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Abstract

In this paper, we design and implement HUBBI, a heuristic-based method to minimize the transportation/setup
costs for p-hub location problems with incomplete hub networks. First, HUBBI pre-computes an estimation of node
pair quality for establishing hub links. The quality ranking over all node pairs is then used to guide an iterative network
design process: Given a solution for p hubs, two generic design patterns extend the hub network to p+1 hubs. These
networks are further refined by a variable neighborhood search method. In our evaluation on standard datasets (CAB,
AP, TR, USA423 and URAND), HUBBI solves incomplete hub location problems with up to 200 nodes. For those
instances that are solved with an exact method, HUBBI solves 90% to optimality and only one instance has a gap
larger than 1%. HUBBI is also two to three orders of magnitudes faster than the exact method, while using two orders
of magnitude less memory.
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1. Introduction

Hub location problems have been studied for over three decades, since the seminal work by O’Kelly (1986). The
problems have been applied in many fields successfully, including transportation (Alumur et al., 2012; O’Kelly, 2012;
de Camargo et al., 2013) and telecommunication (Yaman and Carello, 2005; Kim and O’Kelly, 2009). In a network,
hubs are installed to collect, transfer and distribute travel demands between pairs of nodes. When transporting large
flows, economies of scale provide cost discounts for the transportation through inter-hub links. In early hub location
problems, each spoke node is connected to exactly one hub, called single allocation (O’Kelly, 1987), or more than one
hub, called multiple allocation (Campbell, 1994). The objective function takes into account the variable transportation
cost, and in some cases the cost of building hubs. However, the cost of establishing links was not considered in early
models. The hub networks were also assumed to be fully connected, i.e., hubs are connected with each other via a
direct link. Although this assumption simplifies the problem, these models are often far away from realistic problem
instances. Therefore, incomplete hub networks have been studied in recent years. In incomplete models, often only
a few hub pairs are connected because of constraints on the number of hub links (Alumur et al., 2009) or setup/total
costs (Contreras et al., 2010; O’Kelly et al., 2015; Campbell et al., 2015). Apart from few exceptions, hub location
problems are NP-hard (Alumur and Kara, 2008; Campbell and O’Kelly, 2012; Sun et al., 2017). A number of solution
techniques have been proposed, including Benders decomposition (de Camargo et al., 2008; de Camargo and Miranda,
2012), tabu search (Calık et al., 2009), evolutionary algorithm (Kratica et al., 2011), Lagrangian relaxation (Contr-
eras et al., 2009a), local search (Rodrı́guez-Martı́n and Salazar-González, 2006), variable neighborhood search (Ilić
et al., 2010; Todosijević et al., 2017), branch-and-price (Contreras et al., 2011), branch-and-cut (Rodrı́guez-Martı́n
et al., 2014), clustering-based methods (Peker et al., 2016), strategic oscillation (Corberán et al., 2016), genetic algo-
rithms (Kratica et al., 2005; Stanimirović, 2012; Azizi et al., 2016) and other heuristics (Randall, 2008; Hoff et al.,
2017).
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The hub location model targeted in our study is a recent extension of the multiple allocation incomplete hub
networks modeled by de Camargo et al. (2017) with exactly p hubs (the p-hub constraint) but without hop constraint,
i.e., limits on the number of arcs in a path. Fixed costs are associated with establishing all types of links and variable
costs are considered for satisfying travel demands. Moreover, direct links can be established between spoke nodes
so that the travel demands between selected node pairs do not need to go through hubs. de Camargo et al. (2017)
developed a Benders decomposition with Benders feasibility cuts. However, this algorithm does not scale up well to
large networks: Our own re-implementation needs around 230 hours to solve the problem with 80 nodes and its run
time increases with n6, where n is the number of nodes. Given the large search space and complicated interactions
between variable and fixed costs, it is rather difficult to design efficient heuristics for this problem.

In this paper, we propose and implement HUBBI, a heuristic-based method which pre-computes rankings of
possible hub pairs in the network, the so-called hubbiness, and then uses certain network design patterns to generate
good solutions for many incomplete hub location problems with short computation time. For a given network design
problem with a fixed number of hubs p, we first compute the hubbiness for each pair of nodes, i.e., the reciprocal of
approximate total cost in the case that only two hubs are established on this pair of nodes. The node pair with the
highest hubbiness is used as the initial design. Then, we iteratively design a hub network by adding hubs one at a
time until the network reaches p hubs. Then, the solutions obtained by this procedure are used as initial solutions for
VNS and improved further by exploring their neighborhood. In our evaluation on real-world networks and random
networks (CAB, AP, TR, USA423 and URAND) of varying sizes (25–200 nodes), we can solve over 90% of the
cases to optimality and provide solution gaps less than 1% for all instances except for one case. The run times and
memory usage of our method are much less than that for the the enhanced Benders decomposition method. Thus,
our work contributes towards efficiently solving large and realistic hub location problems with acceptable gaps. The
major contributions of this paper are:

1. We propose and implement a heuristic-based method, called HUBBI, which provides high-quality solutions for
incomplete hub location problems using a set of network design rules.

2. We discuss the factors that affect the topology of hub networks.
3. We solve incomplete hub location problems with up to 200 nodes.

The remainder of this paper is organized as follows. We provide a literature review on hub location problems in
Section 2. The mathematical formulation of the problem is presented in Section 3. The methodology of HUBBI is
proposed in Section 4. Experiments on five representative datasets (CAB, AP, TR, USA423 and URAND) are reported
in Section 5. The paper concludes with Section 6.

2. Literature Review

In this section, we review literature related to our study. O’Kelly (1986) introduced hub location problems and
the first mathematical formulation for the p-hub median problem was proposed by O’Kelly (1987). Campbell (1994)
defined four fundamental hub location problems (p-hub median, uncapacitated hub location, p-hub center and hub
covering) and proposed the corresponding formulations with O(n4) variables. Based on existing models, a new single
allocation p-hub median problem with O(n3) variables was formulated by Ernst and Krishnamoorthy (1996). They
used a simulated annealing algorithm together with a novel branch-and-bound algorithm to solve the problem.

Early research on hub location problems generally assumed that hub networks are completely connected, which
makes the models too simplistic to be used in many real-world applications. Therefore, incomplete models were
proposed in recent years. Alumur et al. (2009) proposed several models for four types of single allocation hub
location problems (p-hub median, hub location with fixed costs, hub covering and p-hub center) with incomplete hub
networks. The connections of hub links are constrained by a given number q, i.e., there must be q connected hub links
in all solutions. A heuristic based on tabu search was proposed to solve the hub covering problem (Calık et al., 2009).
The connections of hub links can also be constrained by the fixed cost for establishing hub links. Gelareh and Nickel
(2011) proposed a 4-index formulation for the incomplete multiple allocation problem for public transport and liner
shipping. A primal Benders decomposition method and a greedy heuristic were used to solve instances with up to 50
nodes. The optimal solutions were obtained with the Benders decomposition method, but the greedy heuristic provided
solutions with gaps of up to 8.73%. O’Kelly et al. (2015) analyzed the role of fixed cost in the design of hub networks.
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In addition, a 3-index formulation for the incomplete problem was proposed. Note that with some modifications, the
3-index formulation can be deduced by the 4-index model. Based on the previous models, de Camargo et al. (2017)
proposed new models for incomplete hub location problems with and without hop-constraints. In their model with
hop-constraint, for a given number S, at most S links can be used for satisfying the travel demand for each OD pair.
Recently, incomplete hub location problems with robustness have been studied. A variant of the incomplete hub
location model with uncertainties on travel demands and fixed setup cost, but without direct/access link cost has been
solved by de Sá et al. (2018a), using Benders decomposition and a constructive heuristic method. They also proposed
two specialized Benders decomposition algorithms to solve another robust incomplete hub location problem with
uncertainties on service time requirements (de Sá et al., 2018b).

