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It is challenging to assess new technology in complex, interdisciplinary integrated systems, such as air

transportation systems. Conflicting disciplines and technologies are always involved in aerospace systems design

processes.Multicriteria DecisionAnalysis techniques can help decisionmakers to effectively deal with such situations

andmakewise design decisions. There is a variety of existingmethods; thus, selection of themost appropriatemethod

is critical because the use of inappropriate methods is often the cause of misleading design decisions. In this paper, an

appropriateness index is used to quantify the goodness of amethod for solving the problem under consideration. This

method selection approach is implemented and an intelligent knowledge-based system is developed consisting of a

multicriteria decision analysis library storing widely used decision analysis methods and a knowledge base providing

the information required for themethod selection process. Furthermore, a new approach for uncertainty assessment

in the decision analysis process is proposed in this study. This novel approach for uncertainty assessment can be used

to aggregate input data from tools with different fidelity levels and is capable of propagating uncertainties in an

assessment chain. A business aircraft evaluation problem is conducted as a proof of implementation.

I. Introduction

I T IS challenging to assess new technology in complex,
interdisciplinary integrated systems such as air transportation

systems. There are large numbers of components with different
characteristics in air transportation systems. The demands on air
travel are increasing, not only regarding lower costs, but also better
service quality, higher safety, and more environmental friendliness.
The imperatives of air transport have evolved from “higher, further,

faster” to “more affordable, safer, cleaner, and quieter” [1]. Vision
2020 set ambitious Advisory Council for Aeronautical Research in
Europe goals for future air transportation systems in terms of quality
and affordability, environment, efficiency, safety, and security [1]. To
sustain the growth of air transport in the long term, multiple
stakeholders in air transportation systems, such as manufacturers,
airlines, and airports, are involved to meet these ambitious goals.
The focus of this research is one element in complex air transportation

systems: aircraft. Aircraft are complex engineered systems involving
multiple disciplines, such as aerodynamics, structures, and disciplines
involving humanbehavior,which are extremely difficult to quantify and
integrate into mathematical models and optimization problems [2].

Weckman et al. developed a decision support approach to model jet
engine removal rates based on field data [3]. Scanlan et al. investigated
cost modeling within the design process for a civil gas turbine engine
[4]. However, the single economic criterion is not the only metric for
technology evaluation as well as the figure of merit for design
optimization. It is alerted that, by applying classic direct operating costs
(DOC) comparison as the only yardstick in the evaluation of an aircraft,
manufacturers run the riskofdesigningaircraft typesandcapabilities not
fully suited to satisfy long-term transportation needs [5]. In addition to
the economic consideration, there are several other criteria that need to
be taken into account in aircraft design and evaluation processes, for
instance, environmental impact and level of comfort.However, it is often
difficult to derive a reliable transfer function to convert these
nonmonetary values into monetary values [6]. One solution is to apply
multicriteria decision analysis (MCDA) techniques.
As an important field in operational research, MCDA is a process

that allows one to make decisions in the presence of multiple,
potentially conflicting criteria [7–10]. Common elements in the
decision analysis process are a set of design alternatives, multiple
decision criteria, and preference information representing the attitude
of a decision maker in favor of one criterion over another, usually in
terms of weighting factors. MCDA techniques can help a decision
maker to evaluate the overall performance of the design alternatives.
Furthermore, MCDA techniques can aid in the generation, analysis,
and optimization of design solutions.
MCDA techniques have been used to solve multicriteria decision

problems in aircraft conceptual design and evaluation processes.
Bandte developed a probabilistic MCDAmethod for multi-objective
optimization and product selection [11]. However, it was pointed out
that this method did not consider the absolute location of joint
probability distribution [12]. Kirby applied the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) method for the
selection of technology alternatives in conceptual and preliminary
aircraft design [13]. However, TOPSIS has limitations in that it
assumes each criterion’s utility is monotonic and it is rather sensitive
to the weighting factors. Chen et al. evaluated four civil aircraft in
terms of six criteria [14]: cost, performance, comfort, environmental
influence, product support and family concept, and availability of
aircraft. A 10-point ratio scale was employed to normalize the values
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of the six criteria, simple additive weighting (SAW) was used to rank
the candidate aircraft. However, SAW is very sensitive to the
normalization method and the weighting factors. Besides, Meller [5]
and Meller and Dirks [15] assessed the civil aircraft by three criteria:
DOC, operational commonality, and added values. The added values
were quantified by equivalent DOC based on the weighting factors.
However, inherent subjectivity and uncertainty of the weighting
factors detriments the usefulness of this approach. Furthermore,
Wang applied the TOPSIS method to evaluate seven initial training
aircraft [16]. However, only technical criteria were considered
because of the difficulty of collecting quantitative data.
From these applications of MCDA techniques in multicriteria

decision problems in aircraft conceptual design and evaluation
processes, two observations can be formulated:
Observation 1: There are various decision analysismethods that have

been developed for solving multicriteria decision problems.
Different methods have different underlying assumptions,
analysismodels, and decision rules that are designed for solving a
certain class of decision-making problems. For example, SAW
chooses the most preferred alternative that has the maximum
weighted criteria values, whereas TOPSIS ranks the alternatives
based on the Euclidean distance. This implies that it is critical to
select the most appropriate method to solve a given problem
because the use of inappropriate methods is often the cause of
misleading design decisions. However, most researchers use one
method without a formal method selection process; thus, the
research area of decision analysismethod selection has not drawn
enough attention.

