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In aerospace systems design, conflicting disciplines and technologies are always involved in the design process.

There are often subjective decisions made in the conceptual design phase, and these subjective decisions have

significant impacts on the performance of the final design. Multicriteria decision analysis techniques can help

designers to effectively deal with such situations and make wise design decisions. The objective of this paper is to

explore the feasibility andaddedvalues of applyingmulticriteria decision analysis techniques in aircraft design. In the

first part of the paper, we establish a new optimization framework incorporating multicriteria decision analysis

techniques in aircraft conceptual design process. Then, we propose an improved multicriteria decision analysis

method to aggregate themultiple design criteria into one composite figure ofmerit for the optimization. The improved

multicriteria decision analysis method is able to maintain ranking consistency for the top-ranked alternative. In the

second part of the paper, we assess the subjective preferences from different designers in aircraft design process.We

solve the specification problem of weighting factors by using Latin hypercube sampling (LHS) with Dirichlet

distribution. Finally, we develop surrogate models for the multiple design criteria in terms of weighting factors to

perform the uncertainty assessment efficiently.

I. Introduction

A IRCRAFTare complex systems involving multiple disciplines,
among which human behavior is extremely difficult to quantify

and integrate intomathematical models;more advances are needed to
improve the design process for complex systems [1]. There are often
subjective decisions made in the conceptual design phase, and these
subjective decisions have significant impacts on the performance of
the final design. The single economic criterion, such as operating
cost, is not the only metric for technology evaluation as well as the
figure of merit for design optimization. When using classic direct
operating costs (DOC) to evaluate an aircraft, manufacturers run the
risk of designing aircraft types that are not fully suited to satisfy
long-term transportation needs [2,3]. In addition to the economic
consideration, there are several other criteria that need to be taken into
account in aircraft design and evaluation processes, such as
environmental impact and level of comfort. However, it is often
difficult to derive reliable transfer functions to convert these
nonmonetary criteria into monetary values [4]. One solution is to
apply multicriteria decision analysis (MCDA) techniques.
As an important field in operational research, MCDA is a process

that allows one to make decisions in the presence of multiple,
potentially conflicting criteria [5,6]. Common elements in the
decision analysis process are a set of design alternatives, multiple
decision criteria, and preference information representing one’s
attitude in favor of one criterion over another, usually in terms of
weighting factors. MCDA techniques help designers to evaluate the
overall performance of the design alternatives. Furthermore, MCDA
techniques are helpful in the generation, analysis, and optimization of
design solutions.
Although MCDA as a discipline has a relatively short history of

about 40 years, several techniques have been developed to deal with
different decision problems. For instance, the analytical hierarchy
process (AHP) decomposes hierarchy decision problems into a

series of pairwise comparisons [7]; elimination and choice translation
reality (ELECTRE) methods classify candidate alternatives into
nondominated alternatives and dominated alternatives [8]; prefer-
ence ranking organization method for enrichment evaluations
(PROMETHEE) provides a valued preference relationship among
alternatives [9]; and the technique for order preference by similarity
to ideal solution (TOPSIS) ranks candidate alternatives based on
Euclidean distances [10].
There are typically three strategies to incorporate MCDA

techniques in multicriteria decision problems: a priori approach, a
posterior approach, and an interactive approach. In the a priori
approach, MCDA techniques are used to aggregate the multiple
design criteria into one figure ofmerit. Then, optimization techniques
are applied to search for the most preferred design solution, with the
composite figure ofmerit serving as a single objective function. In the
a posteriori approach, optimization techniques are applied first to
search for a set of nondominated solutions, usually in terms of a
Pareto front. Then, MCDA techniques are used to select the most
preferred design solution from the Pareto front, taking multiple
evaluation criteria into consideration simultaneously. In the
interactive approach, preference information is specified iteratively
during the optimization process. In this paper, the a priori approach of
incorporating MCDA techniques in multicriteria decision problems
is further investigated, where a designer involves as a decisionmaker.
The a priori approach can support designers to quickly assess the