Since it is intrinsically difficult to solve large-scale hub location problems with exact algorithms, many heuristic
algorithms have been proposed. These studies are summarized as follows. Skorin-Kapov and Skorin-Kapov (1994)
proposed a heuristic method based on tabu search for the uncapacitated single allocation p-hub median problem. The
CAB dataset with 25 nodes were solved efficiently with their algorithm. For the uncapacitated single allocation hub
location problem without a p-hub constraint, Chen (2007) proposed two methods based on simulated annealing, tabu
list and improvement procedures. The experimental results showed the good performance of their method compared
with a genetic algorithm and a simulated annealing method. Abyazi-Sani and Ghanbari (2016) proposed an efficient
tabu search with some new tabu rules for the same problem. The experimental results showed that their algorithm
could find good solutions within shorter computation time compared to the tabu search proposed by Silva and Cunha
(2009). Kratica et al. (2007) proposed two genetic algorithms to solve an uncapacitated single allocation p-hub median
problem. Their methods were compared to tabu search (Skorin-Kapov and Skorin-Kapov, 1994), simulated anneal-
ing (Ernst and Krishnamoorthy, 1996) and path relinking (Pérez et al., 2004). Azizi et al. (2016) proposed a genetic
algorithm for solving the hub location problem with the consideration of hub failure. Two approaches for selecting
backup hubs were proposed. Experiments with up to 81 nodes showed good performance of their algorithm. Since
proposed by Mladenović and Hansen (1997), variable neighborhood search has also been commonly used to solve
hub location problems. Ilić et al. (2010) proposed a general variable neighborhood search to solve the uncapacitated
single allocation p-hub median problem with up to 1000 nodes. Yet, the incomplete hub location problem targeted
in this paper have not been solved with VNS so far, given difficulties to find good initial solution with large search
space. Peiró et al. (2014) proposed GRASP for solving the uncapacitated r-allocation p-hub median problem. The
algorithm consists of three local search procedures for the three phases of the problem: location, assignment and
routing. Compared to previous methods, their heuristic can find high-quality solutions on large instances in short run
times. For the same problem, Martı́ et al. (2015) proposed a scatter search method which consists of a diversification
generator, a path-relinking method and two local search. The experimental results shows that their method outper-
forms the previous GRASP in datasets with up to 200 nodes. Todosijević et al. (2017) also proposed a new VNS for
this problem. In order to explore more possible solutions, the full nested variable neighborhood descent was applied
as a local search for the first time. The experimental results showed that their VNS outperforms the GRASP. Serper
and Alumur (2016) proposed a single allocation model for the capacitated intermodal hub network design problem.
A variable neighborhood search algorithm consisting of the local search on hubs and links was proposed to solve the
model. Although the computation time of their algorithm is short, the gaps of solutions obtained by their algorithms
are around or larger than 1% for many instances. de Sá et al. (2015) studied the q-hub line location problem in which
the hubs are located in a set of interconnecting lines. In addition to a Benders-branch-and-cut algorithm, three heuris-
tics based on neighborhood search, greedy randomized adaptive search and adaptive large neighborhood search, were
proposed to solve it.

In recent years, some novel methods with the consideration of spatial properties of networks have also been
developed. Contreras et al. (2010) proposed a model for the tree of hub location problem where p hubs have to be
located by means of a non-directed tree, i.e., there have to be p-1 hub links (Contreras et al., 2009b). An integer
programming formulation and some valid inequalities were used to solve the problem. Figueiredo et al. (2014)
proposed a two-stage method for hub location. In their method, p regional hubs are obtained by solving a p-median
problem in the first stage; then a q-hub location problem is solved in the network with these p regional hubs. Another
similar approach was proposed by Peker et al. (2016). Based on the spatial properties and travel demands of nodes, a
clustering-based potential hub set is generated, which can help to reduce the computational complexity of the problems
by narrowing the solution sets. Contreras et al. (2016) proposed a branch-and-cut algorithm for the cycle hub location
problem which connects hubs by means of cycles. A meta-heuristic based on greedy search was used to find feasible

3



Table 1: Parameters for the incomplete hub location problem.

Parameter Description
V Set of nodes (|V | = n)

wi j Travel demand between node i and node j (i, j ∈ V, i , j)
ci j Distance between node i and j (i, j ∈ V, i , j)

f 0, f 1, f 2, f 3 Fixed cost per unit distance for establishing four types of links
b0, b1, b2, b3 Variable cost per unit distance per unit travel demand for four types of links

Ai j Link specific fixed cost per unit distance for four types of links (i, j ∈ V, i , j)
f H
k Fixed cost for constructing a hub in node k (k ∈ V)

Table 2: Decision variables for the incomplete hub location problem.

Variable Domain Description
zk {0, 1} Decide the construction of a hub in node k ∈ V
y0

i j {0, 1} Decide the construction of direct link between node i, j ∈ V, i , j
y1

ik {0, 1} Decide the construction of collection tributary link between node i, k ∈ V, i , k
y2

km {0, 1} Decide the construction of hub link between node k,m ∈ V, k , m
y3

m j {0, 1} Decide the construction of distribution link between node m, j ∈ V,m , j
hi jk [0, 1] Fraction of flow from i ∈ V to j ∈ V, i , j on collection access link i − k, k ∈ V, k , i
xi jkm [0, 1] Fraction of flow from i ∈ V to j ∈ V, i , j on hub link k − m, k,m ∈ V, k , m, i , m, j , k
ti jm [0, 1] Fraction of flow from i ∈ V to j ∈ V, i , j on ending distribution link m − j,m ∈ V,m , j

solutions.

3. Problem Formulation

The hub location model in this section was proposed by de Camargo et al. (2017). Specifically, four types of links
are used in this model: Direct links, collection links, hub links and distribution links, denoted by symbols 0,1,2,3,
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Figure 1: Visualization of a solution for the incomplete hub location problem. The black bold triangles and circles stand for hub nodes and spoke
nodes respectively. Solid black lines refer to hub links, dashed blue lines are access links and dotted red lines represent direct links. Cost for
installing hubs f H

k = 1.0 × 107, fixed cost f = [2500, 3000, 3500, 3000], variable cost b = [0.08, 0.04, 0.03, 0.04].
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respectively. Direct links serve the direct traffic demand between two spoke nodes. Collection links represent links
from spoke nodes to hub nodes. Hub links are established to transfer the high volume of traffic between hub nodes.
Distribution links represent the traffic from hub nodes to spoke nodes. Collection links and distribution links are called
access links together. As the hub nodes are not forced to be fully interconnected and each spoke node is allowed to be
allocated to multiple hub nodes, the model represents quite a wide range of topologies. Based on a set of parameters
(Table 1) and variables (Table 2), a multiple allocation hub location problem with incomplete inter-hub network can
be modeled as follows:

min
∑
k∈V

f H
k zk +

∑
i, j∈V, j,i

c̃0
i jy

0
i j +

∑
i,k∈V,k,i

c̃1
iky1

ik +
∑

k,m∈V,m,k

c̃2
kmy2

km +
∑

j m∈V,m, j

c̃3
m jy

3
m j (1)

+
∑

i, j∈V, j,i

wi j

 ∑
k∈V,k,i

ĉ1
ikhi jk +

∑
k,m∈V, j,k,m,i,k,m

ĉ2
kmxi jkm +

∑
m∈V,m, j

ĉ3
m jti jm


s.t.

∑
m∈V,m, j

ti jm +
∑

k∈V,k, j

xi jk j + hi j j + y0
i j = 1, ∀i, j ∈ V, i , j (2)

hi jm +
∑

k∈V,k, j,k,m

xi jkm =
∑

k∈V,k,i,k,m

xi jmk + ti jm, ∀i, j,m ∈ V, i , j, i , m, j , m (3)

ti ji +
∑

m∈V,m,i

xi jim = zi, ∀i, j ∈ V, i , j (4)

hi jk +
∑

m∈V,m,k,m, j

xi jmk ≤ zk, ∀i, j, k ∈ V, i , j, i , k, j , k (5)

hi j j +
∑

k∈V,k, j

xi jk j = z j, ∀i, j ∈ V, i , j (6)

hi jk ≤ y1
ik, ∀i, j, k ∈ V, i , j, k , i (7)

xi jkm ≤ y2
km, ∀i, j, k,m ∈ V, i , j, k , j,m , i, k , m (8)

ti jm ≤ y3
m j, ∀i, j,m ∈ V, i , j,m , j (9)∑

k∈V

zk = p (10)

where c̃0
i j = ci j( f 0 + Ai j + b0wi j), c̃1

ik = cik( f 1 + Aik), c̃2
km = ckm( f 2 + Akm), c̃3

m j = cm j( f 3 + Am j), ĉ1
ik = cikb1, ĉ2

km = ckmb2,
ĉ3

m j = cm jb3. The objective function (1) is to find the most cost-efficient network structure with proper assignment of
hubs, links and the corresponding traffic flows through these links. Constraint (2) forces that for each OD pair, one of
the four links must be used to serve the traffic flow for its destination node j. Constraint (3) is the flow conservation
equation for intermediate hub node m. Constraints (4–6) ensure that hub nodes can be connected to access links and
hub links only. Constraints (7–9) provide the infrastructure for feasible traffic flow paths. Finally, constraint (10)
limits the number of hubs to p.

Note that our model has demands and variable transportation cost between each pair of nodes as input. An optimal
solution of the incomplete hub location problem for the CAB dataset is visualized in Figure 1. There are six hubs
(LAX, DEN, STL, ATL, PIT and NYC). Most spoke nodes are assigned to only one hub, except CHI and WAS. Two
pairs of spoke nodes are connected by direct links: (DFW, HOU) and (TAM, MIA). If there is a direct link between
a pair of spoke nodes, the travel demands can be satisfied through the link directly. Otherwise, a path consisting of a
collection link, a distribution link and one or more hub links, is determined.