Observation 2: Because of different preferences and incomplete
information, uncertainty always exists in the decision analysis
process. When MCDA methods are used to solve decision
problems, preference information describes the attitude of a
decision maker in favor of one criterion over another. It is
observed that the preference information is often highly uncertain
considering that it is elicited based on a decision maker’s
experience or estimation. The inherent uncertainty has significant
impacts on the final decision solution. This implies that it is
critical to effectively capture and assess the uncertainty in the
decision analysis process in order to get more accurate results.

As discussed before, currently there are various methods that have
been developed to solve MCDA problems. Thus, it is necessary to
review the existing methods, discuss in depth their advantages,
disadvantages, applicability, computational complexity, etc. in order
to choose the right method for the given problem for making better
decisions. In this paper, 12 evaluation criteria are proposed to select
the most suitable decision analysis method for the problem under
consideration. Weighting factors are assigned to each evaluation
criterion to describe a decision maker’s preference information.
An appropriateness index (AI) [17] is used to quantify the match
between the decision analysis method and the problem under
consideration. Furthermore, a new approach for uncertainty
assessment in the decision analysis process is proposed in this
study. The uncertainty assessment approach consists of three steps:
uncertainty characterization, uncertainty analysis, and sensitivity
analysis. This novel approach for uncertainty assessment can be used
to aggregate input data from tools with different fidelity levels and is
capable of propagating uncertainties in an assessment chain.
This paper is organized as follows. Section II reviews the

background of decision analysis method selection. An advanced
approach to effectively select the most appropriate decision analysis
method for a given problem is formulated and presented in Sec. III. A
new approach for uncertainty assessment in the decision analysis
process is proposed in Sec. IV. To demonstrate the capabilities of the
proposed decision support system, a business aircraft evaluation
problem is conducted as a proof of implementation in Sec. V. Finally,
conclusions are drawn for this study and presented in Sec. VI.

II. Background on Method Selection

Over the past decades, considerable research has been conducted
to deal with the selection of the most appropriate method for a given

decision problem. MacCrimmon first recognized the importance of
method selection [18]. He proposed a taxonomy of decision analysis
methods, created a method specification chart in the form of a tree
diagram, and provided an illustrative application example [18].
Hwang and Yoon developed another tree diagram, which consists of
nodes and branches connected by choice rules that can be used for
selecting the decision analysis method for a specified problem [7].
Sen and Yang developed similar tree diagrams to help decision
makers with selecting the appropriate methods, and the selection was
based on the type of preference information elicited [19]. The tree
diagram approach provides reasonable classification schemes and is
easy to use. However, this approach has its own disadvantages: it
usually gives two or more methods rather than the most appropriate
method, and it only considers limited types of decision problems,
preference information, and available methods. These limitations
stop the tree diagram approach from being an effective solution to the
method selection problem.
Possible criteria for evaluating decision analysis methods were

proposed as an alternative solution to the method selection. Tecle
developed an approach based upon a composite programming
algorithm that aided in selecting an appropriate method [20]. They
proposed four categories of criteria: decision maker-related character-
istics, method-related characteristics, problem-related characteristics,
and solution-related characteristics to evaluate a method. The
independent criteria categories enable decision makers to conduct the
evaluation in a specified order. However, it is difficult to quantify all
decision analysis methods in terms of these four criteria categories.
Besides, by using this approach, different users may get totally
different results because the users’ knowledge about the decision
analysis methods has a strong impact on the final results.
Artificial intelligence techniques were employed by Poh [21] and

Lu et al. [22] to help decisionmakers select themost suitable decision
analysismethod based on a series of user inputs. Poh [21] suggested a
knowledge-based system, which allows decision makers to select the
most appropriate method among available 11 multi-attribute
decision-making methods. Lu et al. [22] proposed an intelligent
system, which facilitated selecting the most suitable method among
seven multi-objective decision-making methods. The knowledge-
based intelligent system simplifies the method selection problem
with simple questions by allowing direct selection or automated
selection based on a decision maker’s inputs. However, they do not
clearly state the limitations or failure modes of the systems [23].
Hazelrigg suggested using the validation of decision analysis

methods as a form of method evaluation and selection [24]. Ten
desired properties were proposed to validate the methods. The author
emphasized that a method is validate only if it is mathematically
consistent and is derivable from an axiomatic basis. However, the
validation of decision analysis methods is subjective and is
dependent on the intended application of the method [23]. Roman
et al. presented a conceptual framework for using decision analysis
methods as attention directing tools, with reflection on the problem,
method, and results interpretation [23]. However, the authors
acknowledged that the conceptual framework is too generic to
provide proper guidance for decision makers to use in engineering
design.
Li developed a multicriteria interactive decision-making advisor

for the selection of the most appropriate method [17]. However, only
a limited number of methods was implemented and uncertainty
propagation was not addressed explicitly. In this research, four major
improvements are made in order to yield more accurate and reliable
solutions [25]:
1) The distinction between filtering questions and scoring

questions. The filtering questions are used to screen out inappropriate
methods in the initial step of selection, and scoring questions are used
to derive the attributes of a MCDA formulation.
2) The method library is extended to include all 16 widely used

MCDA methods.
3) Two particular scenarios from the method implementation

perspective are addressed: the case when there are two or more
methods and the case when there is no method can be considered
suitable for a given decision problem.
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4) Most important, a new approach for uncertainty assessment in
the decision analysis process is proposed and integrated into the
intelligent multicriteria decision support system. This uncertainty
assessment approach is discussed in detail in Sec. IV.