compromised design alternatives and be capable of dealingwith large
number of objectives. One of the classical a priori approaches is
the weighted-sum method, where weighting factors represent the
importance of objectives and all objectives have to be normalized.
The weighted-sum method has advantages in that multi-objectives
are reduced to a single objective function and traditional optimization
methods can be used [11]. However, the weighted-sum method
suffers from the specification problem of weighting factors and the
normalization method [11]. Additionally, Marler and Arora showed
that the weighted-sum method provided only a linear approximation
of the preferences, and the final solution may not accurately reflect
one’s initial preferences [12].
Furthermore, MCDA techniques suffer from a ranking inconsis-

tency problem: the top-ranked alternative may change when an
alternative is removed fromor added to candidate alternatives. Belton
and Gear first observed the occurrence of ranking inconsistency in
AHP with the introduction of a nonoptimal alternative [13]. Keyser
and Peeters discussed the behavior of ranking inconsistency in
PROMETHEE, when a dominated alternative or a copy of another
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alternativewas added or deleted [14]. Chen revealed that the cause of
ranking inconsistency for TOPSIS lied in the determination of the
two hypothetical ideal solutions [15]. Wang and Triantaphyllou
investigated the ranking inconsistency in ELECTRE II and
ELECTRE III, when a nonoptimal alternative is randomly replaced
by a worse one [16]. Although the authors identified the occurrence
of ranking inconsistency in theseMCDAmethods, how tomitigate or
eliminate the ranking inconsistency issuewas not fully addressed and
solved.
In this paper, we establish a new multicriteria optimization

framework incorporating MCDA techniques in aircraft conceptual
design process. Then, we propose an improved MCDAmethod with
the capability of maintaining ranking consistency. Furthermore,
considering that the inherent uncertainty and subjectivity of
designer’s preferences have significant impact on the design solution,
an uncertainty assessment that demonstrates this impact must
consider different combinations of weighting factors. We solve the
specification problem of weighting factors by using LHS with
Dirichlet distribution. Finally, we develop surrogate models for
design criteria in terms of weighting factors to perform uncertainty
assessment efficiently.
The paper is organized as follows. Section II presents a literature

review of applying MCDA techniques in aircraft conceptual design
process. Section III proposes a new multicriteria optimization
framework with an improved MCDA method. In Sec. IV, surrogate
models for design criteria in terms of weighting factors are
developed. Finally, conclusions are drawn in Sec. V.

II. Literature Review

This section presents literature review of applying MCDA
techniques to solve multicriteria decision problems in aircraft
conceptual design process.
Bandte developed a probabilistic MCDA method for multicriteria

optimization and product selection [17]. With the combination of
multicriteria and probabilistic design, this method estimates the
probability of satisfying the criteria simultaneously. However, this
method does not consider the absolute location of joint probability
distribution [18]. Kirby used TOPSIS for the selection of technology
alternatives in aircraft conceptual and preliminary design [19].
However, the top-ranked alternative probably becomes inconsistent
when candidate alternatives are changed. Li developed amulticriteria
interactive decision-making advisor for the selection of the most
appropriateMCDAmethod [20]. However, only a fewmethods were
implemented, and uncertainty propagation was not addressed
explicitly. More recently, Lan et al. proposed a web-based computer-
aided system for airframe material selection in the aircraft design
process [21]. Messai et al. presented a decision support approach
based on lattice structures of the data in complex system design
process,with the application to theventilation system in aircraft cabin
design process [22]. Sullivan et al. investigated multicriteria
optimization using discrete and continuous design decision support
visualization schemes [23].
The modeling and incorporation of human subjectivity in

conceptual design process can help to obtain preferred designs.
Cvetkovic discussed decision support methods in engineering
conceptual design and developed a preference method, which
translates vague qualitative information into quantitative values
based on fuzzy preferences and graph theory [11]. Tappeta et al.
developed an interactive physical programming framework that takes
into account designer’s preferences during the optimization process
[24]. Gurnani and Lewis proposed to use bounded rationality to
improve solutions for convergent decentralized design problems
[25]. Hunt et al. used matrices to model designer’s preferences in
bicriteria design problems [26]. Huang and Bloebaum considered
designer’s preferences by incorporating specific objective ranges and
targets during the optimization process [27]. Barnum and Mattsony
presented a computationally assisted methodology for incorporating
designer’s preferences into successive iterations of design
concepts [28].

