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Abstract – Real-world complex systems are often fragile under disruptions. Accordingly, re-
search on network repair has been studied intensively. Recently proposed efficient strategies for
network disruption, based on collective influence, call for more research on efficient network repair
strategies. Existing strategies are often designed to repair networks with local information only.
However, the absence of global information impedes the creation of efficient repairs. Motivated by
this limitation, we propose a concept of community-level repair, which leverages the community
structure of the network during the repair process. Moreover, we devise a general framework of
network repair, with in total six instances. Evaluations on real-world and random networks show
the effectiveness and efficiency of the community-level repair approaches, compared to local and
random repairs. Our study contributes to a better understanding of repair processes, and reveals
that exploitation of the community structure improves the repair process on a disrupted network
significantly.

Introduction. – Modeling real-world systems as1

complex networks helps to assess and understand the re-2

silience of the systems [1–3]. Complex network theory has3

been applied in many areas, including biological [4,5], eco-4

nomic [6,7], social [8–10], technological [11,12] and traffic5

networks [13, 14]. Research has revealed network perco-6

lation processes under some conditions, which shows the7

vulnerability of networks [15–17]. One example of net-8

work vulnerability is the power blackout in northern and9

eastern India on July 30th, 2012 [18]. The blackout only10

resulted from the failure of circuit breakers on the 400KV11

Bina-Gwalior line, while this line was fed into one power12

station, and power failures cascaded through the grid,13

which affected over 300 million people, about 25% pop-14

ulation of India, and it took 15 hours to restore 80% of15

service. Recent work on network percolation has success-16

fully identified nodes in the network which are critical for17

the network, so-called influencers. A network attacked by18

decreasing (collective) influence breaks down faster than19

degree/random attacks [19]. Given such strong attacking20

strategies, it is of paramount importance to develop new21

repair strategies to recover networks quickly.22

One view of network repair is to add new nodes or23

new links to the damaged network for functionality recov-24

ery [20–23]. This is the approach followed in our study.25

Nevertheless, in the literature other views have been pro- 26

posed. Another network repair concept is to activate dam- 27

aged nodes and links, aiming to reconnect components for 28

restoring structural and functional features [24–26]. How- 29

ever, to activate failed nodes and links may be impractical 30

in some cases, since the process to recover from damage 31

could be very time-consuming. In addition to these two 32

definitions of network repair, some researchers believe that 33

redundant links are responsible for the connectivity of the 34

networks, which means that the links for repair exist in ad- 35

vance [27, 28] and other researchers study the protection 36

of influential nodes from damage [29]. 37

Existing research on adding new links during a repair 38

process can be generally classified into two categories: 1) 39

Fig. 1: Examples of global repair (left), local repair (cen-
ter) and community repair (right).
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(a) A damaged network with
eleven nodes.

(b) Two possible new links un-
der different strategies.

Fig. 2: Two kinds of possible new links under two node-
level repair strategies.

local repair with very little information and 2) global re-40

pair, which needs more information and repair time. Both41

cases are visualized as shown in Fig.1. In global repair, the42

repair process is performed by an operator, and this oper-43

ator possesses information of the whole network. Since the44

operator can access the whole network, he can develop an45

informed, global strategy for the network repair. Develop-46

ing such a repair strategy needs a considerable amount of47

time, particularly on large networks. On the other hand,48

in recently proposed local repair strategies, each node only49

possesses information of itself, and the repair process is50

performed by each node spontaneously. The high com-51

putation efficiency of local repair makes it appealing for52

practical applications. The spontaneity of local repair,53

however, makes it difficult to control the repair quality54

and cost.55

In this paper, we devise a novel repair strategy based56

on the concepts of communities [30, 31], as visualized in57

Fig.1 (center), in order to repair a network which was at-58

tacked by disruption of influencers (identified by collective59

influence). This strategy can be understood as an exten-60

sion of local repair to greater sub networks. During the61

community-level repair process, the community structure62

of the network is leveraged to repair the network faster63

and cheaper than using only local information. Here, each64

community is controlled by an operator, communication65

between the operators is allowed and then new links are66

only generated between communities. The average effi-67

ciency [32] is used as the evaluation metric to compare68

local repair with community-level repair. The definition69

of the average efficiency is as follows:70

E(G) =
1

N(N − 1)

