
Towards Scalable Instance Retrieval
over Ontologies

Sebastian Wandelt, Ralf Möller, Michael Wessel

Hamburg University of Technology, 21079 Hamburg, Germany,
http://www.sts.tu-harburg.de

Abstract. In this paper, we consider the problem of query answer-
ing over multimedia ontologies. Traditional reasoning systems may have
problems to deal with large amounts of expressive ontological data (ter-
minological as well as assertional data) that usually must be kept in main
memory. We propose to overcome this problem with a new so-called filter
and refine paradigm for ontology-based query answering.
The contribution of this paper is twofold: (1) For both steps, algorithms
are presented. (2) We evaluate our approach on real world multimedia
ontologies from the BOEMIE project.1

1 Introduction

Applying semantic web technologies to enable the semantic retrieval of docu-
ments is a hot research topic. We believe that rather expressive DLs such as
SHI are required in order to capture important domain constraints in an on-
tology (e.g., less expressive DLs may not provide the required expressivity for
the modeling problems at hand). Thus, in this paper we focus on the DL SHI
(extensions to larger OWL fragments will be considered in future research).

In general, ontologies tend to be large, both in numbers of concepts as well
as in numbers of individuals. Unfortunately, the data complexity of instance
retrieval in SHI (and more expressive DLs) is EXPTIME-complete. Thus, from
a computational perspective, instance retrieval with large ontologies (containing
lots of instances) may be very hard. Although mature DL/ OWL reasoning
systems such as RacerPro exist [1], many reasoning systems for expressive
DLs nowadays still work on main memory only. This obviously prevents their
usage on very large ontologies, which may contain millions of “facts”, so query
answering simply runs out of main memory, or even loading of the whole ontology
is already impossible.

In this paper, we propose a new filter & refine strategy for expressive ontolo-
gies in order to address the data- and expressivity scalability problem [2].

The idea is depicted in Figure 1. Initially (left of Figure 1), a set of indi-
viduals is present in an ontology - indicated as small circles. Given a retrieval
query, we want to determine all the individuals, which are instances of a concept
description. We propose to perform instance retrieval in two steps:

1 This work has been funded by the German Science Foundation with the project
PRESINT (DFG MO 801/1-1).

II

Filter Refine

Fig. 1. General idea of Filter and Refine for Retrieval

1. Filter Step: The idea of the Filter step is to find some obvious solutions (in-
dicated with a small star) and remove some obvious non-solutions (indicated
as crossed out). In Figure 1, there are three obvious solutions to a retrieval
query and three obvious non-solutions. For the remaining four individuals it
is not yet clear, whether they are solutions or not.

2. Refine Step: For the remaining individual (four individuals in Figure 1), we
perform an optimized instance check, which is based on using locality in the
ABox, i.e. one does not have to load the whole ABox for the instance check.

Recently, query answering in less expressive DLs received great attention. E.g.,
the QuOnto system [3] is able to perform query answering on secondary mem-
ory by taking advantage of (relational) database technology. Based on efficient
reasoning over less expressive description logics, we propose a filter step, which
approximates a SHI ontology to a less expressive, but yet sound or complete,
ontology. Then for instance QuOnto can be used to pre-filter individual candi-
dates, i.e. obvious solutions and obvious non-solutions. In addition, we propose
an alternative main-memory filtering technique based on individual similarity,
which turns out to be more efficient in practice and seems like a promising low
memory-footprint data structure for retrieval techniques. Our refine step is based
on the work in [4] and exploits locality of ABox individual information. The idea
is that a considerable amount of role assertions in an ontology can be broken up
without changing the semantics for instance checking and instance retrieval.

This paper is structured as follows. First, the basics of descriptions logics (as
far as relevant for this paper) are introduced; i.e., the DLs SHI and DL-Lite,
as well as basic inference problems. Then, we describe the novel approximation
algorithm which reformulates SHI ontologies as DL-Lite ontologies for the fil-
ter step and we propose a second filtering algorithm based on local similarity
of individuals. We then apply a partitioning algorithm for the refine step and
perform a preliminary evaluation of our framework applied to the AEO ontology.
Open problems are discussed and provide motivation for future research.

III

2 Basics and Guiding Example

In the following part we will define mathematical notions, which are relevant for
the remaining paper.

The Description Logic SHI We briefly recall syntax and semantics of the de-
scription logic SHI (also called ALCHIR+). For the details, please refer to
[5]. We assume a collection of disjoint sets: a set of concept names NCN , a set
of role names NRN and a set of individual names NI . The set of roles NR is
NRN ∪ {R−|R ∈ NRN}, where R− denotes an inverse role. A distinguished
subset NT of roles is called a set of transitive roles. The set of SHI-concept
descriptions is given by the following grammar:

C,D ::= >|⊥|A|¬C|C uD|C tD|∀R.C|∃R.C
where A ∈ NCN and R ∈ NR. We say that a concept description is atomic,
if it is a concept name or a negated concept name. With NC we denote all
atomic concepts. For defining the semantics of concept descriptions and roles we
consider interpretations I that consist of a non-empty set ∆I , the domain, and
an interpretation function ·I , which assigns to every concept name A a set AI ⊆
∆I and to every role R a set RI ⊆ ∆I×∆I . For complex concept descriptions the
interpretation function is extended as shown in [5]. The semantics of description
logics is based on the notion of satisfiability. An interpretation I = (∆I , ·I)
satisfies a concept description C if CI 6= ∅. In this case, I is called a model for
C. A concept description is in negation normal form if negation occurs only in
front of concept names.

A TBox is a finite set of axioms of the form Cv̇D (so-called generalized
concept inclusions, GCIs). together with a finite set of axioms Rv̇S (role inclu-
sions). An interpretation I satisfies a GCI Cv̇D if CI ⊆ DI . An interpretation
I satisfies a role inclusion Rv̇S if RI ⊆ SI . An interpretation is a model of
a TBox T if it satisfies all generalized concept inclusions in T and all role in-
clusions in T . An ABox is a finite set of so-called concept and role assertions
C(a) and R(a, b), where a and b are elements of NI . An interpretation I sat-
isfies a concept assertion C(a) (resp. role assertion R(a, b)) if aI ∈ CI (resp.
(aI , bI) ∈ RI).

