Large Databases (VLDB2010).
VLDB Endowment, September 2010.

[Tob01] Stephan Tobies. Complexity results and practical algorithms for logics in
knowledge representation. The Computing Research Repository, 2001.

[TRKH08] Tuvshintur Tserendorj, Sebastian Rudolph, Markus Krötzsch, and Pascal
Hitzler. Approximate OWL-reasoning with Screech. In Diego Calvanese
and Georg Lausen, editors, RR, volume 5341 of Lecture Notes in Computer
Science, pages 165–180. Springer, 2008.

[TV03] Christoph Tempich and Raphael Volz. Towards a benchmark for Semantic
Web reasoners - an analysis of the DAML ontology library. In York Sure and
Óscar Corcho, editors, EON, volume 87 of CEUR Workshop Proceedings.
CEUR-WS.org, 2003.

[Vou08] M.A. Vouk. Cloud computing; Issues, research and implementations. In
Information Technology Interfaces, 2008. ITI 2008. 30th International Con-
ference on Information Technology, pages 31 –40, 2008.

[WA02] Michael Widenius and Davis Axmark. MySQL Reference Manual. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

	Abstract
	Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Reasoning in the Semantic Web
	1.2 Research Objectives and Scientific Contributions
	1.3 Dissemination Activities
	1.4 Outline

	2 Preliminaries
	2.1 Basic Preliminaries
	2.2 Description Logics
	2.2.1 Conceptual Language
	2.2.2 Ontologies
	2.2.3 Decision Problems for Ontologies
	2.2.4 Naming Schemes
	2.2.5 Reasoning Procedures

	2.3 Running Example

	3 Modularization
	3.1 Modularization Preliminaries
	3.1.1 ABox Modularization
	3.1.2 Tableau Run Compositions

	3.2 Component-based Modularization
	3.3 Intensional-based Modularization
	3.3.1 Technical Preliminaries
	3.3.2 Consistency-preserving ABox Splits for ALC
	3.3.3 Consistency-preserving ABox Splits for ALCH
	3.3.4 Consistency-preserving ABox Splits for ALCHI
	3.3.5 Consistency-preserving ABox Splits for SHI

	3.4 Concluding Remarks

	4 Islands, Simulations and One-Step Nodes
	4.1 Islands for Individuals
	4.2 Simulation over Individual Islands
	4.3 One-Step Nodes
	4.4 Reasoning Optimization
	4.4.1 Instance Checking
	4.4.2 Instance Retrieval

	4.5 Concluding Remarks

	5 Updates
	5.1 Syntactic Update Definitions
	5.2 Abstract Split Decision System
	5.3 Syntactic Update Structures
	5.3.1 Updatable Sound TBox Classification Structure
	5.3.2 Updatable Sound TBox Disjointness Structure
	5.3.3 Updatable forall-info Structure
	5.3.4 Updatable Complete RBox Structures

	5.4 Updatable Split Decision System
	5.4.1 Difference Bounds for Syntactic ABox Updates
	5.4.2 Difference Bounds for Syntactic RBox Updates
	5.4.3 Difference Bounds for Syntactic TBox Updates

	5.5 Updatable Reasoning Structures
	5.5.1 Updatable One-Step Node Map Structure
	5.5.2 Updatable Island Map Structure

	5.6 Concluding Remarks

	6 System Description and Evaluation
	6.1 System Description
	6.1.1 General Structure
	6.1.2 Data Loading and Management
	6.1.3 Query Answering

	6.2 Evaluation
	6.2.1 LUBM
	6.2.2 CASAM Multimedia Content Ontology

	7 Conclusions
	References