From these applications of MCDA techniques in multicriteria
decision problems, two observations can be formulated. First, direct
application of existing MCDA techniques in the design process
may suffer from a ranking inconsistency problem when candidate
alternatives are changed. Second, it is crucial to model and
incorporate designer’s preferences in the design process. Therefore,
this research investigates how to improve existingMCDA techniques
to maintain ranking consistency and how to model designer’s
preferences in aircraft design process.

III. New Multicriteria Optimization Framework

In this research, we establish a new multicriteria optimization
framework incorporating MCDA techniques in aircraft conceptual
design process, as illustrated in Fig. 1. We propose an improved
MCDA method to aggregate multiple design criteria into one
composite figure of merit for the optimization. The improvedMCDA
method is able to maintain ranking consistency when candidate
alternatives are changed. The proposed optimization framework
can support designers to quickly assess the compromised design
alternatives, which is especially valuable in aircraft conceptual
design stage.
We apply the proposed optimization framework to the design

of a conventional 150 passenger, twin-engine airliner with a design
range of 3200 km, using the conceptual aircraft design tool
VAMPzero (from “virtual aircraft multidisciplinary analysis and
design processes”). VAMPzero is developed at DLR, German
Aerospace Center and is licensed under the Apache 2.0 license [29].
In this section, we first discuss the identification ofmultiple design

criteria. Then, we propose an improved MCDA method for the
established multicriteria optimization framework. Last, we present
the optimization results for typical weighting scenarios.

A. Identification of Design Criteria

Selection of appropriate design criteria is critical to the
determination of an optimal design. Raymer provided some
recommendations [30]: the design criterion should represent a
nontrivial and calculable indication of the worth of the concept; it
should be significantly affected by the design variables and
constraints; it should have clear meaning to designers and customers;
and it needs clear rationale for methods and factors used for blending
if it is blended.
In this study, to explore the interrelationships among the interest of

manufacturers, the concern of fuel-based emissions, the concerns of
airliners, and the consideration of passenger comfort explicitly, four
design criteria are selected to feed into theMCDAmethod: operating
empty mass (OEM), fuel mass, utilization/block time, and passenger
density.
Annual utilization is the number of flight hours actually flown

annually by an aircraft or by a fleet of aircraft, while annual utilization
rate is a percentage of the flight hours actually flown relative to the
maximum theoretical available hours. In this paper, annual utilization
for an aircraft is further investigated. Table 1 explains how we
estimate the maximum operation hours for an aircraft [31].
Equation (1) shows annual utilization for an aircraft when we take

Fig. 1 Framework of incorporating MCDA techniques in aircraft
design process.
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into account its turnaround time [31]. Here, we assume that the
aircraft is grounded for a quarter of an hour to an hour (15 min taxi
time plus 30 min turnaround time, thus, in total, 45 min, or 0.75 h).
Block time calculates the time from engines on to engines off for

the design mission [32]. When dividing both sides of Eq. (1) with
block time, we can get the mathematical expression of annual
utilization/block time, as shown in Eq. (2). The ratio of utilization/
block time provides a rough estimation about the number of flight per
year for an aircraft. Passenger density is defined as the number of
passenger seats divided by cabin base area, where cabin base area is
calculated as the product of fuselage diameter and cabin length. Its
mathematical formula is given in Eq. (3).
Cabin length in Eq. (3) is an output parameter and is calculated by

Eq. (4) [33], where class layout factor is 1 for a single class layout,
and range type factor is 0.9 for a short-range aircraft type. The
number of passenger abreast in one row is calculated from the total
number of passengers in the aircraft. In the case of 150 passengers, it
is equal to 6. The aircraft in the example analysis is a single aisle with
six abreast configuration:

Annual Utilization � 4198

1� 0:75
Block time

(1)

Utilization∕�Block time� � 4198

0.75� Block time
(2)

Passenger Density � Number of passenger seats

Fuselage diameter � Cabin length
(3)

Cabin length � Number of passenger seats � Class layout factor
Range type factor � Number of passenger abreast

(4)