∑

i 6=j∈G

1

dij
(1)

where E(G) is the average efficiency of the network G,71

N is the number of the nodes in the network, i and j are72

two nodes of the network, and dij stands for the shortest73

path length between node i and j.74

Node-level repair strategies. – Since current lo-75

cal strategies focus on restoring functionality efficiently,76

the operations are performed on node level, such that, in77

general, no information of other nodes is needed. Three78

baseline node-level strategies are introduced here, in order 79

to compare them to community-based repair below. 80

Random repair (Random). The most efficient re- 81

pair strategy, in terms of computational resources re- 82

quired, is random repair: New links are generated ran- 83

domly and no extra information is needed. Although the 84

non-deterministic decisions cannot guarantee the effective- 85

ness of the repair, this randomness makes it quite robust 86

against a second attack, since the attackers cannot predict 87

the new influencers after the repair. 88

Node-level hub to hub repair (NHH). In order to im- 89

prove the effectiveness of random repair, more important 90

nodes could have larger probabilities to generate new links. 91

There are many network metrics to evaluate the impor- 92

tance of nodes, but since degree is the most efficient to 93

compute, it is used in our evaluation experiments. Each 94

node of a new generated link is selected with the probabil- 95

ity in proportion to the square of its degree, which can en- 96

large the difference between hub and non-hub nodes. The 97

probability setting is chosen according to experiments and 98

a power value of 2 works well in most cases. 99

Node-level hub to non-hub repair (NHN). In this strat- 100

egy, new links between hub nodes and non-hub nodes have 101

larger probabilities to be added. A hub to non-hub link 102

connects the center and the periphery of the network, 103

which would benefit the efficiency of the network, such 104

as the green dashed links in Fig.2 (b). 105

Targeted community-level repair strategies. – 106

Node is the smallest element in networks, including com- 107

ponent and community. The number of candidate new 108

links between nodes is, in general, O(N2) for sparse net- 109

works, where N is the number of nodes. Selecting the most 110

effective link among these huge number of links is compu- 111

tationally complex, which results in many repair strategies 112

with a trade-off between repair quality and response time. 113

In the targeted community repair strategies, each new 114

link is generated only between the communities in the first 115

two largest components, since nodes in the same commu- 116

nity are densely connected already, by definition. For each 117

community, only one node is chosen to represent the com- 118

munity to generate new links. Candidate links are selected 119

from all the possible links between these representatives. 120

From all candidates, we rank them according to the con- 121

tribution they make to the average efficiency of the whole 122

network, and the most effective one is generated, which 123

can be classified as greedy ranking strategy. For each new 124

link, all the operations above are iterated once, and af- 125

ter each generation, the community structure is updated. 126

According to different rules for the candidate generation, 127

three different strategies, whose results are deterministic 128

and more effective, are proposed here: 129

Targeted community-level hub to hub repair (THH). 130

In this strategy, the nodes with the largest degree rep- 131

resent the communities to generate the candidates. 132
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(b) A new link inside an existing component

Figure 3: Two kinds of new links in community-based repair. Link (a, b) is a new link between two components in (a), while link

(a, c) means a new link inside an existing components in (b). Nodes in the same blue rectangle belong to the same community.