4. Methodology: Hubbiness of node pairs and network design patterns

This section introduces a novel solution algorithm for the hub location model presented in Section 3. In a nutshell,
our algorithm consists of three steps. The first step identifies the interesting node pairs in the network, based on their
hubbiness value. The hubbiness of a given pair of nodes estimates their quality for providing the only two hubs in a
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Algorithm 1 Overview on HUBBI
Input: Incomplete hub location problem with n nodes and p hubs.
Output: Location of hubs and direct/access/hub links.
. STEP 1: Design an initial solution for p=2 (see Section 4.1).

1: Compute hubbiness hubbi for all pairs of nodes in the network .
2: Choose the node pair (k,m) with the highest hubbiness hubbikm, let k − m and m − k be the only hub links, assign direct access

arcs and spoke links as suggested by hubbikm.
. STEP 2: Incrementally improve the solution for larger p (see Section 4.2)

3: Let pc = 2.
4: while pc < p do
5: Perform operator Tree-Extension on the current assignment (see Section 4.2.1).
6: Perform operator Cycle-Extension on the current assignment (see Section 4.2.2).
7: pc = pc + 1.
8: end while
. STEP 3: Explore neighborhood of currently best solution

9: Perform VNS on the current assignment (see Section 4.3).

Algorithm 2 Computation of hubbiness
Input: A network instance with n nodes, the set of nodes V , a pair of nodes (k,m).
Output: The value of hubbiness of (k,m).

1: Install hubs on nodes k and m and establish hub links k-m,m-k.
2: Fully connect the direct links and access links.
3: Compute the total cost for the current assignment as a reference (see Appendix A.1).
4: Perform the “Removing” operator on existing direct links (see Appendix A.2, Algorithm 6).
5: Perform the “Removing” operator on existing access links (see Appendix A.3, Algorithm 8).
6: Perform the “Replacing” operator on access links (see Appendix A.3,, Algorithm 10).
7: The finally total cost is represented by TCkm.
8: The hubbiness of node pair (k,m) is hubbikm = 1

TCkm .

given network. The formal definition of hubbiness is introduced in Section 4.1. Using our ranking of node pairs, we
obtain an initial solution for the case of 2 hubs. In a second step, we propose an iterative network design algorithm,
which increases the number of hubs up to p (see Section 4.2). We propose two operators which attempt to rewrite
and expand the previous solution: Tree-Extension and Cycle-Extension. After the second step, we obtain an initial
solution with p hubs. Finally, the third step consists of performing variable neighborhood search (VNS) to improve
the solution further by exploring its neighborhood (see Section 4.3). The overall structure of our network design
algorithm is summarized in Algorithm 1. Our algorithm is called HUBBI, since it is based on the usage of hubbiness
for selecting initial node pairs and guiding the iterative network design.

4.1. Hubbiness

We propose a quality estimation for node pairs in a network, called hubbiness. For a given node pair (k,m), the
value of hubbikm approximates the reciprocal of the total cost of a solution where k and m are the only two hubs in
the network, including fixed (setup) cost and variable (transportation) costs. The hubbiness of node pairs induces a
high-quality ranking of hub pairs in the network and is used to generate an initial solution for p = 2. The process for
computing hubbiness of node pair (k,m) is shown in Algorithm 2. It simulates the installment of hubs at nodes k and
m, together with heuristic decisions on the installment of direct links and access links. Overall, we implement a greedy
search algorithm which starts with a fully-connected assignment. Such an assignment is usually very expensive in
terms of setup costs. Therefore, we first remove greedily direct links, ordered by increasing travel demands, which
reduce the total cost of the solution. The intuition is that pairs of spoke nodes with lower travel demands are less
likely to be connected directly. Second, we remove greedily all access links, ordered by decreasing distances to hubs,
which reduce the total cost of the solution, with the intuition that spoke nodes are less likely to be assigned to farther
hubs. Third, we try to replace greedily all access links, by connecting them to not-yet connected hubs, sorting the hub
candidates in increasing order of distances. The details of these operators are omitted here for brevity, but they can be
found in Appendix A.2 and Appendix A.3, along with pseudo-codes. We define the hubbiness of the node pair (k,m)
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(a) The top n node pairs with the best hubbiness.
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(b) The optimal solution with p = 2.
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(c) The optimal solution with p = 3.
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(d) The optimal solution with p = 4.
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(e) The optimal solution with p = 5.
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(f) The optimal solution with p = 6.

Figure 2: The visualization of the top n node pairs with the best approximate hubbiness (a) and the optimal solutions for different p ∈ {2, 3, 4, 5, 6}
(b–f). The black bold triangles and circles stand for hub nodes and spoke nodes respectively. Solid black lines refer to hub links, dashed blue
lines are access links and dotted red lines represent direct links. Cost for installing hubs f H

k = 1.0 × 107, fixed cost f = [2500, 3000, 3500, 3000],
variable cost b = [0.08, 0.04, 0.03, 0.04].

as follows:

hubbikm =
1

TCkm (11)

where TCkm is the total cost of the final assignment with node pair (k,m), as obtained by Algorithm 2. Finally, the
node pair with the highest hubbiness is connected with bi-directional hub links for the case of p=2. As an example,
the top n links with the highest hubbiness for the CAB dataset are shown in Figure 2(a) and the optimal solutions for
p ∈ {2, 3, 4, 5, 6} (Figure 2(b–f)). In Section 4.2, we describe how to obtain solutions for p > 2.

4.2. Incremental Network Design

In this section, we aim to derive initial solutions for p > 2, by using several network design patterns (Tree-
Extension and Cycle-Extension).

4.2.1. Operator Tree-Extension
In this subsection, we propose the first operator for network design, called Tree-Extension. For a given network

with p hubs, we exchange one existing hub and, in addition, build another new hub, effectively creating branches on
the hub network. The process of Tree-Extension is shown in Algorithm 3. Let Neih be the set of neighbor hubs of hub
h. We sort all spoke nodes with increasing deviation of hubbiness to h which is defined in Equation (12) and select
the top cn of them for a determined number cn. The experiments show that cn =

√
n is sufficient for obtaining good

solutions.

Devsh =
∑

X∈Neih

∥∥∥hubbisX − hubbihX
∥∥∥ (12)

From each hub link l, we select two hub nodes h1 and h2 (it is possible that they are the same). If the case of node
pair (h1, h2) has not appeared before (seen pairs are tracked in set G), for each spoke node s1 from the top cn nodes
with the smallest values of Devsh1 and each spoke node s2, we switch the role between the hub h1 and spoke s1, build
a new hub on s2, establish new hub links s2 − h2, h2 − s2 and do some assignment on access/direct links, as shown
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Algorithm 3 Tree-Extension from p hubs to p+1 hubs
Input: A network instance with n nodes, the set of nodes V , the set of hub nodes Ho(|Ho| = p), the set of four types of links
Lo, initial total cost Objo = in f .
Output: The new set of hub nodesH , the new set of four types of links L, final total cost Obj

1: LetH = Ho, L = Lo, Obj=Objo. Let L2 be the set of hub links in Lo. Let G = ∅
2: for each hub link l ∈ L2 do
3: for each hub node h1 ∈ l do
4: for each hub node h2 ∈ l do
5: if (h1, h2) < G then
6: Let G = G ∪ {(h1, h2)}.
7: Sort spoke nodes with increasing order of deviation of hubbiness to hub h1 and obtain a set Ncn

h1
of first cn nodes.

Let Ncn
h1

= {h1} ∪ Ncn
h1

.
8: Let Nh2 be the set of spoke nodes.
9: for each s1 ∈ Ncn

h1
do

10: if h1 == h2 then
11: Let h2 = s1.
12: end if
13: for each s2 ∈ Nh2 do
14: Based on the currentHo,Lo, do the following operations:
15: Exchange the roles between h1 and s1, i.e., letting s1 be a new hub and h1 be a spoke, connecting s1 to

all neighbor hubs of h1 and all spoke nodes that were connected to h1.
16: Build a new hub on s2. Establish bi-directional hub links between hub h2 and s2. Connect all spoke

nodes to hub s2. Establish direct links between spoke h1 and all other spoke nodes.
17: Compute the total cost for the current assignment as a reference (see Appendix A.1).
18: Perform the “Removing” operator on existing direct links (see Appendix A.2, Algorithm 6).
19: Perform the “Removing” operator on existing access links (see Appendix A.3, Algorithm 8).
20: Perform the “Replacing” operator on access links (see Appendix A.3, Algorithm 10).
21: Perform the Tree-Close (see Algorithm 4).
22: The current total cost, set of hubs and set of hub links are represented by Objo,Ho and Lo.
23: if Objo <Obj then
24: Let Obj=Objo,H = Ho and L = Lo.
25: end if
26: Return the status of Objo,Ho and Lo to Step 8.
27: end for all
28: end for all
29: end if
30: end for all
31: end for all
32: end for all

Algorithm 4 Tree-Close: A sub-operator of Tree-Extension
Input: The initial set of four types of links Lo, new hub s2, the set of hub nodesH s2 that are not connected to hub s2, current
total cost Objo.
Output: The new set of four types of links L, final total cost Obj

1: Let L = Lo, Obj=Objo.
2: for each hub h ∈ H s2 do
3: Simulate establishing bi-directional hub links between s2 and h. The updated set of four types of links is represented by
Lo.