A ontology O is a pair 〈T ,A〉, where T is a TBox and A is a ABox. Interpre-
tations are extended to ontologies in the usual way ([5]). We restrict the concept
assertions in A in such a way that each concept description is an atomic concept
or a negated atomic concept. This is a common assumption, when dealing with
large assertional datasets in ontologies.

With Ind(A) we denote the set of individuals occurring in A. We say that
O is inconsistent, denoted with INC(O), if there exists no model for O. We say
that O is consistent, denoted with CON(O), if there exists at least one model
for O. Given an individual a and an atomic concept C, we have 〈T ,A〉 � C(a)
iff INC(〈T ,A ∪ {a : ¬C}〉).

By instance retrieval for concept C, we obtain all individuals a ∈ Ind(A),
s.t. we have 〈T ,A〉 � C(a). We denote the set of instances for a given concept
C with concept instances(C,A, T).

IV

In the following we define some additional notions, which will be used in the
remaining part of the paper. A ∃-constraint is a concept description of the shape
∃R.C, s.t. C is an arbitrary concept description. A ∀-constraint is a concept
description of the shape ∀R.C, s.t. C is an arbitrary concept description.

The subsumption hierarchy (so-called taxonomy) of parents and children for
each concept name can be obtained by classification. For SHI ontologies it is
possible to compute the subsumption hierarchy in advance given only the TBox
T , i.e. without the ABox A. This is possible since SHI does not allow the use of
nominals. With v̇T : NC ×NC we denote the precomputed taxonomy obtained
by classification, e.g., we have v̇T (C,D) iff O � Cv̇D for atomic concepts C
and D. The role hierarchy of a SHI-ontology can be computed in advance given
the TBox T only as well. With v̇R : NR ×NR we denote the precomputed role
hierarchy, e.g. we have (R,S) ∈ v̇R iff O � Rv̇S for roles R and S.

An atomic concept D is a synonym for a concept description C if we have
T � Cv̇D and T � Dv̇C. With synonyms(C, T) we denote the set of atomic con-
cepts, which are synonyms for concept C with respect to T . With parents(C, T)
(children(C, T)) we denote the set of atomic concepts which are more general
(specific) than a given concept C.

DL-LiteF ([6]) is a fragment of OWL DL with the set of concept and role
descriptions defined by the following grammar: B −→ A | ∃R.>, C −→
B | ¬B,R −→ P | P−, E −→ R | ¬R
where A is an atomic concept, P is an atomic role, and P− is the inverse of
the atomic role P . B denotes a basic concept, i.e., a concept that can be either
an atomic concept or a concept of the form ∃R.>, and > is the top concept, R
denotes a basic role, i.e., a role that is either an atomic role or the inverse of
an atomic role. DL-LiteF TBox is a set of axioms of the form Bv̇C (concept
inclusions), where only basic concepts may occur on the left-hand side, and a set
of global role functionality assertions of the form funct(R). An ABox includes
as usually concept and role assertions C(a) and R(a, b).

In the following, we introduce an example ontology, which will be used
throughout the remaining part. The example ontology OEx1 in Example 1 is
from university domain and inspired by the Lehigh University Benchmark, in-
troduced in [7].

Example 1 (Running Example Ontology). The example ontology

OEx1 = 〈TEx1,AEx1〉

V

is defined as follows

TEx1 = {
Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,
GraduateStudentv̇∀takes.GraduateCourse,
UndergraduateCourse u Chairv̇⊥, GraduateCourse u Chairv̇⊥,
Student u Chairv̇⊥,>v̇∀takes.Course,
headOfv̇memberOf, teaches ≡ isTaughtBy−

}

AEx1 = {
Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c3), GraduateCourse(c4),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}

The relationships among individuals of AEx1 are depicted in Figure 2. Please
note that only role assertions are used to build the graph, since we only want to
emphasize the relationship between the ABox individuals.

3 Filter Step 1: Terminological Approximation

Definition of Approximation Let us start with some basic definition. First we
define the notion of an approximation of a TBox T :

Definition 1 (TBox Entailment). For two TBoxes T1 and T2, T2 |= T1 iff all
models of T2 are also models of T1.

VI

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf

sam
memberOf

c4 c5

teaches teaches teaches

takes takes takes takes takes

Fig. 2. Individual relationships for Example 1

Definition 2 (Approximation). Let T1 be a TBox in some DL DL. A T2 is
called an approximation of T1 iff a) T2 is a DL′ TBox, with DL′ ⊆ DL, and b)
T2 |= T1 holds2.

TBox entailment is decidable if DL is decidable, since T2 |= T1 iff for all Cv̇D ∈
T1, C u ¬D is unsatisfiable w.r.t. T2. Note that this is well-defined, since we
assume DL′ ⊆ DL.
After all, our intention for this definition is that instance retrieval over A w.r.t.
T2 shall be complete, but possibly unsound compared with instance retrieval
w.r.t. A and T1:

Proposition 1. Let A be an ABox which contains only atomic concept asser-
tions, i.e., for all i : C ∈ A, C is an atomic concept: C ∈ NCN . Let D be an
atomic query concept, the concept whose instances shall be retrieved. Let T2 be
an approximation of T1. Then, the following holds: concept instances(D,A, T1) ⊆
concept instances(D,A, T2).