Attention should be paid that Eq. (1) for annual utilization does not
consider that the aircraft fly complete missions per day. From Table 1,
we can observe that an aircraft has 277 days for operation, considering
that the aircraft is operated six days per week and has six weeks
downtime for maintenance (365 − 52 − 36 � 277). Within these
277 days, the aircraft is allowed to be operated amaximumof 17 h due
to 7 h of airport night curfews. The number of complete missions that
can be flown per day is approximated by 17∕�block time�
turnaround time�. In this conceptual aircraft example, the design
range is 3200 km, and the cruise Mach number is between 0.70 and
0.84. The complete missions for an aircraft per day with lower speed
can be estimated by 3200∕�0.7 � 340 � 3.6� ≈ 3, while with higher
speed can be estimated by 3200∕�0.84 � 340 � 3.6� ≈ 4. The average
data approach using annual utilization in the current research might
not reflect if there would be an abrupt change point with speed.
Although this average data approach has less influence on the
performance evaluation for long range aircraft, it does have more
influence for short- and medium-range aircraft. This issue could be
addressed in future research.
The focus of the proposed optimization framework is to assess

the added values of incorporating MCDA techniques in aircraft
conceptual design process. Thus, to keep the design process
transparent, the complexity of the design problem is limited. We
consider five design variables for a conceptual aircraft design model:
wing thickness-to-chord ratio, wing aspect ratio, wing reference area,
cruiseMach number, and fuselage diameter. The constraints imposed
in the aircraft design process arewing span, fuel tank volume, takeoff

field length, landing field length, takeoff wing loading, and cruise
thrust. The design variables, constraints, and design criteria for this
simplistic aircraft design model are summarized in Table 2.
This problem formulation represents a simplistic aircraft design

model; an extended version that includes more design variables
and constraints could be analyzed in future research. The two
nonmonetary criteria of fuel mass and passenger density demonstrate
how to incorporate intangible design criteria in a multicriteria
optimization framework. Other representations of intangible design
criteria are of future interest.

B. Improved Technique for Order Preference by Similarity to Ideal

Solution Method

After the identification of the multiple design criteria, we propose
an improvedMCDAmethod to aggregate the multiple design criteria
into one composite figure of merit for the optimization. TOPSIS is
recommended by a multicriteria decision support system as the most
appropriate one to solve this aircraft design decision problem [34]. In
the TOPSIS method [5], two ideal solutions are hypothesized: a
positive ideal solution, which has all of the best criteria values, and a
negative ideal solution, which has all of the worst criteria values.
TOPSIS selects the alternative that is closest to the positive ideal
solution and farthest from the negative ideal solution.
For the purpose of illustration, we can imagine that TOPSIS puts

the alternatives into a coordinate system. For example, if there are
three criteria, it is a three-dimensional coordinate system, as shown in
Fig. 2, where the dot A� represents the positive ideal solution, and
the dot A− represents the negative ideal solution. TOPSIS ranks the
alternatives based on the Euclidean distance to these two ideal
solutions.
However, as discussed in Sec. I, the TOPSISmethod suffers from a

ranking inconsistency problem.When an alternative is removed from
or added to the candidate alternatives, the ideal solutions will
probably change, and the Euclidean distances to the ideal solutions
will also change. Thus, the top-ranked alternative may become
inconsistent when the candidate alternatives are changed.
In this study, an improved TOPSIS (ITOPSIS) is proposed to

aggregate the four design criteria into one figure of merit for the
optimization. The positive ideal solution and negative ideal solution
are calculated and set beforehand to maintain ranking consistency. In
this example, the calculation of these ideal solutions are obtained
through single objective optimizations for each of the four design
criteria, as shown in Fig. 3.
For instance, to find the ideal solutions for fuel mass, we conduct

minimization and maximization for fuel mass, respectively. The
minimum value of fuel mass serves as the positive ideal solution,
while the maximum value of fuel mass serves as the negative ideal
solution. The ideal solutions for the other three criteria are specified

Table 1 Estimation of the maximum operating hours [31]

Maximum operating hours per year 365 days � 24 h 8760 h∕year
Six days operation in a week −52 days � 24 h −1248 h∕year
Six weeks failure due to maintenance −36 days � 24 h −864 h∕year
Compliance with airport night
curfews (23:00–6:00)