4: Compute the total cost Objo for the current assignment.
5: if Objo <Obj then
6: Let Obj=Objo and L = Lo.
7: end if
8: if There exist hub cycles with reversed hub links then
9: Let Cy be the set of hub cycles that have reversed hub links.

10: for each cycle ∈ Cy do
11: Simulate removing all reversed hub links of cycle. The updated set of four types of links is represented by Lo.
12: Compute the total cost Objo for the current assignment.
13: if Objo <Obj then
14: Let Obj=Objo and L = Lo.
15: end if
16: end for all
17: end if
18: end for all

8



(a) An original hub net-
work.

(b) Replace hub h1 with
node s1.

(c) Install a new hub s2 and
connect it with hub h2.

(d) Simulate connecting
hub s2 with other hubs.

(e) If there exists a hub cy-
cle, simulate removing all
reversed hub links of this
cycle.

Figure 3: The process of Tree-Extension. The sub-figures in the upper part are for the case that h1 , h2 and the sub-figures in the lower part are for
the case that h1 = h2. We perform the above operations for all hub links in the original network with p hubs. Black links are original hub links and
red links are new hub links.

in Steps 15–16 in Algorithm 3. Afterwards, we implement a greedy search algorithm on this initial assignment: We
first remove greedily direct links, ordered by increasing travel demands, which reduce the total cost of the solution.
Second, we remove greedily all access links, ordered by decreasing distances to hubs, which also reduce the total
cost of the solution. Third, we try to replace greedily all access links, by connecting them to not-yet connected hubs,
sorting the hub candidates in increasing order of distances. The details of operator Tree-Extension are shown in
Figure 3.

When computing hubbiness for a pair of nodes, there are only two hub links between both nodes. However, the
cases of hub links for more than two hubs are more complex. In addition, bi-directional links between hubs are
established in the above operators. If the fixed cost for establishing hub links is very expensive, it is better to establish
a unidirectional cycle in the hub network (see the unidirectional hub cycle in Figure 4(b)). Therefore, we propose a
sub-operator of Tree-Extension, called Tree-Close. After connecting new hub s2 to h2, we greedily establish hub links
between s2 and other hubs while the total cost is reduced. For each discovered hub cycle with reversed hub links, we
simulate removing all reversed hub links of the cycle and generating a unidirectional cycle. If the total cost is reduced,
we remove the reversed hub links. Note that we try to replace all bi-directional links in all cycles in the hub network
by unidirectional links and select the cheapest option as the sub-solution. The details of sub-operator Tree-Close are
shown in Algorithm 4.

4.2.2. Operator Cycle-Extension
In the last section, Tree-Extension extends the hub network mainly based on the bi-directional connection between

hubs to guarantee the connectivity of the hub network. Although the sub-operator Tree-Close is proposed, this sub-
operator addresses the special case that a cycle is newly generated from a tree. It does not cover the case of extending
a small cycle to a large cycle. Therefore, in this section, we propose a new operator called Cycle-extension. As shown
in Figure 5, the procedure of this operator is as follows:

1. For each hub link h1 − h2, we select each of its vertices (e.g., h1). For each node (e.g., s1) from the top cn spoke
nodes sorted by Devsh, we simulate replacing hub h1 by node s1.

2. For each possible spoke node s2, we simulate installing a new hub s2 and replace hub link s1 − h2 with a hub
path s1 − s2 − h2.

3. We implement a greedy search algorithm on the current assignment, similar to the computation of hubbiness:
We first remove greedily direct links, ordered by increasing travel demands, which reduce the total cost of the

9



ATL

BWI

BOS
CHI

CVG

CLE

DFW

DEN

DTT

HOU

MKC

LAX
MEM

MIA

MSP

MSY

NYC
PHL

PHX

PIT

STL
SFO

SEA

TAM

WAS

(a) Two bi-directional hub links consisting of four unidirectional hub links.
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(b) A unidirectional hub cycle consisting of four unidirectional hub links.
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(c) A unidirectional hub cycle consisting of five unidirectional hub links.
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(d) A unidirectional hub cycle consisting of six unidirectional hub links.

Figure 4: The comparison between Tree-Close and Cycle-Extension (p ∈ {3, 4, 5, 6}): Tree-Close is used in the network design from (a)
to (b); Cycle-Extension is used in the network design from (b) to (c) and from (c) to (d). Cost for installing hubs f H

k = 0, fixed cost
f = [8000, 50000, 400000, 50000], variable cost b = [0.8, 0.04, 0.01, 0.04].

(a) An original hub cycle. (b) Hub h1 is replaced by node s1. (c) A new hub s2 is installed and link
s1−h2 is replaced by path s1−s2−h2.

(d) Reverse the directions of all
links.

Figure 5: The process of Cycle-extension. We perform the above operations for all hub links in the original network with p hubs. Black links are
original hub links and red links are new hub links. Because the directions of hub links in the optimal solutions might be reversed with the increasing
value of p, we reverse the hub links in (d) and see whether the total cost is reduced.

solution. Second, we remove greedily all access links, ordered by decreasing distances to hubs, which reduce
the total cost of the solution. Third, we try to replace greedily all access links, by connecting them to not-yet
connected hubs, sorting the hub candidates in increasing order of distances.

4. Note that with the increasing value of p, the directions of hub links in the optimal solutions might be reversed.
Thus, we try to reverse the direction of all hub links and update the total cost.

5. After exploring all possible cases, the solution with the minimum total cost is finally selected.
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Algorithm 5 Variable Neighborhood Search
Input: The set of nodes V, the set of hub nodes Ho, the set of four types of links Lo, current total cost Objo, variable cost
Costo

i j, transportation paths Patho
i j (i, j ∈ V), the maximum number of iterations itermax, the maximum number of iterations

without improvement iterimpr, r = 1, flag= 0.
Output: The new set of hub nodesH , final total cost Obj

1: LetH = Ho, L = Lo, Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: while r <itermax. do
3: Let Spokes=V\Ho.
4: for each h ∈ Ho do
5: for each i ∈Spokes do
6: Replace the hub h with node i. LetH c and Lc be the updated sets of hubs and four types of links.
7: Compute the new total cost Objc, Costc

i j and Pathc
i j (i, j ∈ V).

8: Let j = 1.
9: while j < 4 do

10: if j == 1 then
11: Perform the operators “Removing” and “Adding” on direct links (see Appendix A.2, Algorithms 6–7).
12: end if
13: if j == 2 then
14: Perform the operators “Removing”, “Adding” and Replacing on access links (see Appendix A.3, Algo-

rithms 8–10).
15: end if
16: if j == 3 then
17: Perform the operators “Removing”, “Adding” and Replacing on hub links (see Appendix A.4, Algo-

rithms 11–13).
18: end if
19: Let j = j + 1. Let Objn, Ln, Costn

i j and Pathn
i j (i, j ∈ V) be the current total cost, set of four types of links,

variable cost and paths.
20: if Objn <Objc then
21: Let Objc=Objn, Lc = Ln, Costc

i j=Costn
i j, Pathc

i j=Pathn
i j, and j = 1.

22: end if
23: end while
24: if Objc <Obj then
25: LetH = H c, L = Lc, Obj=Objc, Costi j=Costc

i j, Pathi j=Pathc
i j, f lag = 0.

26: else
27: f lag = f lag + 1.
28: end if
29: if f lag ≥ iterimp then
30: return
31: end if
32: Return the status of Objo,Ho and Lo to Step 3.
33: end for all
34: end for all
35: LetHo = H and Lo = L.
36: end while

Tree-Close and Cycle-extension have different effects on the network construction. As an example, the optimal
solutions for several instances with p ∈ {3, 4, 5, 6} in CAB dataset are shown in Figure 4. Tree-Close is applied to
generate a new circle from a bi-directional tree (Figure 4(b)), while Cycle-extension is used to extend a small cycle to
a large cycle (Figure 4(c–d))

4.3. Variable Neighborhood Search (VNS)

The solutions obtained by the incremental network design are quite good (see Section 5), but for further improve-
ment we employ variable neighborhood search (VNS) to seek better solutions. According to Ilić et al. (2010), there are
three types of VNS strategies for hub location problems: Sequential strategy (Seq-VNS), nested strategy (Nest-VNS)
and mixed strategy (Mix-VNS). Seq-VNS needs the shortest time but explores the fewest neighborhoods. Nest-VNS
explores a large set of neighborhoods, but its run time is not acceptable. Mix-VNS allows a trade-off between the
number of neighborhoods and run time. Therefore, we use Mix-VNS in this study.