Proof. (Sketch) Assume that i ∈ concept instances(D,A, T1), but
i /∈ concept instances(D,A, T2). Let Σi, i ∈ {1, 2} denote the logical theory
of Ti and A, where α ∈ Σi is either an ABox assertion or a TBox axiom
in DL′ (not DL). Then, Σ1 ⊆ Σ2, since T2 is an approximation of T1, so
T2 |= T1 by definition. Obviously, i ∈ concept instances(D,A, Tj) for j ∈ {1, 2}
iff i : D ∈ Σj (note that D ∈ DL′). But then, i ∈ concept instances(D,A, T1)
implies i ∈ concept instances(D,A, T2), contradicting the assumption. ut

How to Compute Approximations Having given these definitions, the question
arises, how to actually compute an approximation of T . The idea of the approx-
imation algorithm is quite simple. W.l.o.g. we assume that a TBox T contains

2 We are discussing the case where DL = SHI, and DL′ = DL-Lite.

VII

only implication axioms (axioms of the form Cv̇D; an axiom C≡̇D is trans-
formed into two axioms Cv̇D, Dv̇C). Please note that SHI admits role inclu-
sion axioms (for roles R,S) Rv̇S, which are valid in DL-Lite as well. Regarding
transitive roles, which are not allowed in DL-Lite, the following well-known
“trick” from the modal logic realm can be applied:

Definition 3 (Transitive Role Replacement). Let R be a transitive role in
T 3. Let NCN(T) denote the set of concept names appearing in T , and NT(T) the
set of transitively closed roles in T . The K4 closure of T , T K4 , is defined as
follows:
T K4 =def T ∪ { ∃R.∃R.Cv̇∃R.C, ∀R.Cv̇∀R.∀R.C |C ∈ NCN(T), R ∈ NT(T) }.

Moreover, we assume that R is an ordinary role in T K4 =def (not a transi-
tively closed one).

Proposition 2. Let D be an atomic query concept, and A an ABox in which
all concept assertions refer to atomic concepts only. Then we have that

concept instances(D,A, T) = concept instances(D,A, T K4).

We assume a corresponding function get K4 closure which computes the T K4 for
a given T . Please note that this proposition does not hold for arbitrary ABoxes
and query concepts D (only for ABox containing atomic concept assertions, and
atomic instance retrieval concepts).

Another preprocessing step is applied to remove nested occurrences of (sub)
concepts of the form ∃R.C and ∀R.C from the axioms, so they can be better
approximated to DL-Lite axioms. Thus, for each axiom Cv̇D, and for each
subconcept E in ¬CtD with E = ∃R.F or E = ∀R.F , and F /∈ NCN , we replace
E with a new atomic concept CE and add {CEv̇E,Ev̇CE} to T . This process
continues, until T no longer contains such axioms (note that E itself might still
contain such subconcepts as well). For example, {Cv̇Du∃R.(EuF)} is rewritten
into {Cv̇DuC∃R.(EuF), C∃R.(EuF)v̇EuF,EuF v̇C∃R.(EuF)}. Consequently, we
assume a function flatten tbox which applies this transformation to a TBox T .
Each model of flatten tbox(T) is trivially also a model of T , and vice versa, each
model of T can uniquely be extended to a model of flatten tbox(T) (only the
new atomic concepts must be interpreted correctly so that their axioms become
satisfied).

For an SHI TBox T we we can now compute an approximated T ′ by ap-
proximating each axiom. So, Cv̇D ∈ T is replaced by a logically stronger axiom
C ′v̇D′ , {C ′v̇D′} |= {Cv̇D}, which is a DL-Lite axiom. The algorithm is best
understood as a non-deterministic algorithm which works as follows (the actual
deterministic implementation is described briefly below):

Function approximate(T)
Parameter: SHI TBox T

T := flatten tbox(get K4 closure(T))

3 DL-Lite does not offer transitive roles.

VIII

T ′ := {Cv̇D | T |= Cv̇D,C,D ∈ NCN }
while T 6= ∅

axiom := select axiom(T)
T ′ := T ′ ∪ approximate axiom(axiom, T ′)
T := T \ {axiom}

end while
return T ′

The algorithm first syntactically transforms the input TBox T as explained.
Although flatten tbox introduces new atomic concepts, no additional “K4” ax-
ioms need to be introduced for them by get K4 closure. Then, the taxonomy
of T is made explicit by adding corresponding axioms to T ′; these axioms are
DL-Lite axioms. The reason for this addition to T ′ is that the taxonomy of
T shall be available for approximate axiom (see below). Both select axiom and
approximate axiom are non-deterministic as well. Given an axiom Cv̇D, the ba-
sic idea of approximate axiom is to generalize the left-hand side C to C ′, and to
specialize the right-hand side D to D′. This ensures that the approximated axiom
is stronger than the original axiom, since C ′v̇D′ |= Cv̇D iff ¬C ′tD′ |= ¬C tD
iff (¬C ′tD′)u¬(¬CtD) is unsatisfiable iff (¬C ′tD′)uCu¬D is unsatisfiable
iff both ¬C ′ u C u ¬D and D′ u C u ¬D are unsatisfiable. Then, either Cv̇D
(so this is a tautology, and thus the trivial case), or Cv̇C ′ (then C u¬C ′ is un-
satisfiable) and D′v̇D, (so D′ u¬D is unsatisfiable). In principle, it is of course
also sufficient to find equivalent C ′, D′ in DL-Lite. The concepts C ′ and D′ are
called possible rewritings of C resp. D, and C ′v̇D′ is called a possible rewriting
of Cv̇D in the following, or also a candidate rewriting.

For example, the axiom Cv̇D t E can be rewritten to Cv̇D, or to Cv̇E
(assuming that C,D, T ∈ NCN). Moreover, Cv̇D t E can also be written as
¬Dv̇¬C t E, ¬Ev̇¬C tD, or even ¬D u Cv̇E, and so on, yielding additional
rewriting possibilities. Thus, re-arranging the left-hand sides of the axioms max-
imizes the number of rewriting possibilities. Even though these axioms are still
equivalent to the original one, after rewriting into DL-Lite they no longer are.
Perhaps for some reordering, no better approximations than >v̇⊥ can be found.
It is thus even more important to maximize the number of possible approxima-
tions in order to avoid bad approximations which are too strong (rendering the
whole TBox unsatisfiable).