−277 days � 7 h −1939 h∕year

Compliance with route plan −511 h∕year
Available operating hours 4198 h∕year

Table 2 Summary of design variables, constraints, and design
criteria in aircraft optimization process

Parameter Value

Design variables

Wing thickness-to-chord ratio [0.1, 0.2]
Wing aspect ratio [8, 12]
Wing reference area, m2 [80, 140]
Cruise Mach number [0.70, 0.84]
Fuselage diameter, m [3.8, 4.2]

Constraints

Wing span, m ≤36
Fuel mass, kg ≤Fuel density � fuel tank volume
Takeoff field length, m ≤3000
Landing field length, m ≤2000
Takeoff wing loading, kg∕m2 ≤600
Cruise thrust, N ≤0.9 Takeoff thrust

Design criteria

OEM, kg — —

Fuel mass, kg — —

Utilization/block time — —

Passenger density, passenger∕m2
— —
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in a similar way. These ideal solutions for the four design criteria are
summarized in Table 3. It should be noted that higher value of
utilization/(block time) ratio is preferred, while lower values of the
other three design criteria are preferred.

C. Optimization Results with Typical Weighting Scenarios

In previous sections,we identified four design criteria andproposed
an improved MCDA method (ITOPSIS) to aggregate the four design
criteria into one composite figure of merit for the optimization. In this
section, we investigate several typical weighting scenarios in the
optimization process, ranging from one single criterion to equally
preferred four design criteria. This is one approach to simulate
designers’ preferences. In this example, based on parametric studies,
all design variables under investigation are continuous, and objective
functions with respect to design variables in the conceptual aircraft
design tool (VAMPzero) are rather smooth. Therefore, gradient-based
methods are used in the optimization framework.Optimization results
for a single criterion are summarized in Table 4, and optimization
results with equal weighting factors among the four design criteria are
summarized in Table 5, respectively.
It can be seen from Table 4 that, when optimizing OEM, the

fuselage diameter is reduced to the lower boundary, the aspect ratio is
reduced by 14%, the reference area is decreased by 5%, and the
thickness-to-chord ratio is increased by 21%. The decrease of the
aspect ratio and reference area leads to a reduction in wing weight,
which contributes to a reduction in OEM. However, the decrease of
the aspect ratio and reference area and the increase of the thickness-
to-chord ratio result in an increment of the overall drag of the aircraft
and 9% reduction in the cruise Mach number. The reduction in the
cruiseMach number leads to a 5% decrease in utilization/block time.

Besides, the decrease of the fuselage diameter leads to a 5% increase
in the passenger density.
When optimizing the aircraft for fuel mass, the aspect ratio is

increased by 24%, the reference area is increased by 8%, and the
thickness-to-chord ratio is decreased by 6%. The increase of the
aspect ratio and reference area leads to a larger span and an increase in
wing weight, which further leads to the increase of OEM. Flying
slower (low cruise Mach number) can also reduce fuel consumption
for certain mission ranges. However, lower cruise Mach number
prolongs block time, and the utilization/block time ratio is decreased.
Because the overall drag of the aircraft can be reduced when the
wetted area of fuselage is reduced, fuselage diameter is decreased to
the lower boundary in the optimization process of fuel mass.
When optimizing the aircraft for utilization/block time, the cruise

Mach number is increased to the upper boundary, the fuselage
diameter is reduced so that thewet area of fuselage is reduced, and the
reference area is increased by 5%. The decrease of the fuselage
diameter and the increase of the reference area lead to the reduction of
the overall drag of the aircraft. However, the increase of the cruise
Mach number will burn more fuel for a specific mission range; thus,
fuel mass is increased by 19%. The increase of the reference area
leads to the increase of OEM. Besides, the decrease of the fuselage
diameter results in a 4% increase in the passenger density.
When optimizing the aircraft for passenger density, the fuselage

diameter is increased to its upper limit. The reference area is increased
slightly by 3%; the thickness-to-chord ratio, aspect ratio, and cruise
Mach number almost do not change. Although the utilization/block
time ratio has decreased slightly, all other criteria have been increased
by around 2.5%.
The conflicting design criteria are further explored when