Our algorithm is shown in Algorithm 5. For a given initial solution with the hub setHo obtained by the incremental
network design, we generate all hub sets that have one hub different fromHo in the nested level and these hub sets are
called neighborhoods (Step 6 in Algorithm 5). Then, other local search methods (removing/adding direct links (Step
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Table 3: The gaps of solutions and run time of three types of local search and variable neighborhood search for the CAB25 dataset with p = 5.

Operator Maximum Minimum Average Median Average
gap (%) gap (%) gap (%) gap (%) run time (s)

Modifying direct links 51.56 14.09 26.26 25.28 0.03
Modifying access links 39.18 19.44 28.05 28.16 0.05

Modifying hub links 35.19 7.96 17.93 15.99 0.35
Variable neighborhood search 8.18 0.57 2.58 1.84 26.2

11), removing/adding/replacing access links (Step 14) and removing/adding/replacing hub links (Step 17)) are applied
on each neighborhood greedily (the detailed procedures for these operators are shown in Appendix A.2–Appendix
A.4). If there is no improvement for a certain number of continuous iterations, the algorithm will be terminated (Steps
29–31). Note that in Step 3 of Algorithm 5, the set Spokes can be a subset of the spoke nodes that are close to hub h
to reduce the run time.

5. Computational Results

5.1. Datasets and experimental setup
To evaluate the performance of HUBBI proposed in Section 4, several well-known datasets are used as case

studies: CAB with 25 nodes (O’Kelly, 1987) and CAB with 100 nodes (as provided by O’Kelly1), TR with 81
nodes (Çetiner, 2003), AP with 200 nodes (Ernst and Krishnamoorthy, 1996), USA423 with 423 nodes (Peiró et al.,
2014), as well as URAND with 100 and 200 nodes (Meyer et al., 2009). In order to generate datasets with smaller
sizes, inspired by de Camargo et al. (2017), a selection of the first n nodes from the datasets CAB100, TR81, USA423
is adopted for CAB dataset with 30 and more nodes, as well as TR dataset and USA dataset with 25 and more nodes.
All AP datasets are generated by publicly available code2. The enhanced Benders decomposition method, which is
the fastest exact method (de Camargo et al., 2017), is implemented as a reference benchmark using CPLEX. We also
tried to solve a few instances with VNS and LocalSolver3, a black-box optimization solver based on heuristics, but
the results were poor.

All experiments were executed on a server with 40 cores and 450 GB RAM, running Fedora 24. For a fair
comparison, all programs were run using a single thread only. Regarding the setup of VNS, we make a few design
decisions as follows. In Ilić et al. (2010), the maximum number of iterations without improvement and the maximum
number of all iterations in the VNS were set to n

2 and 5n for the uncapacitated single allocation p-hub median problem,
where n is the number of nodes in the networks. Because the complexity of the incomplete hub location problem is
significantly higher, we set the values of these two parameters to 2n and 5n, respectively. Moreover, we have tested
different sizes of the set Spokes for VNS (see Algorithm 5) and different values of cn for HUBBI (i.e., we only try to
use the top cn nodes ordered by the parameter Devsh, see Section 4.2.1). There are no significant differences for run
time and solution quality, except from very special cases, which could appear for either choice of values. Therefore,
we use medium settings here: Let |Spokes| = n

5 and cn =
√

n. We use the following variant of the link specified fixed
cost (Ai j) as implemented by de Camargo et al. (2017), which was kindly provided by the authors:

Ai j =

1, if ci j < 1.1498 ∗ 1500
2, otherwise

5.2. The need for problem-specific heuristics
In the first series of experiments, we compare the standard local search strategies in three neighborhood structures,

i.e., modifying direct links (Appendix A.2), modifying access links (Appendix A.3), and modifying hub links (Ap-
pendix A.4), together with variable neighborhood search (VNS, Section 4.3). The CAB25 dataset with the number

1https://www.researchgate.net/project/Studies-in-Hub-Location-and-Network-Design
2http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub1.txt
3http://www.localsolver.com/
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(a) Modifying direct links.
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(b) Modifying access links.
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(c) Modifying hub links.
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(d) Variable neighborhood search.

Figure 6: The gaps of solutions (y-axis) and deviations of hub sets (x-axis) obtained by three types of local search and variable neighborhood search
for the CAB25 dataset with p = 5.

Table 4: The performance of the enhanced Benders decomposition method, LocalSolver, VNS (20 times) and HUBBI on the CAB25 datasets. The
fixed cost and variable cost are f = [2500, 3000, 3500, 3000] and b = [0.08, 0.04, 0.03, 0.04]. The cost for establishing a hub is f H

k = 107 (k ∈ V).
LocalSolver cannot provide any feasible solution within 3600 seconds for CAB25 dataset. HUBBI outperforms VNS on both solution qualities and
computation times.

Datasets Size p Solution of Time of Max gap Average gap Min gap Average time Gap of Time of
Benders (optimal) Benders (s) of VNS of VNS of VNS of VNS (s) HUBBI HUBBI (s)

CAB 25 2 511,711,559 238 3.26% 1.13% 0.01% 3.76 0.00% 1.1
CAB 25 3 477,904,481 367.5 5.76% 1.45% 0.02% 6.68 0.00% 6.2
CAB 25 4 468,438,577 586.9 6.29% 1.80% 0.55% 14.23 0.00% 11.1
CAB 25 5 461,450,560 628.1 8.18% 2.58% 0.57% 26.20 0.00% 16.5

Table 5: The groups of fixed costs and variable costs.

Test Cost for installing hubs ( f H
k ) Fixed cost [ f 0, f 1, f 2, f 3] Variable cost [b0, b1, b2, b3]

1 1.0 × 107 [2500,3000,3500,3000] [0.08,0.04,0.03,0.04]
2 1.0 × 107 [1000,1000,1000,1000] [0.10,0.04,0.02,0.04]

of hubs p = 5 is used as an initial case study. The fixed cost and variable cost are f = [2500, 3000, 3500, 3000]
and b = [0.08, 0.04, 0.03, 0.04]. The cost for establishing a hub is set to f H

k = 107 (k ∈ V). Twenty initial hub
sets are generated randomly and all spoke nodes are connected to the closest hubs. There are no direct links in the
initial solutions. Each type of local search is performed individually. The gaps of solutions (y-axis) together with the
deviation of hub sets between the local optimum and the optimal solutions (x-axis) are visualized in Figure 6. The
results are summarized in Table 3. Although operators modifying direct/access links need the shortest run time, the
solutions obtained by them are the worse in terms of solutions qualities. VNS provides a median gap of 1.84%, the
minimum gap with 20 experiments is 0.57%. The maximum gap of 8.18% shows the dependency of VNS on good
initial solutions.

We also tried to use LocalSolver4, a black-box optimization solver based on heuristics, to solve the incomplete
hub location problems. As shown in Table 4, we test the performance of the enhanced Benders decomposition
method, LocalSolver, VNS and HUBBI on the rather small CAB25 dataset with fixed cost and variable cost f =

[2500, 3000, 3500, 3000] and b = [0.08, 0.04, 0.03, 0.04]. The cost for establishing a hub is set to f H
k = 107 (k ∈ V).

5.3. Comparison of HUBBI against an enhanced Benders decomposition method

The solution quality of HUBBI is analyzed based on datasets AP and CAB with n ∈ {25, 30, 40, 50, 60, 70, 80}
and TR with n ∈ {25, 30, 40, 50, 60, 70, 81}, where n is the number of nodes. For small instances with n ≤ 30,
we use two groups of fixed costs [ f 0, f 1, f 2, f 3] and variable costs [b0, b1, b2, b3], as shown in Table 5, following

4http://www.localsolver.com/
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Figure 7: The gaps of solutions obtained by HUBBI method for the CAB and AP datasets for n ∈ {25, 30, 40, 50, 60, 70, 80} and the
TR dataset for n ∈ {25, 30, 40, 50, 60, 70, 81}. Here n is the number of nodes. Two groups of fixed costs and variable costs ( f , b) ∈
{([2500, 3000, 3500, 3000], [0.08, 0.04, 0.03, 0.04]), ([1000, 1000, 1000, 1000], [0.10, 0.04, 0.02, 0.04])} are used for the cases with n = 25, 30. For
the cases with n ≥ 40, only the second setting of cost is used, because of the long run time of the enhanced Benders decomposition method. The
cost for installing a hub is f H

k = 107 for all cases. The number of hubs are set to p = 2, 3, 4, 5. Note that except for one case with 25 nodes, the
gaps of all other solutions are smaller than 1%. The detailed results regarding the solution quality for each dataset are shown in Tables B1–B3 in
the Appendix.
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(a) Overlap of direct links.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gaps (%)

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e
rl

a
p
 o

f 
co

lle
ct

io
n
 l
in

ks

(b) Overlap of collection links.
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(c) Overlap of hub links.
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(d) Overlap of distribution links.