III. Advanced Approach for Method Selection

To effectively select themost appropriate decision analysismethod
for a given decision problem, an advanced approach is proposed in
this study, as illustrated in Fig. 1. This approach consists of eight
steps: define the problem, define evaluation criteria, perform initial
screening, define preferences on evaluation criteria, calculate
appropriateness index, evaluate decision analysis methods, choose
the most suitable method, and conduct sensitivity analysis. Each step
of the proposed approach to method selection is discussed in detail in
the following subsections.

A. Step One: Define the Problem

The characteristics of the decision problem under consideration
are addressed in the problem definition step, such as identifying the
number of alternatives, attributes, and constraints. The available
information about the decision problem is the basis onwhich themost
appropriate decision analysis method will be selected and used to
solve the problem.

B. Step Two: Define Evaluation Criteria

The proper determination of applicable evaluation criteria is
important because they have great influence on the outcome of the
method selection process. However, simply using every criterion in
the selection process is not the best approach because the more
criteria used, the more information is required, which will result in
higher computational cost. Therefore, a tradeoff has to be made
between the accuracy of the results and computational cost. In this
study, the characteristics of decision analysis methods are identified
by the relevant evaluation criteria in the form of a questionnaire.
Twelve questions are defined to capture the advantages,
disadvantages, applicability, and computational complexity of each
decision analysis method.

1. Filtering Questions

1) Is themethod able to handle selection or optimization problems?
2) Does the method allow tradeoffs among criteria?

3) What input data are required by the method?

2. Scoring Questions

4) What preference information does the method need?
5) What decision rule does the method use to rank or sort the

alternatives?
6) Does the method evaluate the feasibility of the alternatives?
7) Can the method handle any subjective attribute?
8) Does the method handle qualitative or quantitative data?
9) Does the method deal with discrete or continuous data?
10) Can themethod handle the problemwith hierarchy structure of

attributes?
11) Is the method able to capture uncertainties existing in the

problem?
12) Can the method support visual analytics?
It should be noted that the first three filtering questions are used to

screen out inappropriate methods in the initial step of selection,
whereas the other nine scoring questions are used to derive the
information associated with the attributes of a MCDA formulation
and the input data of decision matrix for method selection.

C. Step Three: Perform Initial Screening

In the initial screening step, filtering questions are used to screen
out inappropriate methods. For the first filtering question, only
scoring methods are suitable for solving optimization problems
because the scores provided by the decision analysis methods can
serve as objective functions in the optimization process, whereas
classification methods, such as Elimination and Choice Translation
Reality (ELECTRE), are not suitable because they cannot offer
objective functions for optimization.
For the second filtering question, if tradeoffs among criteria are

allowable, all noncompensatory methods will be removed, and only
compensatory methods remain as candidate methods for further
selection.
For the third filtering question, different decision analysismethods

require different input; for example, most decision analysis methods
require a decision matrix as input data, whereas Analytical Hierarchy
Process (AHP) needs a pairwise comparison matrix [26]. When
decisionmakers can provide a pairwise comparisonmatrix, AHPwill
be the only method left to solve the decision problem.

D. Step Four: Define Preferences on Evaluation Criteria

Usually, after the initial screening step is completed,more than one
decision analysis method is expected to remain, otherwise we can
directly choose the only one left to solve the decision problem. With
the nine scoring questions defined in step 2, the decision maker’s
preference information on the evaluation criteria is defined. This will
reflect which criterion is more important to decision makers in the
method selection process.
In this study, weighting factors are assigned to each evaluation

criterion to describe a decision maker’s preference information. The
weighting factors must be carefully elicited in order to accurately
capture a decision maker’s preferences. A subjective scale of 0 to 10
recommended by Hwang and Yoon [7] is used in this study, where 0
stands for extremely unimportant and 10 represents extremely
important.

E. Step Five: Calculate Appropriateness Index

In this study, 16widelyused decision analysismethods are identified
and stored in the knowledge base as candidate methods for selection.
The evaluation criteria are captured by answering 12 questions relevant
to the characteristics of the methods. AnAppropriateness Index (AI) is
used to rank the methods, given by Eq. (1) [17]:

AIj �
P

n
i�1 wi � bjiP
n
i�1 wi � 1i

� 100%

bji �
�
1 if cji � ai
0 if cji ≠ ai

i � 1; 2; : : : ; n; j � 1; 2; : : : ; m (1)
Fig. 1 An advanced approach for decision analysis method selection.
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where n is the number of evaluation criteria used to examine the
methodswith respect to the given problem,m is the number ofmethods
stored in the knowledge base, fw1; w2; : : : ; wng are the weighting
factors for the evaluation criteria, ai is the value of the ith characteristic
of the decision problem, cji is the value of ith characteristic of the jth
method, andbji is a Boolean number depending on thematch of the ith
characteristic of the decision problem and the ith characteristic of the
jthmethod. If the ith characteristic of the decision problemmatches the
ith characteristic of the jth method, then bji � 1; otherwise, bji � 0.
1i denotes one.
For one set of weighting factors, the numerator of AI