weighting factors are evenly distributed, as summarized in Table 5.
The thickness-to-chord ratio is increased by 4%, the aspect ratio
almost does not change, the reference area is decreased by 4%, the
cruiseMach number is decreased by 2.5%, and the fuselage diameter
is decreased to its lower boundary. The reduction of OEM and fuel
mass is compromised by the decrease of utilization/block time ratio
and the increase of passenger density.
Considering the crucial impact of designer’s preferences on the

optimized design, the roles of designer’s preferences in the
multicriteria optimization framework will be further investigated in
the following section.

Fig. 2 TOPSIS in three-dimensional coordinate system.

Fig. 3 ITOPSIS in aircraft conceptual design process.

Table 3 Positive ideal solution and negative ideal
solution in ITOPSIS

Ideal
solutions

OEM Fuel
mass

Utilization/block
time

Passenger
density

Positive 36,943 11,767 796.86 1.2875
Negative 50,521 20,864 715.08 1.4063
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IV. Surrogate Model Development for Design Criteria

Having established the multicriteria optimization framework
shown in Fig. 1 in Sec. III, we now develop surrogate models for
design criteria in terms of weighting factors. As oneway to represent
designer’s preference information, weighting factors create a
compound figure of merit for the optimization. Different weighting
schemes result in different compound figures of merit. The selection
of figure of merit is critical to the determination of an optimal design
because, if a design is optimized to the wrong figure of merit, it will
not be the best design in terms of the real important measure. An
uncertainty assessment that demonstrates this crucial impact on the
design solution considers different combinations of the weighting
factors.
In this research, Monte Carlo simulation is used to imitate the

designer’s preference information among the design criteria.
However, the computation time for one set of weighting factors is at
least 5 min. A Monte Carlo-based uncertainty analysis with 1000
samples takes at least 84 h. The long computation time makes the
uncertainty assessment an expensive computational task.
In this study, to perform the uncertainty assessment efficiently,

surrogate models for the four design criteria in terms of weighting
factors are developed. Each point of this surrogate model represents
an optimized aircraft design for a given set of weighting factors. The
whole multicriteria optimization framework is treated as a black box.

An overview of surrogate modeling process for design criteria in
terms of weighting factors is shown in Fig. 4.
There are typically four steps in surrogate model building process:

sample the design space using experimental design, choose a model
to represent the input and output data, select amethod to fit themodel,
and validate the constructed model [35]. The surrogate model
development for design criteria in terms of weighting factors will
follow this process.

A. Experimental Design

To explore the design space thoroughly, an experimental design
with spatially uniform distribution is one effective approach. There
are several space-filling strategies [36], among which LHS is one
reliable method to generate random candidate samples, with the
guarantee that these samples are relatively uniformly distributed in
the design space [37].
In this study, the weighting factors fw1; w2; : : : ; wng generated

by the experimental design have to satisfy two conditions:
1) 0 ≤ wi ≤ 1, and 2)

P
n
i�1wi � 1. Standard LHS meets condition

1, which states that all of the factor settings range from 0 to 1.
However, for each experimental run, the sum of the factor settings
do not equal 1. In this research, to generate experimental designs
fulfilling conditions 1 and 2, the standard LHS is conducted first,
and then the samples generated by LHS are rectified by Dirichlet
distribution.
In the following sections, we first introduce themodifiedLHSwith

Dirichlet distribution, and then we present one example to compare
standard LHS, normalized LHS, and themodifiedLHSwithDirichlet
distribution.

1. Modified Latin Hypercube Sampling with Dirichlet Distribution

Dirichlet distribution is a family of continuous multivariate
probability distributions parameterized by a vector α � �α1;
α2; : : : ; αk; � of positive reals. Dirichlet distribution is one multi-
variate generalization of the beta distribution and is defined asEq. (5):

Dir�X; α� � Γ�α1 � α2 � : : : � αk�
Γ�α1�Γ�α2� : : :Γ�αk�

Y
�xα1−11 xα2−12 : : : xαk−1k � (5)

where X � �x1; x2; : : : ; xk−1�, satisfying xi > 0 and
P

k−1
i�1 xi < 1.