The green circle is a ball of size=2, while the shortest path length of (a, c) is 9. Purple links are the added ones.

the practicalities, but it should be noted that a larger value of the distance between two unconnected nodes

leads to more links between components. In addition, given the formula of the closeness centrality is similar

to the sum of distance, it is used for the effectiveness estimation, whose definition is:

ci =
1∑

j∈G dij
(4)

The candidate links are classified into two aspects to be evaluated as follows.180

For a new link (a, b) between two components, the number of nodes in a’s component is Na and the

number of nodes in b’s component is Nb. ca and cb represent the closeness centrality of node a and node b

respectively. The closeness centrality here is that in the sub-network of the node’s component. After the link

(a, b) is generated, the total distance inside each component would not change, so all delta in terms of the

total distance or the average efficiency is attributed to the distance between the two components. Before the

generation of the new link, the distance between the two components is Distanceori = Duc ∗Na ∗Nb, where

9

(a) Average efficiency as the number of added links
increases.
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(b) The size of the giant component as the number of added links increases.

Fig. 3: Two kinds of new links in targeted community-level repair. Nodes in the same blue rectangle belong to the
same community. The green circle is a ball of size=2, while the shortest path length of (a, b) in (b) is 9. Purple links
are the candidates.

Targeted community-level hub to non-hub repair (THN).133

In this strategy, the candidates are generated between134

a node with the largest degree from a community and a135

node with the smallest degree from another community.136

It should be noted that the number of the candidates is137

nearly twice as that of the strategy above, so it needs more138

running time.139

Targeted community-level hub to hub neighbor repair140

(THHN). In order to increase the robustness of the141

strategies, we also devise a non-deterministic strategy. For142

each community, we randomly select one neighbor of the143

hub node to represent the community, because this selec-144

tion can confuse the attackers and neighbors of the same145

node would not cause huge difference to the effectiveness146

of the repair. New links are only generated between these147

neighbors.148

As introduced above, for the greedy ranking process,149

the most effective link in terms of the average efficiency150

is generated. However, to compute the contribution of151

each link to the whole network average efficiency is quite152

complex, which is O(N2). Therefore, a much more ef-153

ficient evaluation method for ranking candidate links is154

necessary. Since the definition of average efficiency is to155

calculate the mean of all the reciprocals of shortest path156

lengths, the mean inequality is used to estimate the aver-157

age efficiency delta. The mean inequality is that between158

harmonic mean and arithmetic mean:159

∑n
i=1 xi

n
≥ n∑n

i=1
1
xi

(2)

When the inequality is applied to the average efficiency,160

the lower bound of the average efficiency is obtained:161

1

N(N − 1)

∑

i6=j∈G

1

dij
≥ N(N − 1)

1∑
i 6=j∈G dij

(3)

Since N is a constant value for a fixed network (the162

number of nodes in the network), the sum of the short- 163

est path length of each node pair in the network can be 164

used to evaluate the average efficiency delta. Therefore, 165

we estimate the average efficiency delta by the sum of 166

the shortest path lengths delta. Nevertheless, the tradi- 167

tional concept of the shortest path length is defined be- 168

tween two connected nodes, so it is necessary to define 169

the path length between two disconnected nodes. In the 170

definition of the average efficiency, if node i and j are dis- 171

connected, dij = +∞, but this value of dij could not be 172

used in the estimation process of the average efficiency 173

delta. A considerably large value of dij always ranks the 174

links between components in the first place, which is not 175

the goal of our evaluation metric. In this paper, we define 176

this path length to be the number of nodes in the network. 177

It should be noted that a larger value of the path length 178

between two disconnected nodes leads to more links be- 179

tween components. In addition, for each candidates, the 180

time of calculating the average efficiency delta is O(N2), 181

where N is the number of nodes, but this is computation- 182

ally complex for quick repair response. To simplify the 183

process to evaluate the effectiveness of all candidates, the 184

closeness centrality is used here, with which to assess all 185

candidate for one new link only needs time of O(N2). The 186

definition of closeness centrality is: 187

ci =
N∑

j∈G dij
(4)

The candidate links are classified into two groups to be 188

evaluated as follows. 189

For a new link (a, b) between two components as shown 190

in Fig. 3 (a), the number of nodes in a’s component is Na 191

and the number of nodes in b’s component is Nb. ca and 192

cb represent the closeness centrality of node a and node 193

b respectively. The closeness centrality here is only com- 194

puted based on the component of the node. Before the 195

repair, all node pairs from different components are dis- 196

connected, such as node c and i. After the link (a, b) is 197

p-3



Tianyu Wang et al.