(
P

n
i�1 wi � bji) calculates the weighted score for each method,

whereas the denominator (
P

n
i�1wi � 1i) calculates the maximum

value if the characteristics of one method match completely with the
characteristics of the decision problem. For each method, AI is
calculated by the weighted score normalized by the maximum value.
AI ranges from 0 to 100%. Thus, higher value of AI indicate the
method is more appropriate to solve the given decision problem.
Table 1 shows one example of the AI calculation process for the

TOPSIS method. At first, decision makers identify key character-
istics of the decision problem and define weighting factors for
evaluation criteria. In this example, decision rule, input data, and
uncertainty analysis are considered as themost important criteria, and
so high weights are assigned to these evaluation criteria. The other
evaluation criteria are assigned in the same way. The weighting
factors for the nine evaluation criteria are defined as
� 5 8 4 4 6 4 3 6 5 �. Second, the characteristics of
the decision problem are obtained from the answers to the
questionnaire, whereas the characteristics of the decision analysis
methods can be obtained from the knowledge base, where the
characteristics of the methods are predefined. Then, the character-
istics of the problem and method are compared pairwise in order to
see if they match with each other. Finally, AI can be calculated for
TOPSIS by using Eq (1), and the result is given by Eq. (2).

AITOPSIS �
P

9
i�1wi � bjiP
9
i�1wi � 1i

� 100%

� �5 8 4 4 6 4 3 6 5 � � �1 1 0 1 1 1 1 0 1 �T
�5 8 4 4 6 4 3 6 5 � � �1 1 0 1 1 1 1 0 1 �T

� 100%� 35

45
� 100%� 78% (2)

F. Step Six: Evaluate Decision Analysis Methods

To compare the appropriateness of the methods with respect to the
given decision problem, each method is evaluated based on nine
scoring questions and their AIs are obtained. Based on the AI
calculation, the method with the highest score will be chosen as the
most appropriate one to solve the original decision problem.

G. Step Seven: Choose the Most Suitable Method

As noted in step 6, the method with the highest AI will be
recommended as the most appropriate method to solve the given
problem. The developed decision support system is used to guide the
user to reach the final decision when solving the decision problems.
After one decision analysis method is identified as the most
appropriate method, the user can simply click the name of the
method, and the methodology instructions will be displayed to guide
the user to solve the given problem. The mathematical calculation
steps are built in the MATLAB-based decision support system; thus,
the user can just simply follow the instructions, such as inputting
necessary data, to get the final result.

H. Step Eight: Conduct Sensitivity Analysis

It is observed that different decision makers often have different
preference information on the nine scoring questions; thus,
sensitivity analysis should be performed on the method selection
algorithm to analyze its robustness with respect to the variations of
the weighting factors.
To accommodate different preference information from different

decisionmakers, weighting factor of each characteristic is treated in a
parametric manner. In our integrated user interface, decision makers
can adjust criteria weights by moving the corresponding slide bars. It
is worth noting that there is no absolute best decision analysismethod
that can solve any decision problem because the method selection is
problem specific. The selection of themost suitable decision analysis
method depends on the problem under consideration.

I. Two Particular Scenarios During the Method Selection Process

There are two scenarios of particular interest that need to be
considered during the method selection process: 1) the case when
there are two or more methods whose appropriateness scores are the
highest, and 2) the case when there is no method that can be
considered suitable for a given problem. These two particular
scenarios were not addressed in the previous research in [17]. In this
study, these two particular scenarios are explicitly addressed and
formulated as follows.
For the first scenario, when there are more methods that can be

considered as the best ones to solve a given decision problem, the
decision maker can perform uncertainty analysis of the weighting
factors for the nine evaluation criteria. The method that has the
highest probability to be ranked first is recommended as the most
suitable method for the decision problem under consideration. In the
developed multicriteria decision support system, the decision maker
can adjust the weighting factors of the nine evaluation criteria by
moving the corresponding slide bars.
For the second scenario, when there is no method can be

considered as the suitable one for a given decision problem, new
methods or hybrid methods need to be used to solve the given
problem. During the process of method selection, more insights on
the characteristics of the methods can be obtained. For example, by

Table 1 Appropriateness index calculation process for TOPSIS

Criteria weights Problem criteria values Method criteria values Match scores

Evaluation criteria wi ai cji bji
Filtering questions

1) Selection/optimization – – – –

2) Allow tradeoff – – – –

3) Input data – – – –

Scoring questions

4) Preference information 5 Relative weight Relative weight 1
5) Decision rule 8 Minimum closeness Minimum closeness 1
6) Feasibility evaluation 4 Yes No 0
7) Subjective 4 No No 1
8) Qualitative/quantitative data 6 Quantitative Quantitative 1
9) Discrete/continuous data 4 Discrete Discrete 1
10) Single/hierarchy 3 Single Single 1
11) Capture uncertainties 6 Yes No 0
12) Visualization 5 Yes Yes 1
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combining two or more decision analysis methods, decision makers
may get one hybridmethod that ismore effective for solving the given
problem. Moreover, the definition of a threshold value for the
appropriateness index of the decision analysis method can be helpful
to identify the occurrence of the second scenario. This is a futurework
that needs further investigation in the method selection process.