The approximate axiom function considers the input axiom Cv̇D as a disjunc-
tion ¬CtD which, in a first step, is brought into disjunctive normal form (DNF).
A concept is in DNF if it is in negation normal form (NNF), and does not contain
any (sub)concepts of the form D u (E t F). Using simple boolean algebra, each
concept can be brought into DNF. Note that the concepts are even simpler at this
step in the processing chain, because complex qualification concepts have been
removed in advance. In the following, we use the set notation for disjuncts of a
concept in DNF: DNF(Cu(EtF)) = (CuE)t(CuF) = {CuE,CuF}. The func-
tion approximate axiom non-deterministically chooses a subset of DNF(¬CtD) as
a possible left-hand side of the axiom, and uses the remaining disjuncts as right-
hand side. Then, approx axiom calls the non-deterministic functions generalize
and specialize:

IX

Function approximate axiom(axiom, T ′)
Parameter: SHI axiom axiom = Cv̇D and partial approximation T ′

if T ′ |= axiom then return T ′
else if axiom is a DL-Lite axiom then return {axiom} ∪ T ′
else

concept := DNF(¬C tD)
left side := some subset of(concept)
right side := concept \ left side
left side ′ := generalize(¬left side, T ′)
right side ′ := specialize(right side, T ′)
if left side ′ 6= ∅ and right side ′ 6= ∅ then

axiom′ := left side ′v̇right side ′

if T ′ 6|= axiom′ then return {axiom ′} ∪ T ′
return T ′

Both specialize and generalize first bring their argument concepts in DNF, and
then specialize or generalize using a set of non-deterministic rewriting rules
which are guided by the structure of the concept. The rules are applied ex-
haustively to the concept C until no more rule is applicable.

The rules make use of the helper function syns or parents which returns a
non-empty result for non-atomic concepts only:

syns or parents(C, T ′) =def


synonyms(C, T ′) if synonyms(C, T ′) 6= ∅, C /∈ NCN

parents(C, T ′) if synonyms(C, T ′) = ∅, C /∈ NCN

∅ otherwise

Note that T ′ is only partially available, but already contains the taxonomy
axioms derived from T (see approximate). Note that C ∈ synonyms(C, T , T ′) for
all C ∈ NCN .

The function generalize uses the following non-deterministic generalization
rules; C →G C ′ means that C is generalized to C ′:

– C →G C′, if C is a valid left-hand side of a DL-Lite axiom

– ∃R.C →G C′, C′ ∈ {∃R.>} ∪ syns or parents(∃R.C, T , T ′) (note: C ∈ NCN)

– C uD →G C′, C′ ∈ {C,D} ∪ syns or parents(C uD, T , T ′)
– C tD →G C′, where C′ = C1 tD1, with C →G C1, D →G D1,

or C′ ∈ syns or parents(C tD, T , T ′)
– for all other concepts C: C →G C′, C′ ∈ syns or parents(C, T , T ′)

To give an example, consider generalize is applied to ∃R.C t (E u F). First,
the DNF is computed: (∃R.C u E) t (∃R.C u F). Then, a possible rewriting
is: (∃R.C u E) t (∃R.C u F) →G ∃R.> t F , since (∃R.C u E) →G ∃R.> and
(∃R.C u F)→G F . There are many other different rewritings.

Please note that DL-Lite does not permit negation or conjunctions on the
left-hand sides of axioms; thus, it is impossible to generalize conjunctions by
generalizing the arguments analog to the t-case. Note that, from this definition,
in most cases ∀R.C →G > unless syns or parents finds some parent for ∀R.C in
T ′. In principle, it is also possible to generalize a disjunction CtD to something
like C t D t E, for some E ∈ NCN (although this will result in a huge search

X

space in the implementation). The rules are designed in such a way to avoid over-
generalization in order to keep the number of unsound query answers small. That
means, more specific rewriting alternatives shall be favored over less specific ones.
For example, although C uD →G C tD is conceivable, it does not make much
sense under this premise, since both C uD →G C as well as C uD →G D are
more specific.

The rules for concept specialization, specialize, exploit a similar function
syns or children and follow the principle to avoid over-specialization, i.e., more
general rewriting alternatives are preferred over more specific ones. In these rules,
there is the possibility to rewrite a concept C to ∅. In case C →S ∅ for a conjunct
C in C u D, then ∅ is considered as >. However, in case C is a disjunct, then
∅ is considered as ⊥. So, ∅ serves as the neutral element w.r.t. the surrounding
operation:

– C →S C′, if C is a valid right-hand side for a DL-Lite axiom
– ¬C →S ¬C′, where C →G C′ (i.e., C is generalized),

or C ∈ syns or children(∃R.C, T , T ′).
– ∃R.C →S C′, C′ = ∃RC .> with T ′ := T ′ ∪ {RCv̇R, ∃R−C .>v̇C},

or C′ = ∃R.> with T ′ := T ′ ∪ {∃R−.>v̇C},
or C ∈ syns or children(∃R.C, T , T ′) (note: C ∈ NCN)

– ∀R.C →S ∅, T ′ := T ′ ∪ {∃R−.>v̇C′}, where C →S C′

– C tD →S C′, C′ ∈ {C,D} ∪ syns or children(C tD, T , T ′)
– C uD →G C′, where C′ = C1 uD1, with C →S C1, D →S D1,

or C′ ∈ syns or children(C uD, T , T ′)
– for all other concepts C: C →S C′, C′ ∈ syns or children(C, T , T ′)

In principle, it is possible to use CuD →S CuDuE, for some E ∈ NCN , but the
same comments as given above (for CtD) apply. Please note that DL-Lite does
not permit disjunctions on the right-hand sides of axioms. Moreover, specialize
has a side-effect on T ′, since it may introduce additional axioms. For example,
the ∃R.C-rule introduces a new range restriction on R by adding ∃R−.>v̇C
to T ′. So, ∃R.C is in fact generalized to ∃R.>; however, due to the introduced
range restriction ∃R−.>v̇C we get ∃R.> |= ∃R.C. In combination this is a
specialization of ∃R.C, as required. Another possibility would be to introduce a
subrole RC , RCv̇R with range C, and rewrite ∃R.C to ∃RC .>, but this would
require a modification of the ABox during instance retrieval.

The rule ∀R.C →S ∅ deserves an explanation. The idea here is to completely
ignore this (sub)concept on the right-hand side, and instead put a new axiom
into T ′ (which is modified per side-effect): T ′ := T ′ ∪ {∃R−.>v̇C ′}. For ex-
ample, consider the TBox {Cv̇(∀R.D) u E}. Since the left-hand side is already
acceptable, only the right-hand side is rewritten: (∀R.D) u E →S > u E, since
∀R.D →S ∅ and E →S E. However, also ∃R−.>v̇D has been added to T ′, thus
the approximation is T ′ = {Cv̇E,∃R−.>v̇D}. It is easy to see that T ′ |= T
holds. In case the input TBox is {Cv̇(∀R.D)tE}, then the following rewriting
is possible: (∀R.D) t E →S ∀R.D →S ∅. Since approximate axiom will reject
axioms with right side′ = ∅, the approximation is simply T ′ = {∃R−.>v̇D}.
Another possibility is of course T ′ = {Cv̇E}, according to the t-rule.