Table 1: Basic statistics for the eight networks used in our study. ASPL stands for average shortest path length.
All networks are available for downloading at https://networkdata.ics.uci.edu/index.php or http://vlado.fmf.uni-
lj.si/pub/networks/data/. ER means Erdös-Renyi network, BA is Barabasi-Albert network, WS stands for WattsStro-
gatz network and RG represents regular network. For random networks, different numbers represent model networks
with different parameter settings.

Real-world networks Random networks
Network |Nodes| |Links| Avg. degree ASPL Network |Nodes| |Links| Avg. degree ASPL

Epa 4253 8897 4.184 4.500 ER1 494 1233 4.992 4.067
Kohonen 2757 9804 7.112 3.185 ER2 500 1882 7.528 3.302

odlis 1347 1346 1.999 5.948 BA1 500 996 3.984 3.906
polblogs 1222 16717 27.360 2.738 BA2 500 1491 5.964 3.178
power 4941 6594 2.669 18.989 WS1 500 1000 4 5.473
SciMet 1421 6506 9.157 3.323 WS2 500 999 3.996 5.157

USAir97 332 2126 12.807 2.738 RG1 500 1999 7.996 3.256
Yeast 2225 7050 6.337 4.378 RG2 500 2499 9.996 2.950

generated, the shortest path lengths between nodes from198

the same component would not change, such as the short-199

est path length between nodes i and l, so all delta in200

terms of average efficiency comes from the path lengths201

between the nodes from different components, e.g. the202

shortest path length between node c andi becomes 3 from203

that of disconnected nodes. Before the generation of a204

new link, the path length between nodes from two com-205

ponents is Distanceori = Duc ∗Na ∗Nb, where Duc means206

the path length of two disconnected nodes. In the pa-207

per, Duc is set to be N , the number of nodes in the net-208

work. After the addition of the new link between compo-209

nents, all shortest paths between nodes from these two210

components should go through this new link. For in-211

stance, in Fig. 3 (a), after the generation of link (a, b),212

the shortest paths between nodes from the two compo-213

nents all go through link (a, b). Therefore, the sum of the214

shortest path lengths between each node in component(a)215

and node b is
∑

x∈component(a) (dax + 1). Assuming kbm216

is the number of nodes at a distance of m from b in217

component(b), the sum of the shortest path lengths be-218

tween each node in component(a) and these kbm nodes219

is kbm ∗
∑

x∈component(a) (dax + kbm). Naturally, we have220

1 + kb1 + · · ·+ kb∞ = Nb and 1 + 2 ∗ kb1 + · · ·+m ∗ kbm +221

· · · +∞ ∗ kb∞ =
∑

x∈component(b) (dbx + 1). According to222

the formulations above, we finally obtain the sum delta of223

the shortest path lengths (Deltabetw) from this new link224

(a, b) between two components is:225

Deltabetw = Duc ∗Na ∗Nb −
∑

x∈component(a)

(dax + 1)

∗Nb −
∑

x∈component(b)

(dbx + 1) ∗Na + Na ∗Nb

(5)

According to the definition of the closeness centrality,226

the sum delta of the shortest path lengths (Deltabetw)227

could be computed as: 228

Deltabetw =Duc ∗Na ∗Nb −
1

ca
∗ (Na − 1) ∗Nb

− 1

cb
∗ (Nb − 1) ∗Na −Na ∗Nb

(6)