IV. Uncertainty Assessment in the Decision Analysis
Process

As discussed in Sec. I, inherent uncertainties associated with the
input data have significant impacts on the final decision for a decision
problem. Considerable research has been conducted to assess the
uncertainties propagated in the decision analysis process. Durbach
and Stewart provided a review of uncertainty modeling for
conducting multicriteria decision analysis with uncertain attribute
evaluations [27]. The review included models using probabilities,
quantiles, variances, fuzzy numbers, and scenarios. Aschough et al.
discussed the incorporation of uncertainty in environmental decision-
making processes [28]. Especially, the authors asserted the
importance of developing innovative methods for quantifying the
uncertainty associated with human input.
Many researchers used simulation-based techniques to solve

uncertainmulticriteria decision problems [29–31].Hyde et al. [32] and
Hyde and Maier [33] developed an uncertainty analysis program in
Excel for twodecision analysismethods.Allaire andWillcoxproposed
a surrogate modeling method for propagating uncertainty from model
inputs to model outputs [34]. However, these uncertainties were
directly defined in terms of probability distributions and decision
makers’ confidence levels regarding these uncertainties were not
explicitly captured. Consequently, the quality of the final decision
made under these uncertainties cannot be guaranteed.
In this research, a novel approach for uncertainty assessment in the

decision analysis process is proposed. This approach consists of three
steps: uncertainty characterization by percentage uncertainty with
confidence level, uncertainty analysis using error propagation
techniques, and sensitivity analysis based on iterative binary search
algorithm. Each step of the uncertainty assessment approach is
discussed in detail in the following sections.

A. Uncertainty Characterization by Percentage Uncertainty with

Confidence Level

The uncertainty characterized by percentage uncertainty with
confidence level is converted into standard deviation through the
inverse error function. For a normal random variableXwithN�μ; σ2�
distribution, the probability of a random sample value falling within
the interval �μ − nσ; μ� nσ� can be calculated by Eq. (3):

P�μ − nσ < Xμ� nσ� � 1

σ
������
2π
p

Z
μ�nσ

μ−nσ
e�−�x−μ�2∕2σ

2� dx (3)

The error function is shown in Eq. (4) [35]. With the substitution
z � X−μ

σ , Eq. (3) can be converted into Eq. (5):

y � erf�x� � 2���
π
p

Z
x

0

e�−t
2� dt (4)

P�μ − nσ < X < μ� nσ� � 1������
2π
p

Z
n

−n
e�−�z

2∕2�� dz � erf
�
n���
2
p

�

(5)

When the probability (confidence level) of a normal random variable
X falling within a certain confidence interval is given, the numbers of
standard deviation can be calculated by the inverse error function, as
shown in Eq. (6):

n �
���
2
p
erf−1�Confidence level� (6)

Note that the relative error here is equal with the percentage
uncertainty; thus, the conversion of percentage uncertainty into
standard deviation is shown in Eq. (7):

σ � Percentage uncertainty�%�μ
n

(7)

This novel approach for uncertainty characterization is capable of
propagating uncertainties in an assessment chain, where input data
from various tools with different fidelity levels need to be aggregated.
In this case, the fidelity level can be represented by the confidence
level and then be converted into the number of standard deviation
using Eq. (6).

B. Uncertainty Analysis Using Error Propagation Techniques

Error propagation techniques answer the question: How the
uncertainties of input variableswill be propagated to somepredefined
functions involving these variables and lead to the final result [36]?
There are two classes of error propagation techniques: analytical and
simulation-based error propagation techniques. The analytical error
propagation technique relies on a linearized Taylor series expansion
of the function about the mean of each variable. The total error of the
function is obtained by combining the linearized individual error in
quadrature [36]. Although analytical error propagation technique is
appropriate for simple calculation processes, simulation-based error
propagation technique is more suitable for dealing with complex
models, where a tradeoff has to be made between result accuracy and
computation time. In this study, the uncertainty analysis using
simulation-based error propagation techniques is illustrated in Fig. 2.

C. Sensitivity Analysis via Iterative Binary Search Algorithm

Sensitivity analysis addresses the question how the variation of
input variables influences model output [37]. In this study, an
iterative binary search algorithm is developed to investigate the
sensitivity of alternatives’ ranking to the variations of input data. The
binary search technique has been widely used to find a target value in
a sorted (usually ascending) sequence efficiently [38,39]. This
technique compares the middle element of the sorted sequence to the
target value. If themiddle element is equal to the target value, then the
search terminates. If the target value is less thanmiddle element, then
the algorithm eliminates the right half of the sorted sequence and
conducts the same search for the left side. If the target value is bigger
than the middle element, then the algorithm ignores the left half
of the sorted sequence and performs the same search for the
right side. Otherwise, we can conclude that the target value is not in
the sorted sequence. For example, given a sorted sequence
� 0 5 12 17 23 25 50 60 80 �, assume that we want to
find the target value 25. The binary search technique works as
follows.