XI

Proposition 3. Let T ′ = approximate(T) for a SHI TBox T . Then, T ′ is a
DL-Lite approximation of T .

Proof. (Sketch) This can be shown by induction on T . It is easy to check that
approximate axiom(Cv̇D, T ′) ∪ T |= {Cv̇D} ∪ T for every T ′ by monotonicity
and by definition of approximate axiom.

An Implementation of the Approximation Algorithm We have eliminated the
non-determinism in the approximate algorithm by implementing it in a depth-first
(backtracking) search algorithm. Thus, for a given axiom,
approximate axiom(axiom) returns a set of candidate axioms, representing pos-
sible approximations of axiom. Each axiom thus represents a state in the search
space, whose branching factor is given by the number of its candidate approxi-
mation axioms.

In principle, the number of possible approximations is truly astronomic for
larger TBoxes. Consider a TBox with 500 axioms to approximate, in which each
axiom can be approximated in three different ways – the number of atoms in
the universe is 1080 ≈ 3167.6722 and thus tiny compared to the 3500 nodes in this
search space. Thus, clever heuristics are needed to guide the search. Since, in
principle, one is only interested in coherent approximations (containing only one
incoherent concept name, ⊥), it is a good idea to prune a path in the search tree
as soon as more than one incoherent concept is discovered in the partial T ′. Of
course, this requires a TBox coherence check by the DL reasoner (RacerPro)
at each step. This would be a good use case for incremental reasoning. In order
to filter out candidate axioms which are too specific, RacerPro is used as well.

It may not be possible to compute a coherent approximation at all. In this
case, an incoherent TBox is wanted which at least leaves the ABox satisfiable
(but even this may be impossible), or contains only a minimal number of inco-
herent concepts.

Sometimes it is possible to compute more than one approximation. Even if
each computed approximation is unsound for retrieval on an actual ABox, it is
good to have a multitude of approximations available, since their retrieval results
can be intersected. Even if no – w.r.t. an actual ABox – prefect approximation is
among the computed approximations, this intersected answer set may by perfect
for some concept C on this ABox.

4 Filter Step 2: One Step Nodes

In the previous section we have introduced one way to pre-filter individuals for
instance retrieval queries - based on TBox approximation to a less expressive
ontology language. However, this step is usually quite time-consuming and can
only be done offline. We propose another filter step, based on reduction of the
size of the input, while remaining the level of expressivity. The idea is to extract
small subsets of the ABox, which allow for sound (and possibly complete) rea-
soning over an individual. In addition, we will show that many of these extracted
structures are similar to each other and can be handled in one reasoning step.

XII

The basic idea is to define a notion of so-called pseudo node successors, which
represent the directly asserted successors of a named individual in an ABox.
Then, for each individual in the ABox the information about all pseudo node
successors plus the information about the original individual will be combined
to obtain so-called one step nodes. These one step nodes can be grouped and
used to answer instance checking and instance retrieval queries directly as shown
below.

Definition 4 (Pseudo Node Successor). Given an ABox A, a Pseudo Node
Successor of an individual a ∈ Ind(A) is a pair pnsa,A = 〈rs, cs〉, s.t. ∃a2 ∈
Ind(A) with

1. ∀R ∈ rs.(R(a, a2) ∈ A ∨R−(a2, a) ∈ A),
2. ∀C ∈ cs.C(a) ∈ A and
3. rs and cs are maximal.

The third criteria (maximality) is important to ensure that for each pair of
named individuals 〈a1, a2〉 ∈ Ind(A) × Ind(A), we have that a2 can be repre-
sented as exactly one kind of pseudo node successor for a1.

Next, we combine all pseudo node successors of an individual a in an ABox
A and add the directly asserted concepts of a, to create a summarization repre-
sentative, called one step node.

Definition 5 (One Step Node). Given an ontology O = 〈T,A〉 and an indi-
vidual a ∈ Ind(A), the One Step Node of a for A, denoted osna,A , is a pair
osna,A = 〈rootconset,pnsset〉, s.t.

– rootconset = {C|C(a) ∈ A} and
– ansset is the set of all pseudo node successors of individual a.

Example 2 (Example for One Step Nodes). Given ontology OEx1 from Example
1, one step nodes are for instance:

osnmae,AEx1 =〈{Professor}, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉

osnc5,AEx1 =〈{Student},
{〈{takes−}, {Student}〉, 〈{teaches−}, {Professor}〉}〉

osnann,AEx1 =〈{Professor}, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉

It can already be seen from Example 2, that individuals often have similar one
step nodes. During reasoning, these individuals can be handled together, while
still remaining soundness (and even possibly completeness). This is formalized
next.

Definition 6 (One Step Node Similarity). Two individuals a1 and a2 are
called One Step Node Similar for an ABox A, if we have osna1,A = osna2,A .

XIII

To formally define entailment for one step nodes, we need to have some kind
of serialization of one step nodes into an ontology. This serialization is formally
defined in Definition 7 for pseudo node successors and in Definition 8 for one
step nodes.

Definition 7 (Pseudo Node Successor ABox Realization). Given one
pseudo node successor pnsa,A = 〈rs, cs〉 and an individual a2, an ABox re-
alization of pnsa,A with respect to a2, denoted ABoxa2(ansa,A), is

ABoxa2(ansa,A) =
⋃
C∈cs
{C(a2)} ∪

⋃
R∈rs
{R(a, a2)}

Definition 8 (One Step Node ABox Realization). Given a one step node
osna,A = 〈rootconset,pnsset〉, let a1, ..., an be individuals distinct with a,
such that n = |pnsset|. Furthermore let f be a bijective function from pnsset
to {a1, ..., an}. An ABox realization of osna,A , denoted ABox(osna,A), is

ABox(osna,A) ={C(a) | C ∈ rootconset}∪⋃
pnsa,A∈pnsset

ABoxf(pns
a,A)(ansa,A)

Definition 9 (One Step Node Entailment). Given a TBox T and a one step
node osna,A = 〈rootconset,pnsset〉 for an individual a ∈ Ind(A), we say that
osna,A entails an atomic concept assertion C(a), denoted osna,A �T C(a), if we
have 〈T, ABox(osna,A)〉 � C(a). If T is clear from the context, then it is omitted,
e.g. then we denote concept assertion entailment with osna,A � C(a).