Through this formulation, the accurate delta of shortest 229

path lengths is obtained. 230

For a new link (a, b) inside an existing component as 231

shown in Fig. 3 (b), to compute the accurate delta with 232

this link is very computationally complex, so an approx- 233

imation is necessary to solve large-scale network prob- 234

lems. Similar to links between components, we want to 235

obtain the path lengths delta after the generation of a 236

new link. Assuming the shortest path length between 237

node a and b is qab and kam means the number of nodes 238

at a distance of m from node a, the number of the 239

shortest path lengths through this new link is at least 240

(1+ka1+· · ·+kab qab
4 c)∗(1+kb1+· · ·+kbb qab

4 c). In Figure 3 241

(b), for example, the shortest path lengths between nodes 242

from different green dashed circles must pass through the 243

new link (a, b), such as the shortest path between node k 244

and q ({k → a→ b→ q}). For each changed shortest path 245

length, the distance delta of the central node pair (a, b) is 246

used to represent each shortest path length delta, which 247

is qab − 1. Therefore, we have the distance delta approxi- 248

mation (Deltains) for a new link inside a component: 249

Deltains =(qab − 1) ∗ (1 + ka1 + · · ·+ kab qab
4 c)∗

(1 + kb1 + · · ·+ kbb qab
4 c)

(7)

It should be noted that this formulation is an approxi- 250

mation of the shortest path lengths delta, but not an ac- 251

curate value. 252
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Fig. 4: The average efficiency of six repair strategies on eight real-world networks, as the number of added links
increases, when the size of the giant component of each network is attacked to be less than 10%. The upper bound of
the number of added links is 10% of that to make the repaired network be of the same density as the original network.

All candidates are ranked according to the distance253

delta introduced above, and for each generation of a new254

link, the most effective one is added to the network.255

After the descriptions of the community-level repair256

strategy, the time complexity of generating one new link257

should be O(NC2 + N2/C), where N is the number of258

the nodes in the network and C represents the community259

number in the largest two components of the network.260

Evaluation results. – We evaluate all the six repair261

strategies on both eight real-world networks and four types262

of random networks. Since some of the repair strategies263

are non-deterministic, the results shown below are the me-264

dians of the data from experiments for 100 times. Table 1265

shows the basic statistics for all networks. In order to266

compare the effectiveness of these strategies to damaged267

networks, we attack each network by the collective influ-268

ence attacking strategy until the size of the giant compo-269

nent is less than 10% of the original network. Afterwards,270

we add 0 to 10% of the number of links, which are re-271

quired for the repaired network to have the same density272

as the original network. The intuition is that the repair273

should try to restore the properties of the network and274

too many new links might nor be practical for real-world275

cases. The community detection method in this section is276

Louvain method [33], which is very efficient with an esti-277

mated computational complexity of O(NlogN). Although278

it is well-established that random networks do not have279

any community structure, the nodes in random networks 280

could be classified into different modules through Louvain 281

method, and the repair process on the random networks 282

is performed based on these modules. 283

Real-world networks. In Fig. 4, the average efficiency 284

for eight real-world networks are shown, as the number 285

of added links increases. Among the two concepts of 286

repair strategy, so-called node-level repair and targeted 287

community-level repair, the targeted community-level re- 288

pair is the most effective in terms of average efficiency. 289

Regarding the average efficiency in Fig. 4, the targeted 290

community-level hub to hub neighbor repair behaves much 291

better than the other two targeted repair strategies by 292

nearly 40%, while the effectiveness of the other two meth- 293

ods is similar, among which targeted community-level hub 294

to non-hub repair is a bit more effective than the other one. 295

As for the node-level repair strategies, the node-level hub 296

to hub repair strategy obtains a bit better effectiveness on 297

these networks. 298

Although the evaluation metric in this paper is aver- 299

age efficiency, the targeted community-level strategies also 300

performs well in terms of the size of the giant component, 301

since new links between components are often important 302

for the increase on average efficiency because this kind of 303

links build new paths between disconnected node pairs. 304

Of course, the targeted community-level would not always 305

connect nodes from different components, but compare all 306
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Table 2: Running time of one new link generation of all strategies on eight real-world networks. The unit of all
numbers is seconds.