Uncertainty characterized by
percentage uncertainty
with confidence level

Numbers of
standard deviations

Uncertainty expressed by
mean and standard deviation

Calculation of
propagated uncertainty using
error propagation techniques

Transform into

Transform into

Input

Fig. 2 The process of uncertainty analysis using error propagation

techniques.
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1) First iteration: � 0 5 12 17 23 25 50 60 80 �. The
target value 25 is bigger than the middle element 23. Ignore the left
half of the sorted sequence and perform the same search for the
right side.
2) Second iteration: � 25 50 60 80 �. The target value 25 is

smaller than themiddle element 50. Ignore the right side of the sorted
sequence and perform the same search for the left side.
3) Third iteration: �25�. The target value 25 equals the element 25.

The target value is found.
When using MCDA methods to solve a given decision problem,

main input data are the values of decision criteria and a decision
maker’s preference information. The iterative binary search
algorithm varies one input variable at a time in order to find the
minimum change that can alter the ranking of two alternatives. The
sensitivity analysis can provide good insights about the range of an
input variable when the ranking of the alternatives preserves. It can
also tell a decisionmaker which input variable ismore sensitive to the
ranking of the alternatives and more attention needs to be paid to the
value of this input variable.

V. Implementation

In this section, a business aircraft evaluation problem is conducted to
demonstrate the capabilities of the proposed multicriteria
decision support system. A three-step framework is implemented:
definition of a decision making problem, selection of the most
appropriate MCDA method for the given problem, and uncertainty
assessment in the decision analysis process. This three-step framework
provides a general guideline on how to structure and solve any given
decision-making problem. In this implementation, emphasis is put on
explaining the holistic process of the intelligent multicriteria decision
support system. Thus, the step-by-step problem-solving process is
explained and discussed for this decision problem.

A. Selection of the Most Appropriate MCDAMethod

1. Step One: Define the Problem

With increasing demand on air travel, business aircraft are popular
alternatives for wealthy aviation. At present, there are six major
business jet manufacturers: Canadian Bombardier, American
Cessna, French Dassault, Brazilian Embraer, American Gulfstream,
and American Hawker. There are more than 40 different types of
business aircraft available in the current market, costing from
1 million to almost 100 million [40]. How to choose the appropriate
aircraft to meet the needs of business aviation customers is a
complicated multicriteria decision process.
Traditional evaluation is dominated by economic criteria, such as

purchase price and operating costs. However, the success of an
aircraft is no longer dominated by these economic criteria [15]. In
addition to costs, there are several other criteria that need to be
evaluated at the same time, for instance, aircraft performance,
environmental impacts, and level of comfort. Therefore, considering
these multiple conflicting criteria simultaneously, the evaluation and
selection of a business jet is a typical multicriteria decision problem
and needs to be prudently conducted.
In this study, for the business aircraft evaluation problem, the

selection of the most appropriate decision analysis method is
conducted first using the proposed multicriteria decision support
system, as described inSec. III. Then, thismost suitablemethod is used
to evaluate the business aircraft for business aviation customer. Ten
evaluation criteria are identified for the business aircraft evaluation
problem, including seven hard technical criteria (typical passenger seat
number, maximum range, purchase price, fuel consumption per seat
kilometer, high-speed cruise speed, takeoff field length, and noise) and
three quantified soft criteria (cabin volume per passenger, product
support level, and manufacturer’s reputation).
Empirical studies in consumer behavior and industrial market

context have shown that the quality of a decision has an inverted U-
shaped relationship with the number of alternatives, and the number
of intensively discussed alternatives is less than five [41]. In practice,
a small number of alternatives can be obtained by a simple checklist
of desirable features [42]. In this study, the use of filter criteria can

highly facilitate evaluating the business aircraft by reducing the
number of alternatives under consideration.
In the business aircraft evaluation problem, typical passenger seat

number,maximum range, and purchase price are used as filter criteria
for initial screening in the first phase of the decision process. Fuel
consumption per seat kilometer, high-speed cruise speed, takeoff
field length, noise, cabin volume per passenger, product support
level, and manufacturer’s reputation are identified as seven decision
criteria for the business aircraft evaluation problem.
Assume that one business aviation customer considers to purchase

a business jet with eight to 10 typical passengers on board. Aircraft
range with maximum fuel and available payload should be around
5500 to 6500 km, and purchase price is between 20 and 25million. In
the available business jet market, four business jet alternatives satisfy
the needs of the customer. The values of three filter criteria and seven
decision criteria for the four business jet alternatives are summarized
in Table 2.

2. Step Two: Define Evaluation Criteria

To identify themost appropriatemethod, amethod base needs to be
built fromwhere the most appropriate method can be selected. In this
study, 16widely used decision analysis methods are studied and their
characteristics are stored in the knowledge base. To compare the
appropriateness of the methods with respect to the given problem,
eachmethod is assessed based on the proposed 12 evaluation criteria.
The 12 evaluation criteria are captured by answering 12 questions, as
shown in Fig. 3.

3. Step Three: Perform Initial Screening

To get the most appropriate method, infeasible decision analysis
methods are eliminated by three filtering questions. For the business
aircraft evaluation problem, with the assumption that tradeoffs
among criteria are not permitted, all compensatory methods are
excluded and only noncompensatory methods remain as candidate
methods for further selection.

4. Step Four: Define Preferences on Evaluation Criteria

Because decision makers may consider one criterion as more
important than another when selecting the most appropriate method, a
weighting factor is defined for eachcriterion to reflect a decisionmaker’s
preference information. The decision maker’s preference information
on the evaluation criteria can be defined using slide bars in the
integrated user interface, where 0 stands for an extremely unimportant
criterion and 10 represents an extremely important criterion.