Figure 8: The joint plots between the quality of four types of links and the gaps of solutions, i.e., the x-axis is the percentage of solution gaps and
the y-axis is the overlap between the link set obtained by HUBBI and the optimal link set. In most instances, the gaps are 0% and the overlap is
1. Interestingly, there are also a few special cases with very small solution gaps and also small overlap, which means that the values of objective
functions can be very closed to the optimal solutions but the sets of links are quite different from the optimal ones in these cases.

de Camargo et al. (2017). Given the long run time of the enhanced Benders decomposition method, larger instances
are assessed based on the second cost setting only ( f = [1000, 1000, 1000, 1000], b = [0.10, 0.04, 0.02, 0.04]). The
cost for installing a hub k is f H

k = 107 (k ∈ V) for all cases. The number of hubs are set to p ∈ {2, 3, 4, 5}. The gaps
of HUBBI are computed based on the optimal solutions that are obtained by the enhanced Benders decomposition
method. The swarm plot for the obtained gaps is shown in Figure 7. For each size group, the gaps for three datasets are
shown individually. HUBBI provides high-quality solutions (gap<1%) for almost all cases (107/108) and the optimal
solutions for over 90% (99/108) of all cases. The median gap is close/equal to zero in all cases. Interestingly, the
gaps of solutions that are obtained by HUBBI keep rather small even for larger networks, which allows us to compute
high-quality solutions on real-world problem instances. The detailed numerical results of our experiments regarding
solution quality, for each dataset, are shown in Tables B1–B3 in the Appendix.

In order to further analyze the solution assignment obtained by HUBBI, the overlap of four link types obtained
by HUBBI versus the enhanced Benders decomposition method are plotted together with the gaps of solutions for all
instances (see Figure 8). The link quality is represented by the fractional overlap between the link set obtained by
HUBBI and the optimal link set for each type of link. For solutions with gaps of 0%, the link overlap is one in the
majority of cases, which means that HUBBI’s solution coincides with the enhanced Benders decomposition method.
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(a) Run time and fitness curves for p = 2.
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b) Run time and fitness curves for p = 3.
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(c) Run time and fitness curves for p = 4.
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(d) Run time and fitness curves for p = 5.

Figure 9: The comparison of run time between HUBBI and the enhanced Benders decomposition method for the CAB and AP datasets for
n ∈ {25, 30, 40, 50, 60, 70, 80} and the TR dataset for n ∈ {25, 30, 40, 50, 60, 70, 81}. Here n is the number of nodes. One group of fixed cost
f = [1000, 1000, 1000, 1000] and variable cost b = [0.10, 0.04, 0.02, 0.04] is used. The cost for installing a hub is f H

k = 107 for all cases. The
number of hubs are set to p = 2, 3, 4, 5. Note that the y-axis is in log scale. In each sub-figure, the run time for the CAB, AP and TR datasets are
shown with blue, green and red colors, respectively. The black curves are the fitness curves for two methods. The enhanced Benders decomposition
method and HUBBI are represented by circles and squares, respectively. The detailed run time of each method for each instance is shown in
Tables B1–B3 in the Appendix.

Interestingly, there are also a few special cases with very small solution gaps and also small overlap, which means that
the values of objective functions can be very closed to the optimal solutions but the sets of links are quite different
from the optimal ones in these cases.

Given that HUBBI often computes high-quality solutions, we compare the run time between HUBBI and the
enhanced Benders decomposition method (de Camargo et al., 2017) next. The results for the cases with fixed cost
f = [1000, 1000, 1000, 1000] and variable cost b = [0.10, 0.04, 0.02, 0.04] are shown in Figure 9. The run time of the
enhanced Benders decomposition method and HUBBI for three datasets and with increasing number of nodes with
p ∈ {2, 3, 4, 5} is visualized in each sub-figure. Note that the y-axis is in log scale. HUBBI is 2–3 orders of magnitude
faster than the exact method. For one of the largest datasets in our study, the enhanced Benders decomposition method
requires around 230 hours to compute the solution, while HUBBI finds an optimal solution within 20 minutes. We
also plot the fitness curves for the run time of the enhanced Benders decomposition method and HUBBI for each
sub-figure. The corresponding fitness functions and R2 are listed in Table 6. Based on our analysis, the computational
complexity of the enhanced Benders decomposition method is O(n6), while HUBBI is only around O(n4). This makes
HUBBI applicable for solving the hub location problems in larger networks. The detailed results regarding run time,
for each instance, are shown in Tables B1–B3 in the Appendix.

Finally, we report the memory usage of both algorithms. In Figure 10(a), the memory usage for different sizes of
networks with p = 2 is reported. The memory usage of HUBBI increases much slower than for the enhanced Benders
decomposition method. HUBBI uses only about 1% of the memory of the latter for the cases with around 80 nodes.
In Figure 10(b), we show an exemplary curve for memory usage throughout solution exploration for a single instance:
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Table 6: The fitness functions for the run time of the enhanced Benders decomposition method and HUBBI. Here, the run time and the number of
nodes are represented by T and n, respectively.

Number of hubs p Enhanced Benders decomposition HUBBI
Fitness function R2 Fitness function R2

2 TBenders = 1.69 × 10−7 × n6.48 0.873 THUBBI = 1.99 × 10−7 × n4.66 0.561
3 TBenders = 2.86 × 10−5 × n5.35 0.961 THUBBI = 6.65 × 10−5 × n3.62 0.929
4 TBenders = 2.71 × 10−6 × n5.93 0.926 THUBBI = 1.53 × 10−4 × n3.58 0.976
5 TBenders = 8.13 × 10−8 × n6.80 0.977 THUBBI = 1.87 × 10−4 × n3.63 0.920
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(a) Memory usage for different sizes of networks with p = 2. Y-axis is
in log scale. The fitness curves for the enhanced Benders decomposi-
tion method and HUBBI are also visualized. The corresponding fitness
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Figure 10: The memory usage for different sizes of network with p = 2 and the evolution of memory usage with time for TR81 dataset with p = 5.
The fixed cost f = [1000, 1000, 1000, 1000] and variable cost b = [0.10, 0.04, 0.02, 0.04] are used. The cost for installing a hub is f H

k = 107.

TR81 dataset with p = 5.

5.4. Analysis of solutions with large gaps

Although the solutions provided by HUBBI are close-to-optimal in many cases, it is interesting to scrutinize the
solutions with large gaps further. As shown in Figure 7, there is a case for AP25 dataset with a gap of around 1.1%.
This case is with p = 4, fixed cost f = [1000, 1000, 1000, 1000] and variable cost b = [0.10, 0.04, 0.02, 0.04] for
AP25 dataset (see the 7th case in Table B2 in the Appendix). For further analysis, we visualize the solutions obtained
by HUBBI and the optimal solutions obtained by the enhanced Benders decomposition method for AP25 dataset with
p ∈ {3, 4, 5} in Figure 11. There is a unidirectional hub cycle among hubs 6 → 17 → 13 in the optimal solution for
p = 3 (see Figure 11(a)). When the number of hubs increases from p = 3 to p = 4, the hub set in the optimal solution
changes completely (see Figure 11(b)). The new optimal hub set becomes [8, 1, 15, 18], which is not identified by
HUBBI. HUBBI performs the operator Cycle-Extension instead. After the old hub 17 is replaced by new hub 22,
another new hub 15 is built (see Figure 11(e)). The gap of this solution is 1.07%. Interestingly, when the number of
hubs increases further to p = 5, the optimal solution is obtained again by HUBBI based on the poor solution for p = 4
(see Figure 11(f)). This emphasizes the limitations and also the strengths of incremental network design.

5.5. Results for large instances

In this section, we test HUBBI on large network instances: The CAB dataset with n = 90, 100, as well as the
AP dataset, USA423 dataset and URAND dataset with n = 100, 200. For all instances, the fixed cost and variable
cost are set to [1000,1000,1000,1000] and [0.1,0.04,0.02,0.04], respectively. The cost for establishing a hub is set to
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(a) The optimal solution obtained by the en-
hanced Benders decomposition method for p =

3. There is a unidirectional hub cycle among
hubs 6→ 17→ 13.
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(b) The optimal solution obtained by the en-
hanced Benders decomposition method for p =

4. There is a unidirectional hub cycle among
hubs 8→ 1→ 15→ 18.
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(c) The optimal solution obtained by the en-
hanced Benders decomposition method for p =

5. There is a unidirectional hub cycle among
hubs 7→ 1→ 15→ 22→ 14.
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(d) The solution obtained by HUBBI for p = 3.
There is a unidirectional hub cycle among hubs
6→ 17→ 13. This solution is the optimal.
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(e) The solution obtained by HUBBI for p = 4.
There is a unidirectional hub cycle among hubs
6→ 15→ 22→ 13. The gap is 1.07%.
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(f) The solution obtained by HUBBI for p = 5.
There is a unidirectional hub cycle among hubs
7 → 1 → 15 → 22 → 14. This solution is the
optimal.