Strategies Epa Kohonen odlis polblogs power SciMet USAir97 Yeast
Random 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001

NHH 0.120 0.038 0.009 0.004 0.098 0.010 0.001 0.019
NHN 0.229 0.083 0.018 0.008 0.197 0.019 0.001 0.033
THH 7.166 3.443 0.752 0.599 9.245 1.037 0.099 1.706
THN 7.516 3.581 0.773 0.642 10.795 1.033 0.111 1.800

THHN 6.881 4.290 0.783 0.485 9.773 1.008 0.075 1.724

candidates and select the most effective one.307

Table2 shows the running time of one new link gen-308

eration of all strategies on the eight real-world networks.309

Since the running time for each new link on a network of a310

fixed size are very close, only the running time of one new311

link is shown here. As seen from the table, the node-level312

repair strategies could repair networks in very short time,313

while the targeted community-level strategies take more314

time. However, in view of the size of the networks, since315

one new link on a network with more than 4000 nodes only316

needs less than 10 seconds, the targeted community-level317

strategies can work in real-world larger networks.318

Random networks. Fig. 5 shows the effectiveness of319

six strategies on four different kinds of random networks,320

and for each kind of random networks, two different pa-321

rameter settings are used to evaluate the effectiveness on322

networks with diverse properties. The effectiveness of the323

six strategies is similar to that in real-world networks. In324

terms of average efficiency, the targeted community-level325

hub to hub neighbor strategy behaves much better than all326

the other strategies in these random networks, particularly327

in BA networks. In BA1 network, the average efficiency328

of targeted community-level hub to hub neighbor strat-329

egy is nearly twice of the second best strategy and five330

times of node-level strategies. Following the best strat-331

egy is the other two targeted community-level strategies,332

among which targeted community-level hub to non-hub333

strategy is a bit better than the other two. The node-level334

hub to hub strategy is the best among the three node-335

level strategies. Although the node-level repair strategies336

behave pretty well sometimes, such as in ER1 and RG1337

networks, the randomness of these strategies makes it con-338

fusing whether the results is effective or not.339

Discussion and conclusion. – In this paper, we340

first revisited local repair strategies based on establishing341

new connections between nodes, and then extended this342

concept to community-level repair, where new links are343

only generated between communities, in order to achieve344

a trade-off between the computational complexity and345

repair quality. Regarding the community-level repair,346

three targeted strategies were derived. The effectiveness347

of these strategies was evaluated both on real-world and348

random networks. The community-level repair strategies 349

showed a good performance on all of the networks in 350

terms of average efficiency. As for the community-level 351

repair, the targeted community-level hub to hub neighbor 352

strategy behaved much better than other two, particu- 353

larly for relatively more added links. Compared to the 354

community-level strategies, node-level strategies do not 355

repair the network effectively. In conclusion, community- 356

level repair is better than node-level repair for defending 357

against CI, and among the community-level repair strate- 358

gies, the targeted community-level hub to hub neighbor 359

strategy is the most effective, as a trade-off between qual- 360

ity and efficiency. This study contributes a novel concept, 361

community-structure-based repair, for resilience of real- 362

world systems. 363

Future work can focus on the improvement of the effi- 364

ciency of targeted community-level strategies and the in- 365

fluence of different community detection methods on the 366

repair effectiveness. Our initial experiments indicate that 367

the type of the community methods does not significantly 368

influence the effectiveness. Moreover, for current targeted 369

community-level strategies, after large communities are 370

connected, the effectiveness of following new links gen- 371

erated by THH and THN decreases, so it is necessary to 372

provide more limitations on the repair, where analysis of 373

the community status is helpful for better quality. 374
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