Besides, xk � 1 − x1 − x2 − : : : − xk−1. In a symmetric Dirichlet

Table 4 Optimization results for single criterion

Baseline design Minimum OEM Minimum fuel mass Maximum utilization/block time Minimum passenger density

Design variables

Wing thickness-to-chord ratio 0.13 0.1585 0.1220 0.1286 0.1301
Wing aspect ratio 9.4 8.0347 11.6740 9.3237 9.3608
Wing reference area, m2 122.40 116.18 132.05 128.53 125.77
Cruise Mach number 0.78 0.71 0.73 0.84 0.77
Fuselage diameter, m 4 3.8 3.8 3.9 4.2

Design criteria

OEM, kg 40,980 36,949 43,725 42,974 42,426
Fuel mass, kg 12,903 13,280 11,771 15,319 13,312
Utilization/block time 763 722 734 797 759
Passenger density, passenger∕m2 1.35 1.4211 1.4211 1.3863 1.2981

Table 5 Optimization results with equal weighting factors

Baseline
design

Optimized
design

Relative
change

Design variables

Wing thickness-to-chord
ratio

0.13 0.135 3.84%

Wing aspect ratio 9.396 9.414 0.19%
Wing reference area, m2 122.4 117.01 −4.40%
Cruise Mach number 0.78 0.76 −2.55%
Fuselage diameter, m 4 3.8 −5%

Design criteria

OEM, kg 40,980 38,705 −5.55%
Fuel mass, kg 12,903 12,242 −5.12%
Utilization/block time 763 752 −1.53%
Passenger density,
passenger∕m2

1.35 1.4211 5.26%

Fig. 4 Overview of surrogate modeling process for design criteria.
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distribution, the components of vector α are equal. If each
component of α is 1, then the symmetric Dirichlet distribution is
equivalent to a uniform distribution; if each component of α is bigger
than 1, then it prefers dense, evenly distributed distribution; and if
each component of α is smaller than 1, then it prefers sparse
distribution.

2. Example of Standard, Normalized, and Modified Latin Hypercube

Sampling with Dirichlet Distribution

We present one example of standard LHS, normalized LHS, and
the modified LHS with Dirichlet distribution. To generate 10 sets of
weighting factors for three criteria, standard LHS is conducted first,
as shown in Fig. 5, where S1, S2, and S3 represent the sample values
for the three criteria. It is noted that there is exactly one point in each

row and each column in the two-dimensional projections, and the
sample values range from 0 to 1 (which meets condition 1); however,
the sum of one set of the sample values is not equal to 1 (which does
not meet the condition 2).
Thus, to fulfill condition 2, standard LHS can be normalized by its

row sum, as shown in Fig. 6, whereLw1,Lw2, andLw3 represent the
normalized sample values for the three criteria. We can observe that
the range of the normalized sample values shrinks into 0 to 0.8.
Moreover, there is no point in the bins bigger than 0.8; thus, the
hypercube is deformed, and the Latin properties are not maintained.
The modified LHS with Dirichlet distribution is shown in Fig. 7,

whereLDw1,LDw2, andLDw3 represent the samplevalues rectified
byDirichlet distribution for the three criteria.We can observe that the
range of the sample values are recovered from 0 to 1, although there is

Fig. 5 Standard LHS in three dimensions and with two-dimensional projections.

Fig. 6 Normalized LHS in three dimensions and with two-dimensional projections.
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not exactly one point in each row and each column in the two-
dimensional projections. We should note that, when using the
modified LHS with Dirichlet distribution, although the modified
sample values are not strictly uniform any more, Dirichlet dis-
tribution can keep the ranges of the sample values larger once they are
normalized, while maintaining the appealing Latin properties.
In this study, 100 sets of weighting factors are generated by the

modified LHS with Dirichlet distribution. The weighing factors
reflect the relative importance of the design criteria. For instance, a set
of weighting factors W1 � � 0.4333 0.0176 0.3719 0.1772 �
indicates that the first design criterion (OEM) is most important,
followed by the third design criterion (utilization/block time) and the
fourth design criterion (passenger density), while the second design
criterion (fuel mass) is least important. The other 99 sets of weighting
factors have similar explanations.