Lemma 1 (One Step Node Entailment is Sound for Instance Check-
ing). Given an ontology 〈T,A〉, an individual a ∈ Ind(A) and a one step node
osna,A = 〈rootconset,pnsset〉 for a, we have that osna,A is sound for instance
checking in ontology 〈T,A〉.

Proof (Proof of Lemma 1). For the proof we have to show that osna,A � C(a)
=⇒ 〈T,A〉 � C(a). By contraposition, we obtain 〈T,A〉 2 C(a) =⇒ osna,A 2
C(a). We assume 〈T,A〉 2 C(a). That means, there exists an interpretation I,
such that I � 〈T,A〉, but I 2 C(a). By Definition 4, Definition 5 and Definition
8, there must exist a homomorphism π from ABox(osna,A) to A. Let Iπ be the
interpretation obtained from I, by using π on the individuals in ABox(osna,A).
We can conclude that Iπ � osna,A . By Iπ 2 C(a) (which follows from I 2 C(a)
and the unchanged concept labels of the domain elements of I in Iπ), we obtain
osna,A 2 C(a).

To summarize, one step nodes enable us to pre-filter individuals for an instance
retrieval query in a sound way. It will be shown below, how one step nodes can
also be used for complete pre-selection. Given TBox approximation and one step
nodes as filter techniques, we have a means to determine subsets and supersets
of solutions for instance retrieval queries. Next, we introduce the refine step,
which is used to determine the status of possible solutions, which are obtained
by complete filtering, but are not included in any sound filtering.

XIV

5 The Refine Step: Island-Based Instance Retrieval

In the following section we discuss how to post-filter individuals, which were
obtained by the Filter Step before. The original algorithm was proposed in [4]
for the DL ALCHI. This section is only intended as a overview of the refine
step. Detailed explanations and proofs are omitted here.

The idea for the refine step is that only a subset of role and concept assertions
is necessary/used to perform instance checking for a particular given individual
a and a given concept C. The approach undertaken here is to identify role
assertions which can be used during the application of a tableau algorithm for
instance checking (note that 〈T ,A〉 �? C(a) can be reduced to checking whether
〈T ,A ∪ {¬C(a)}〉 is unsatisfiable via a tableau algorithm).

First, we transform the ontology into some kind of normal form, called shallow
normal form. For the details of the transformation please refer to [4]. Given the
shallow normal form, we use a so-called ∀-info structure for an ontology O to
determine which concepts are (worst-case) propagated over role assertions in an
ABox. This helps us to define a notion of separability. The following definition of
O-separability is used to determine the importance of role assertions in a given
ABox. Informally speaking, the idea is that O-separable assertions will never be
used to propagate “complex and new information” via role assertions.

Definition 10. Given an ontology O = 〈T ,A〉, a role assertion R(a, b) is called
O-separable, if we have INC(O) iff INC(〈T ,A2}〉), where

A2 =A \ {R(a, b)} ∪ {R(a, i1), R(i2, b)} ∪ {C(i1)|C(b) ∈ A} ∪ {C(i2)|C(a) ∈ A},

s.t. i1 and i2 are fresh individual names.

The extraction of islands for instance checking in ontology O, given an indi-
vidual a, is now straightforward. From an individual a one just follows each
O-inseparable role assertion in the original ABox, until no more O-separable
role assertions are left, i.e. in a breath-first-search style. For the details of this
algorithm please refer to [4]. Transitive roles can be easily read off from the TBox
by additionally taking into account the role hierarchy. Then, whenever we want
to compute the island for an individual w.r.t. DL SHI, then we have to addi-
tionally “follow” all transitive role assertions. This proposal for the extension to
DL SHI is quite straight-forward and we do not prove it here.

To summarize, we have a locality-based extraction algorithm, which allows
us to perform instance checking for a given individual. This is important, since
we can avoid loading the whole ABox for instance checking. We show a detailed
example for instance retrieval in the following section.

6 Running Example

The extended ∀-info structure, i.e. the core information structure for deciding
O-separability, for TEx1 is:

XV

evaean sam

mae

zoeani sue

eveann

noa

cs ee

c2 c3c1

headOf

headOf
memberOf

c4 c5

teaches teaches teaches

takes takes takes
takes

takes

Fig. 3. Individual relationships and separability for Example 1

extinfo(R) =


{¬Department}, if R = headOf

{¬Course, Course,GraduateCourse}, if R = takes

∅, else

The O-separability among individuals of AEx1 are depicted in Figure 3. Sepa-
rable role assertions are indicated with a dashed line. For instance, the role asser-
tion takes(ani, c1) is not separable, since the concept descriptionGraduateCourse
can be propagated via role description takes. Please note that all these role as-
sertions would be separable, if we had a disjointness axiom for GraduateCourse
and UndergraduateCourse. However, to show the behavior of reasoning in case
of inseparability, we omitted the disjointness axiom here.

6.1 Instance Checking

First, we discuss instance checking, since it is a the basic problem underlying
instance retrieval. For instance checking, we are given an ontology O, an atomic
concept description C and an individual a ∈ Ind(A), and we want to find out,
whether O � C(a). The process of instance checking is done in two steps. First,
we take the one step node osna,A of individual a and see, whether osna,A � C(a).
If yes, then we are done, since we know that one step nodes are sound for
instance checking with respect to the input ontology O. If osna,A 2 C(a), then
we distinguish two cases. First, if we have osna,A � ¬C(a), then then we can
conclude by soundness that O � ¬C(a) and O 2 C(a), if the whole ontology
is assumed to be consistent. If we do not have osna,A 2 ¬C(a) either, then we

XVI

need to load the individual island ISLa for individual a and perform instance
checking over ISLa .