5. Step Five: Calculate Appropriateness Index

In this step, an appropriateness index (AI) for each decision
analysis method is calculated by Eq. (1). Essentially, AI is used to
determine how the characteristics of a method match the
characteristics of the given problem.

6. Step Six: Evaluate Decision Analysis Methods

According to step 5, AI of decision analysis methods are obtained
and presented in Fig. 4, where a higher score represents greater
appropriateness of the method for the given problem.

7. Step Seven: Choose the Most Suitable Method

In this example, as indicated in Fig. 4, ELECTRE I gets the highest
score among the decision analysismethods; therefore, it is selected as
the most appropriate method to solve the business aircraft evaluation
problem. Its mathematical calculation steps are built in the decision
support system; thus, decision makers can simply click the name of
the method, and methodology instructions of ELECTRE I will be
displayed to guide decisionmakers to solve thegivenproblemandget
the final solution.

8. Step Eight: Conduct Sensitivity Analysis

The preference to the nine scoring questions can be varied in the
method selection process. In our integrated user interface, decision
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makers can adjust the weighting factor of each criterion by moving
the slide bars. In this example, with the current input data, it is
observed from Fig. 4 that ELECTRE I is ranked first by the
multicriteria decision support system. Therefore, ELECTRE I is
further used to solve the business aircraft evaluation problem.

B. Evaluation Results Using ELECTRE I

ELECTRE methods use the concept of outranking relation
[43,44]. An alternative is dominated if there is another alternative that
excels it in one or more criteria and equals it in the remainder. A
nondominated alternative is one in which no criteria can be improved
without a simultaneous detriment to at least one of the others.
When ELECTRE I is used to solve the business aircraft evaluation

problem, it requires a decision matrix as input data and weighting
factors as the representation of a decision maker’s preference
information. For this example, the decisionmatrix is shown in matrix
D, where each row corresponds to one business jet alternative, and
each column corresponds to one decision criterion. In the first round
of evaluation, equal weighting factors are considered, as shown in

vector W. The evaluation results using ELECTRE I are shown in
matrixMaggregated dominance:

D �

2
664
0.2396 870 1466 84.2333 4.0500 7.63 55

0.2720 952 1567 82.4333 2.3556 8.22 39

0.2264 870 1854 86.7333 3.1000 7.75 82

0.2624 870 1545 86.1000 3.4375 7.66 78

3
775

W� �0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0:1429 �T

Table 2 Values of evaluation criteria for four business jet alternatives

Alternatives

A1 A2 A3 A4

Bombardier Cessna Gulfstream Hawker
Challenger 300 Citation X G200 H4000

Filter criteria

F1: Typical passenger seat number 8 9 10 8
F2: Maximum range, km 5975 5656 6378 5808
F3: Purchase price, millions of dollars 24.7500 21.6330 23.3250 22.9089

Decision criteria

C1: Fuel consumption per seat kilometer, kg∕pax∕km 0.2396 0.2720 0.2264 0.2624
C2: High-speed cruise speed, km∕h 870 952 870 870
C3: Takeoff field length, m 1466 1567 1854 1545
C4: Noise, EPNdB 84.2333 82.4333 86.7333 86.1000
C5: Cabin volume per passenger, m3∕pax 4.0500 2.3556 3.1000 3.4375
C6: Product support level 7.63 8.22 7.75 7.66
C7: Manufacturer’s reputation 55 39 82 78

Note: “pax” stands for “passenger”.

Fig. 3 Questions related to evaluation criteria for method selection in business aircraft evaluation process.

222 SUN ETAL.

D
ow

nl
oa

de
d 

by
 B

E
IH

A
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
M

ar
ch

 5
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

22
96

 



In the aggregated dominance matrix, element 1 in each column
indicates that this alternative is dominated by other alternatives. In
this example, A1 and A2 are dominated by A3 and A4. Therefore, we
can obtain that, when the weighting factors are evenly distributed
among the seven criteria, A1 (Bombardier Challenger 300) and A2

(Cessna Citation X) should be excluded from the candidates of
business jets.
However, the outranking relationship between A3 (Gulfstream

G200) and A4 (Hawker H4000) cannot be identified with one set of
equal weighting factors. Uncertainty assessment for the weighting
factors is further investigated in the following section.

C. Uncertainty Assessment for ELECTRE I

In the business aircraft evaluation problem, weighting factors are
used to represent a decision maker’s preference information. To
identify the outranking relationship betweenA3 andA4, it is critical to
effectively capture the uncertainty associated with the preference
information and assess its impact on the final decision solution. In
this subsection, uncertainty assessment for the weighting factors is
performed, following the new uncertainty assessment approach
proposed in Sec. IV.