Figure 11: The visualization for the solutions for AP25 with p = 3, 4, 5 with fixed cost f = [1000, 1000, 1000, 1000], variable cost b =

[0.10, 0.04, 0.02, 0.04] and cost for installing a hub f H
k = 107. The solutions of the enhanced Benders decomposition method are shown on

the top (sub-figures (a)–(c)) and solutions of HUBBI are shown at the bottom (sub-figures (d)–(f)). The gap of solution obtained by HUBBI for
p = 4 is 1.07%. All other solutions are optimal.

107 and the number of hubs is set to p ∈ {2, 3, 4, 5}. The enhanced Benders decomposition method cannot provide
any feasible solution within acceptable run time for these instances. Therefore, we only have the solutions that are
obtained by HUBBI here. The results are presented in Table 7. First, note that HUBBI provides solutions for the
largest instance (200 nodes) within 11 hours. Furthermore, we report the total cost for establishing four types of
links and total cost for transporting flows, as shown in columns “Total cost for links” and “Total cost for flows”,
respectively. In the column “Hub network” of Table 7, “Bi-directional connection” means that all hub links are bi-
directionally connected and “Unidirectional cycle” means that the hub network is constructed by one or more cycles
with end-to-end unidirectional hub links. In the AP dataset and URAND dataset, the hub cycles with end-to-end
unidirectional hub links are constructed in order to reduce the total cost (especially cost for establishing links, see
the column “Number of hub links”) even if this network structure will increase the cost for transporting flows. We
will discuss this observation in the next section. The sets of hubs are shown in the column “Hubs”. One interesting
thing is that after adding one hubs, the location of more hubs is changed when the hub network is changed from
“Bi-directional connection” to “Unidirectional cycle”.
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Table 7: Results for large instances as obtained by HUBBI. The fixed cost and variable cost are set to [1000,1000,1000,1000] and
[0.1,0.04,0.02,0.04], respectively. The cost for establishing a hub is 107. The total cost for establishing four types of links is shown in column
“Total cost for links”. The total cost for transporting flows is shown in column “Total cost for flows”. In the column “Hub network”, “Bi-directional
connection” means that all hub links in the hub bi-directionally connected and “Unidirectional cycle” means that the hub network is constructed by
one or more cycles with end-to-end unidirectional hub links.

Datasets Size p Solution of Time of Total cost Total cost Hubs Number of Hub network
HUBBI HUBBI for links for flows hub links

CAB 90 2 699,137,666 156.6 100,108,008 579,029,658 21 50 2 Bi-directional connection
CAB 90 3 622,124,994 663.0 89,175,086 502,949,908 45 50 64 4 Bi-directional connection
CAB 90 4 579,909,174 1312.9 74,962,888 464,946,286 12 20 50 64 10 Bi-directional connection
CAB 90 5 545,619,347 2320.7 67,991,924 427,627,423 4 20 27 50 64 14 Bi-directional connection
CAB 100 2 815,226,014 245.1 113,405,292 681,820,722 28 50 2 Bi-directional connection
CAB 100 3 721,506,754 1040.3 93,189,096 598,317,658 3 35 50 4 Bi-directional connection
CAB 100 4 669,541,155 1945.4 87,763,170 541,777,985 3 4 20 50 10 Bi-directional connection
CAB 100 5 628,578,120 3459.0 74,802,728 503,775,392 3 4 20 27 50 14 Bi-directional connection
AP 100 2 2,372,688,531 94.6 2,349,371,148 3,317,383 33 67 2 Bi-directional connection
AP 100 3 2,012,898,792 1011.3 1,979,473,016 3,425,777 5 36 67 3 Unidirectional cycle
AP 100 4 1,761,856,862 2152.0 1,718,195,367 3,661,496 6 36 43 91 4 Unidirectional cycle
AP 100 5 1,622,617,647 2577.2 1,568,528,552 4,089,095 6 16 43 53 91 5 Unidirectional cycle
AP 200 2 4,751,446,007 1253.3 4,728,160,697 3,285,310 44 139 2 Bi-directional connection
AP 200 3 3,989,552,242 16414.3 3,956,098,772 3,453,470 36 82 157 3 Unidirectional cycle
AP 200 4 3,510,839,590 31905.8 3,467,232,472 3,607,118 29 74 117 149 4 Unidirectional cycle
AP 200 5 3,208,883,388 38924.7 3,154,774,305 4,109,083 23 29 95 117 160 5 Unidirectional cycle

USA 100 2 589,646,094 162.4 116,878,144 452,767,950 77 89 2 Bi-directional connection
USA 100 3 501,668,349 1129.9 110,831,724 360,836,625 25 62 89 6 Bi-directional connection
USA 100 4 479,357,476 2385.2 106,030,428 333,327,048 25 51 62 89 8 Bi-directional connection
USA 100 5 455,307,390 3730.3 101,003,562 304,303,828 25 33 62 83 89 14 Bi-directional connection
USA 200 2 2,684,903,589 4065.0 293,821,689 2,371,081,900 77 100 2 Bi-directional connection
USA 200 3 2,384,644,807 16735.7 219,574,120 2,135,070,687 77 106 107 6 Bi-directional connection
USA 200 4 2,129,545,203 26729.2 209,055,096 1,880,490,107 25 106 107 174 12 Bi-directional connection
USA 200 5 1,970,547,697 37587.8 193,491,304 1,727,056,393 25 62 101 106 107 18 Bi-directional connection
URAND 100 2 5,905,819,865 115.3 5,884,398,134 1,421,732 4 73 2 Bi-directional connection
URAND 100 3 4,826,131,562 1145.6 4,794,632,720 1,498,843 31 64 86 3 Unidirectional cycle
URAND 100 4 4,145,901,880 2713.7 4,104,310,083 1,591,797 0 31 65 68 4 Unidirectional cycle
URAND 100 5 3,536,241,325 3634.6 3,484,674,459 1,566,866 0 52 65 84 89 5 Unidirectional cycle
URAND 200 2 11,628,555,837 1204.1 11,602,817,192 5,738,645 28 32 2 Bi-directional connection
URAND 200 3 9,418,531,756 17107.9 9,382,630,909 5,900,847 67 110 183 3 Unidirectional cycle
URAND 200 4 8,053,464,679 34686.0 8,007,284,267 6,180,412 20 84 109 110 4 Unidirectional cycle
URAND 200 5 7,063,015,577 37943.4 7,006,791,208 6,224,369 65 79 84 142 182 5 Unidirectional cycle

5.6. Interdependence between the hub network topology and cost settings
If the total cost for establishing (hub) links is too expensive, compared to the total variable cost, the final hub

network will preferably be a cycle with end-to-end unidirectional hub links. The ratio between total variable cost and
total fixed cost for links depends on not only the travel demands w, but also the choice of f and b. In the AP dataset
and URAND dataset in Section 5.5, the travel demands of the AP dataset are rather small, although the other datasets
have the same cost setting. Therefore, the hub networks in the AP dataset become unidirectional cycles for the cases
with p > 2. In addition, the settings of fixed cost for establishing hubs also influence the topology of hub networks
via the location of hubs.

We discuss the correlation between the topology of hub networks and the cost settings based on Figure 12: We set
the fixed cost for establishing hub links to different values f 2 ∈ {100, 1000, 10000, 100000} and the fixed cost for estab-
lishing hubs with two alternatives: f H

k ∈ {107, Fd
k }; other parameters remain unchanged ( f = [1000, 1000, f 2, 1000],

b = [0.10, 0.04, 0.02, 0.04]) for the case with p = 5 on the CAB25 dataset. The parameter Fd
k was proposed by Ebery

et al. (2000) as follows:

Fd
k =

(
1 −

3ckh

5 maxi∈V cih

)  ∑
i∈V, j∈V

(b1cih + b3ch j − b2ci j)

 /p (13)

where node h is the node that is the closest to the center of mass. The obtained fixed cost for establishing hubs is
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(a) Solution for f = [1000, 1000, 100, 1000] and f H
k = 107.
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(b) Solution for f = [1000, 1000, 1000, 1000] and f H
k = 107.
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(c) Solution for f = [1000, 1000, 10000, 1000] and f H
k = 107.
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(d) Solution for f = [1000, 1000, 100000, 1000] and f H
k = 107.
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(e) Solution for f = [1000, 1000, 100, 1000] and f H
k = Fd

k .
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(f) Solution for f = [1000, 1000, 1000, 1000] and f H
k = Fd
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(g) Solution for f = [1000, 1000, 10000, 1000] and f H
k = Fd
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(h) Solution for f = [1000, 1000, 100000, 1000] and f H
k = Fd

k .