As an example for instance checking, we want want to check, whether the
individual ann is an instance of concept description Chair with respect to the
ontology OEx1. The one step node osnann,AEx1 is defined as follows:

osnann,AEx1 =〈{Professor}, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉

One possible one step node realization of osnann,AEx1 is

ABox(osnann,AEx1) = {Professor(ann), headOf(ann, a1), teaches(ann, a2)}.

It is easy to see that we have 〈T, ABox(osnann,AEx1)〉 � Chair(ann), and
thus we have osnann,AEx1 �TEx1

Chair(ann) and by soundness of one step nodes
OEx1 � Chair(ann).

As a second example for instance checking, we want want to check, whether
the individual c1 is an instance of concept description Chair with respect to the
ontology OEx1. The one step node osnc1,AEx1 is defined as follows:

osnc1,AEx1 =〈{UndergraduateCourse}, {〈{teaches−}, {Professor}〉,
〈{takes−}, {Student}〉}〉

One possible one step node realization of osnc1,AEx1 is

ABox(osnc1,AEx1) = {UndergraduateCourse(c1), teaches(a1, c1,),

takes(a2, c1)}.

It is easy to see that we have 〈T, ABox(osnc1,AEx1)〉 2 Chair(c1). In this case,
the one step node does not indicate entailment. However, another simple instance
check can help us to avoid using the individual island here. It is easy to see that
we have 〈T, ABox(osnc1,AEx1)〉 � ¬Chair(c1). And this means that we have
〈TEx1,AEx1〉 � ¬Chair(c1). Thus, in some cases, the negated instance check for
one step nodes can also help us to avoid performing reasoning on (more complex)
individual islands. However, if the negated instance check fails, then we really
have to fall back to the use of sound and complete individual islands.

6.2 Instance Retrieval

In the following, we discuss instance retrieval optimization over ontologies. We
propose to use both filter techniques in parallel and then combine the results. In
our experiments so far, the one step node-based technique always outperforms
the TBox approximation. This is due to the high complexity of approximation
mentioned above. Thus, in the following we will focus on the explanation of one
step node-based instance retrieval.

The naive approach would be to apply instance checking techniques to each
named individual in the ABox. For ontology OEx1, we would have to perform

XVII

17 instance checks in that case. However, we have introduced the notion of one
step node similarity. The idea is that similar one step nodes entail the same set
of concept descriptions for the named root individual. Given the set of all one
step nodes for an input ontology, we can reduce the number of instance checks.

For example, assume that we want to perform instance retrieval for the con-
cept description Chair with respect to ontology OEx1. First, we compute the
one step node for each individual in AEx1. The resulting one step nodes are
shown in Figure 4:

osnani,AEx1 = osnsam,AEx1 = osnsue,AEx1 = osnzoe,AEx1 =

〈{Student}, {〈{takes}, {UndergraduateCourse}〉}〉

osnean,AEx1 =

〈{Student}, {〈{takes}, {UndergraduateCourse}〉,
〈{takes}, {GraduateCourse}〉}〉

osneva,AEx1 = osnnoa,AEx1 =

〈{Student}, {〈{takes}, {GraduateCourse}〉}〉

osnc1,AEx1 = osnc4,AEx1 = osnc5,AEx1 =

〈{UndergraduateCourse}, {〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnc2,AEx1 = osnc3,AEx1 =

〈{GraduateCourse}, {〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnann,AEx1 = osnmae,AEx1 =

〈{Professor}, {〈{headOf}, {Department}〉, 〈{teaches−}, {UndergraduateCourse}〉}〉

osneve,AEx1 =

〈{Professor}, {〈{memberOf}, {Department}〉, 〈{teaches−}, {GraduateCourse}〉}〉

osncs,AEx1 =

〈{Department}, {〈{headOf−}, {Professor}〉, 〈{memberOf−}, {Professor}〉}〉

osnee,AEx1 =

〈{Department}, {〈{headOf−}, {Professor}〉}〉

Fig. 4. One step nodes for individuals

Instead of 17 instance checks for 17 named individuals, we are left with 9
instance checks over 9 one step nodes. For ontologies with a larger assertional
part, similarity of one step nodes will reduce the number of instance checks
usually by orders of magnitudes.

XVIII

By performing instance checks for concept description Chair over the 9 one
step nodes, we can conclude that individual ann and individual mae are in-
stances of Chair. Additional instance checks for concept description ¬Chair
yields that c1, c2, c3, c4, c5, ani, ean, eva, noa, sam, sue and zoe are in-
stances of concept description ¬Chair, and therefore are not instances of con-
cept description Chair. After the one step node filter process, we are left to
check only three individuals for being an instance of concept description Chair:
cs, ee and eve. For these three individuals we load the individual island and
perform instance checking.

Thus, our simple filter techniques allows to cut off 14 out of 17 individuals
immediately. And the remaining three individuals are checked by our optimized
refine step.

In the following section we evaluate our proposal on a real world multimedia
ontology.

7 Preliminary Evaluation and Related Work

We have performed an initial evaluation of our algorithms on a version of the
AEO ontology of the BOEMIE project. Using RacerPro, we have transformed
this OWL ontology into a DL ontology (= TBox, ABox). The utilized TBox
DL is ALCHf . It contains 1061 axioms which are already in DL-Lite, and 499
axioms which have to be approximated to DL-Lite. AEO also contains some
so-called number restrictions, which we simply approximate to functional roles
in DL-LiteF (since only ≤1 R concepts appear).

The ABox of the AEO version we used is rather small – it only contains 138
individuals (266 concept assertions plus 70 role assertions = 336 assertions). We
have chosen this ABox since some interesting reasoning is required in order to
retrieve the instances of the concept HighJump (similar to the Chair example,
but over 2 role fillers).

As illustrated previously, it is very demanding to approximate a TBox with
499 axioms. Unfortunately, we were not successful to compute a coherent approx-
imation of this AEO ontology in reasonable time. Better heuristics are needed
here. The reason for this is a massive number of disjointness axioms; e.g., axioms
of the form Av̇¬B, Av̇¬C, Additionally, get K4 closure introduces another
1110 additional axioms.