1. Uncertainty Characterization

Uncertainties for the weighting factors are represented by
percentage uncertainties with confidence levels. For example, if a
decisionmaker assigns 15%uncertainty to theweighting factor of the
first decision criterion w1 with 90% confidence level, it implies that
the decision maker is 90% confident that w1 would fall within the
interval �w1�1 − 15%�; w1�1� 15%��. For this example, the
uncertainty characterization for the weighting factors is summarized
in Table 3.
Percentage uncertainties with confidence levels are transferred

into standard deviations using Eqs. (6) and (7). When the weighting
factors are evenly distributed among the seven decision criteria, the
mean of weighting factors μW is equal to normalized weighting
factors, and the standard deviation of weighting factors is σW ,
denoted as follows:

μW � �0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 �T

σW � �0.0130 0.0073 0.0149 0087 0.0345 0.0335 0.0261 �T

For instance, the standard deviation of w1 with 15% uncertainty at
90% confidence level is calculated by Eqs. (8) and (9), respectively:

nw1
�

���
2
p
erf−1�Confidence level� �

���
2
p
erf−1�90%� � 1.6449

(8)

σw1
�

Relative error�%�μw1

nw1

� �15%��0.1429�
1.6449

� 0.0130 (9)

In this step, uncertainties in the weighting factors are transferred into
means and standard deviations. The variables μW and σW are the
input for the error propagation calculation in the uncertainty
analysis step.

2. Uncertainty Analysis

Monte Carlo-based numerical error propagation technique is
applied to perform uncertainty analysis for ELECTRE I. Ten
thousand runs are performed from normal distribution with
parameters μW and σW . The probabilistic outranking relationships for
each alternative are presented in Table 4. It can be observed that, with
evenly distributed weighting factors among the seven decision
criteria, A4 (Hawker H4000) has the highest probability to be
nondominated, whereas A2 (Cessna Citation X) has the highest
probability to be dominated.
Besides, it is noted that the probability ofA1 to be a nondominated

alternative or dominated alternative is approximately equal. To
investigate the unstable status of A1, sensitivity analysis for the
alternatives to the weighting factors is further conducted in the
following section.

3. Sensitivity Analysis

In the business aircraft evaluation problem using ELECTRE I,
with equally distributed weighting factors among seven criteria, A1

and A2 are dominated alternatives, whereas A3 and A4 are
nondominated alternatives. Based on the iterative binary search
algorithm developed in Sec. IV, the minimum changes in the
weighting factors that can alter the nondominance or dominance
status of alternatives are summarized in Table 5, where N/F
(Nonfeasible) means that it is not mathematically feasible to alter the
nondominance or dominance status of alternatives through the
change of the current parameter.
It can be seen from the first row in Table 5 that it is not feasible to

change the weighting factor of C2 to switch A1 into a nondominated
alternative, whereas only around 3% change in the weighting factors
of C5 or C7 can make A1 become a nondominated alternative.
Therefore, we can conclude that A1 (Bombardier Challenger 300) is
most sensitive to the weighting factor of C5 (cabin volume per
passenger) and the weighting factor of C7 (manufacturer’s
reputation). The sensitivity of A1 explains well its unstable status
observed from Table 4 in the preceding section.

4. Uncertainty Assessment Insights for the Business Aviation Customer

The uncertainty assessment conducted here helps the business
aviation customer to prioritize the evaluation information when
selecting a business jet. For the scenario considered in this study, the
business aviation customer should pay more attention to the business
jetA1 (Bombardier Challenger 300) because it is most sensitive to the

Fig. 4 Decision analysis methods ranking list in business aircraft

evaluation process.

Table 3 Uncertainty characterization for weighting

factors

Weighting factors

w1 w2 w3 w4 w5 w6 w7

Percentage uncertainty, % 15 10 15 10 25 30 30
Confidence level, % 90 95 85 90 70 80 90

Table 4 Probabilistic outranking

relationships

Alternatives

A1 A2 A3 A4

Nondominated, % 48.84 11.50 89.22 99.71
Dominated, % 51.16 88.50 10.78 0.29
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preference information on the evaluation criteria. Furthermore, the
business aviation customer should consider carefully cabin volume
per passenger and manufacturer’s reputation because the preference
information for the two evaluation criteria is rather sensitive to the
best business jet alternative.

VI. Conclusions

In this study, a systematic decision analysis method selection
process is developed and applied to solve a given decision problem.
The selection of the most appropriate decision analysis method is
formulated as a complicated MCDA problem and an advanced
approach is proposed to solve this problem. The method evaluation
criteria for selecting the most appropriate method are defined.
Weighting factors are assigned to each evaluation criterion to
describe a decision maker’s preference information. An appropriate-
ness index is used to quantify the match between the method and the
problem under consideration.
Furthermore, a new uncertainty assessment approach in the

decision analysis process is proposed, consisting of uncertainty
characterization, uncertainty analysis, and sensitivity analysis. This
approach can be used to verify the final decision for a given problem
when the uncertainties of input data are introduced. This novel
approach for uncertainty assessment can be used to aggregate input
data from tools with different fidelity levels and is capable of
propagating uncertainties in an assessment chain. A business aircraft
evaluation problem is implemented to demonstrate the capabilities of
the intelligentmulticriteria decision support system.Our study shows
that the proposed decision support system can effectively help
decision makers with selecting the most appropriate method and
guiding decision makers to get the final decision for the given
decision problem.
In addition, a three-step framework for solving decision making

problems is proposed and implemented in this research: definition of
a decisionmaking problem, selection of themost appropriateMCDA
method for the given problem, and uncertainty assessment in the
decision analysis process. This three-step framework provides a
general guideline on how to structure and solve any given decision
making problem.
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