B. Model Choice and Model Fitting

Response surface models have been widely used in surrogate
model development in engineering design [35]. There are several
advantages using response surface models, such as ease of
implementation, minimal efforts required to train models, and
ideality for uncertainty analysis. In this research, the response surface
is used to construct the surrogate models. A widely used statistics
software package JMP@ is employed to fit response surface models.

C. Model Validation

The actual values versus the predicted values for the four design
criteria are shown in Fig. 8. In the actual-by-predicted plot, the
horizontal dotted line represents the mean of the actual values, the
solid line shows the 45 deg diagonal line, and the two dotted lines

Fig. 7 Modified LHS with Dirichlet distribution in three dimensions and with two-dimensional projections.

Fig. 8 Actual by predicted plots of OEM, fuel mass, utilization/block time, and passenger density.
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along the diagonal show the 95% confidence intervals. The actual-
by-predicted plots illustrate how well the predicted responses match
the actual data. A quick assessment of themodel is to eyeball a 45 deg
pattern in these plots. In this example, the scatter plots all follow a
45 deg pattern along the diagonal line. This is one indicator of
goodness of fit for the developed surrogate models.
The diagnostics of each response surface model, including R2,

R2
Adj, and rms error (RMSE) in percentage, are listed in Table 6. R2

measures the proportion of the variation explained by the regressed
polynomialmodel and ranges from 0 to 1;R2

Adj adjusts theR
2 value to

make it more comparable over models with different numbers of
parameters; and RMSE estimates the standard deviation of the
random error. The percent RMSE shown in Table 6 is normalized by
its mean of response. The higher values of R2 and R2

Adj and lower
values of percent RMSE are strong evidences of goodness of fit.
Therefore, we can conclude that the developed surrogate models can
provide adequate approximation to the analysis tool.
As discussed before, in the proposed multicriteria optimization

framework, the computation time for one set of weighting factors is at
least 5 min. A Monte Carlo-based uncertainty analysis with 1000
samples would take at least 84 h. With the developed surrogate
models, the computation time depends on the number of weighting
factors used for surrogate models development. In this example, the
computation time for 100 sets of weighting factors is approximately
8 h. With the developed surrogate models, Monte Carlo based
uncertainty analysis with 1000 samples takes only a few seconds.
Thus, significant improvement has been made for efficient
uncertainty analysis in aircraft conceptual design process.

V. Conclusions

This paper explored the feasibility and added values of applying
MCDA techniques in aircraft design. First, we established a new
optimization framework incorporating MCDA techniques in aircraft
conceptual design process. Then, we proposed an improved MCDA
method (ITOPSIS) to aggregate the multiple design criteria into one
composite figure of merit for the optimization. The ITOPSIS method
is able to maintain ranking consistency for the top-ranked alternative.
Furthermore, the assignment of weighting factors is one way to
represent a designer’s preferences in the design process. We solved
the specification problem of weighting factors by using Latin
hypercube sampling with Dirichlet distribution. Finally, we
developed surrogate models for design criteria in terms of weighting
factors to perform uncertainty assessment efficiently.
Although manufactures and airline communities focus on DOC as

a prime optimization parameter, the objective of this paper is to
explore the feasibility and to assess the added values of incorporating
MCDA techniques in aircraft conceptual design process. A simple
aircraft conceptual design example demonstrated that MCDA
techniques can effectively help designers to specify their preferences
and make tradeoffs among multiple performance criteria. The
contribution of the paper lies in the cross-disciplinary research fields
between aircraft design and multicriteria analysis.
In future work, to provide a more global optimization and include

discrete design variables, hybrid optimizers combining genetic
algorithms and gradient-based methods could be investigated for the
proposed multicriteria optimization framework. For example, a
discrete integer valued function for the optimization of passenger
density is of future interest. The application of MCDA techniques
could be extended to assess air transportation systems from the
perspectives of multistakeholders, such as aircraft manufacturers,
airlines, airports, air navigation service providers, and passengers,

with the purpose of balancing social, economic, ecological, and
technical constraints.
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