We have thus simplified AEO substantially by removing all disjointness ax-
ioms and ignoring transitivity (so get K4 closure adds no axioms). With this
version, a coherent approximation could be computed within 5 minutes. These
simplifications do not affect retrieval. In the average, it returns 0,984 false in-
stances for a concept (w.r.t. to the original AEO).

The original AEO contains one instance of HighJump, and no instances of
SprintCompetition. The approximated version is perfect for HighJump, but
delivers 7 wrong SprintCompetitions. The HighJump instance is in fact also a
(false) SprintCompetition here. Thus, 7 islands were computed by the partition-
ing method, ranging in size from 7 to 45 assertions. The average island contains

XIX

33.75 assertions. So, in the average, only one tenth of the assertions from the
original ABox have to be loaded in order to verify or falsify the candidates for
HighJump and SprintCompetition. Each instance test requires ≈ 180 msecs
per candidate, thus, after ≈ 1, 440 seconds the candidate individuals have been
refined. Some additional time is needed to compute the islands. Computation of
an islands needs milliseconds only (for such small islands).

The first filter algorithm based on TBox approximation is quite time con-
suming. Thus, we have evaluated our one step node-based filtering technique
with respect to the AEO ontology. The results are quite encouraging, since the
instance retrieval over AEO was possible in only 0.8 seconds.

In addition, we have evaluated our filter and refine paradigm for the bench-
mark ontology [7]. The results for the TBox approximation filter are rather
discouraging again. Only after removing several disjointness axioms from the
TBox, we can compute a consistent approximation. However, our evaluation for
the one step nodes is promising. We have ran tests for different numbers of uni-
versities, and the number of one step nodes is constant. For example, for the
LUBM dataset with 100 universities, we have 6.645.928 individuals, but only
276 distinct one step nodes. Out of these one step nodes, 255 can be even used
for complete instance checking! Thus, we have a compact data-structure, which
enables for sound and complete reasoning for around 93 percent of the individ-
uals. This is a big step towards scalable instance retrieval over ontologies with
a large ABox.

In [8], the authors propose an algorithm to convert a TBox into Datalog. Al-
though the transformation is quite efficient using the algorithms from KAON2,
the resulting ontologies introduce many wrong solution, depending on the in-
stantiation of their algorithms. Furthermore, the authors focus more on com-
putability of TBox approximization, than on the actual retrieval. In addition,
we introduce similarity notions, to further dramatically reduce the time needed
for reasoning. In [9], a notion of proxy (or summary) ABox is introduced. The
idea is to merge individuals in an ABox - based on their concept assertion sets,
and then perform reasoning on the result. Once the summary ABox is inconsis-
tent, the system has to perform a refinement step, where individual mergings
are undone and new (more coarse) summarizations are evaluated. While we
summarize individuals in one step nodes with the aim of remaining soundness of
reasoning, the basic idea of [9] is to remain completeness. Thus, our approach can
be seen as contrary to [9]. In [10], instance retrieval optimization techniques are
introduced. Our one step node similarity can also be used as a specific instantia-
tion of their binary instance retrieval strategy, as an alternative to island-based
instance retrieval. In [11], first partitioning algorithms for the assertional parts
of ontologies were proposed. However, as shown in [12], the given criteria are
often too soft to partition even simple TBoxes. Furthermore, in case of ontology
updates, the partitioning has to be recomputed from the scratch. Our one step
nodes can be updates easily.

XX

8 Conclusions and Future Work

Summing up, the evaluation in the previous section has shown that the results
for both filter steps are twofold. The results for our TBox approximation are
rather discouraging for both ontologies, AEO, as well as LUBM. However, we
think that this is basically because of the lack of heuristics. With the correct
heuristics, we think it is possible to compute consistent approximations more
efficiently. These heuristics are to be developed in future work.

The results for our second filter step, one step nodes, are very encouraging.
Especially the results for LUBM show, that our similarity measure for individuals
can be used to greatly improve instance retrieval times. We are not aware of
any other in-memory data structure, which allows for such efficient candidate
elimination for LUBM as one step nodes.

This evaluation should be understood as a first preliminary proof of con-
cept of the ideas conveyed in this paper. In the future, we plan to extend our
instance retrieval algorithm to more expressive description logics, and evaluate
both retrieval techniques further by using more ontologies.

References

1. Haarslev, V., Möller, R., Wessel, M.: RacerPro User’s Guide and Reference Manual
Version 1.9.1 (May 2007)

2. Möller, R., Haarslev, V., Wessel, M.: On the Scalability of Description Logic
Instance Retrieval. In Freksa, C., Kohlhase, M., eds.: 29. Deutsche Jahrestagung
für Künstliche Intelligenz. Lecture Notes in Artificial Intelligence, Springer Verlag
(2006)

3. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005). (2005)

4. Wandelt, S., Moeller, R.: Island Reasoning for ALCHI Ontologies. In: Proceedings
of the 5th International Conference on Formal Ontology in Information Systems
(FOIS-04), IOS Press (2008)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook. Cambridge University Press, New York, NY,
USA (2007)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Fam-
ily. J. of Automated Reasoning 39(3) (2007) 385–429

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for knowledge base systems. J.
Web Sem. 3(2-3) (2005) 158–182

8. Tserendorj, T., Rudolph, S., Krötzsch, M., Hitzler, P.: Approximate owl-reasoning
with screech. In Calvanese, D., Lausen, G., eds.: RR. Volume 5341 of Lecture
Notes in Computer Science., Springer (2008) 165–180

9. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In:
AAAI’07: Proceedings of the 22nd national conference on Artificial intelligence,
AAAI Press (2007) 299–304

XXI

10. Haarslev, V., Moeller, R.: Optimization techniques for retrieving resources de-
scribed in owl/rdf documents: First results. In: Ninth International Conference on
the Principles of Knowledge Representation and Reasoning, KR 2004. (2004) 2–5

11. Guo, Y., Heflin, J.: A scalable approach for partitioning owl knowledge bases.
In: Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2006,
Springer (2006) 636–641

12. Wandelt, S.: Partitioning owl knowledge bases - revisited and revised. In Baader,
F., Lutz, C., Motik, B., eds.: Description Logics. Volume 353 of CEUR Workshop
Proceedings., CEUR-WS.org (2008)