Figure 12: Eight instances of incomplete hub location problems for the case with p = 5 on the CAB25 dataset with different values of fixed costs
for establishing hub links (i.e., f 2), leaving other parameters unchanged: (a) With the smallest value of f 2, all hub links are bi-directionally and
densely connected; (b) With increased value of f 2, the hub links are sparser but still bi-directionally connected; (c) With further increased value of
f 2, the hub links are much sparser and the hub network becomes a line with bi-directional links; (d) With the largest value of f 2, a unidirectional
cycle is established, i.e., there are only five hub links, DTT-CHI, CHI-CVG, CVG-PIT, PIT-CLE, CLE-DTT, in the whole network. In subfigures
(e–h), the effect of using Fd

k is visible; nodes with lower fixed costs are preferred.
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distributed in the range [3.11 × 107, 7.78 × 107].
In the first four subfigures of Figure 12, the fixed hub cost is constant at 107. In Figure 12(a), with the smallest

value of f 2, all hub links are bi-directional and densely connected. In this case, the operator Tree-Extension contributes
mainly to the improvement of the solutions. In Figure 12(b), with increased value of f 2, the hub links are sparser but
still bi-directional connected. In Figure 12(c), with further increased value of f 2, the hub links are much sparser and
the hub network becomes a line with bi-directional links. In Figure 12(d), with the largest value of f 2, a unidirectional
cycle is established, i.e., there are only five hub links, DTT-CHI, CHI-CVG, CVG-PIT, PIT-CLE, CLE-DTT, in the
whole network. In this case, the operator Cycle-Extension is preferred. When the fixed cost of hubs is computed as
Fd

k , nodes with lower values of Fd
k preferably become hubs (see Figures 12(e–h)).

6. Conclusions

In this paper, we proposed a heuristic-based method, called HUBBI. This method first computes a ranking of pos-
sible hub pairs in the network, the so-called hubbiness. Then it uses two network design patterns (Tree-Extension and
Cycle-extension) and VNS to generate high-quality solutions for incomplete hub location problems with short com-
putation times. In our computational results, five datasets (CAB, AP, TR, USA423 and URAND) with variable sizes
were used as case studies. Experimental results showed that our HUBBI provides optimal solutions for over 90% of
all instances. The gaps of solutions are all less than 1% except for one instance. The run time of our method increases
with the order of n4 while the run time for an exact enhanced Benders decomposition algorithm increases with n6,
where n is the number of nodes. Moreover, HUBBI only uses about 1% of the memory of the enhanced Benders
decomposition method, which makes it available for solving larger networks with limited computing resources. We
also discussed the factors that affect the topology of hub network, finding that cycles with unidirectional hub links are
more likely to appear with either larger values of fixed cost for establishing hub links, or with lower travel demands
in the network.

Since HUBBI constructs networks by adding hubs iteratively, its computation time increases with the size of p.
In addition to the p-hub constraint, another type of model with hop-constraints to limit the maximum number of
links or hops used by the path of each OD pair might improve the service level of a network (de Camargo et al.,
2017). Different from the p-hub constraint, the hop-constraints do not limit the establishment of hubs or links directly.
Thus, the implementation of HUBBI together with variable neighborhood search for hop-constraints might be quite
different. The constraint on costs for infrastructure networks can also be studied in future work. For a given network,
the cost for constructing the infrastructure (hubs and links) are limited. The objective function could be to minimize
the total variable cost under this constraint.
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Kratica, J., Stanimirović, Z., Tošić, D., Filipović, V., 2007. Two genetic algorithms for solving the uncapacitated single allocation p-hub median
problem. European Journal of Operational Research 182, 15–28.
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Appendix A. Computation of costs and local search

This section presents a function for computing the costs of solutions (Appendix A.1). In addition, local search
strategies for modifying direct links (Appendix A.2), access links (Appendix A.3) and hub links (Appendix A.4) are
proposed and formalized. The function and operators are used frequently in the computation of hubbiness (Section 4.1)
and network design patterns (Section 4.2), and variable neighborhood search (Section 4.3).

Appendix A.1. Computation of costs
In this section, we introduce a function for computing the cost of a current solution. It provides the variable cost

and the corresponding transportation path for each pair of nodes (which are needed when performing local search
strategies).

Assume that the sets of hub nodes, hub links and direct links are represented by H, Link0 and Link2, respectively.
The variable cost per unit flow Costo

km between each pair of hubs (k,m) is obtained by Dijkstra algorithm with com-
putational complexity of O(t + plog(p)), where p, t are the numbers of hubs and hub links, respectively. The current
sets of hubs that are connected to spoke node i by collection links and distribution links are represented by Hub1o

i and
Hub3o

i . Based on the variable cost between hub nodes, the variable costs between hub node k and spoke node i are
computed as follows:

Costo
ik = min

{
b1cim + Costo

mk | m ∈ Hub1o
i

}
Costo

ki = min
{
Costo

km + b3cmi | m ∈ Hub3o
i

}
Thus, the current minimum variable cost from spoke node i to spoke node j is obtained by:

Costo
i j = min

{
b1cik + Costo

k j | k ∈ Hub1o
i

}
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If nodes i,j are connected by a direct link, then we have Costo
i j = b0ci j. The computational complexity for all

variable costs Costo
i j, (i, j ∈ V, i , j) is O(n2 p). Assume that Patho

i j = [i, k1, k2, ..., ks, j] is the corresponding path
between i and j. If the direct link between (i,j) is established, then Patho

i j = [i, j]. The total cost TC is computed as
follows:

TC =
∑

i∈V, j∈V,i, j

Costo
i jwi j + Fixed cost for establishing hubs and links

Appendix A.2. Modifying direct links

The first local search strategy only modifies the connection of direct links between spoke nodes. We try to remove
or add the direct link between each pair of spoke nodes, leaving access links, hub links and hub location unchanged.
Assume that the set of direct links are represented by Link0. Before the modification, we sort all direct links by in-
creasing travel demands and spoke pairs without direct links by decreasing travel demands, respectively. The intuition
is that pairs of spoke nodes with larger travel demands are more likely to be connected by direct links. For a directed
link (i,j), assume that we remove the direct link between them. After the removal, a path through the hub network is
used to satisfy the travel demands from node i to node j. The new cost is computed as follows:

Costc
i j = min

{
b1cik + Costo

k j | k ∈ Hub1o
i

}
Therefore, the difference of the total cost for removing the direct link is:

dCi j
rem =

(
Costc

i j −Costo
i j

)
wi j − ( f 0 + Ai j)ci j

=
(
min

{
b1cik + Costo

k j | k ∈ Hub1o
i

}
− b0ci j

)
wi j − ( f 0 + Ai j)ci j

If dCi j
rem < 0, we update the link connection Link0, variable cost Costc

i j and used path Pathc
i j.

Algorithm 6 Local search for modifying direct links, Operator Removing
Input: A network instance with the set of nodes V, current total cost Objo, variable costs Costo

i j, transportation paths Patho
i j

(i, j ∈ V)
Output: The final total cost Obj, updated variable costs Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: Let DL be the list of direct links sorted by increasing travel demands.
3: for each link ∈ DL do
4: Simulate removing link and compute the new total cost Objo and new Costo

i j and Patho
i j.

5: if Objo <Obj then
6: Remove link. Let Obj=Objo, Costi j=Costo

i j, Pathi j=Patho
i j (i, j ∈ V).

7: end if
8: end for all

Algorithm 7 Local search for modifying direct links, Operator Adding
Input: A network instance with the set of nodes V, current total cost Objo, variable costs Costo

i j, transportation paths Patho
i j

(i, j ∈ V)
Output: The final total cost Obj, updated variable costs Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: Let DN be the list of all pairs of spoke nodes that are not directly connected sorted by decreasing travel demands.
3: for each link ∈ DN do
4: Simulate adding link and compute the new total cost Objo and new Costo

i j and Patho
i j.

5: if Objo <Obj then
6: Add link. Let Obj=Objo, Costi j=Costo

i j, Pathi j=Patho
i j (i, j ∈ V).

7: end if
8: end for all
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For a spoke pair (i,j) without direct link, the difference of the total cost for adding the direct link is computed as
follows:

dCi j
add =

(
b0ci j −Costo

i j

)
wi j + ( f 0 + Ai j)ci j

If dCi j
add < 0, we update the link connection Link0, variable costs Costc

i j and used path Pathc
i j. The pseudo-code

for removing/adding direct links is shown in Algorithm 6–7.

Property 1. The computational complexity of one iteration for removing/adding direct links is O(n2 p).

Appendix A.3. Modifying access links

The second local search strategy modifies the connections of access links including collection links and distribu-
tion links. We only explain the operator on collection links, since the distribution links are handled identically. For
each spoke node i, let the sets of hubs that are connected to spoke node i by collection links and distribution links
be denoted by Hub1o

i and Hub3o
i , respectively. The hubs in Hub1o

i and Hub3o
i are ordered by decreasing distances to

spoke node i (because, in general, spoke nodes are less likely to be assigned to farther hubs). For each collection hub
node ho ∈ Hub1o

i and each alternative hub hc ∈ H\Hub1o
i sequentially, three operators, “removing”, “adding” and

“replacing”, can be performed.
In the ‘removing’ operator, a collection link from spoke i to hub ho is removed. For a destination node j, if the

path Paho
i j uses the link i − ho, we need to find a new path through the remaining hubs in Hub1o

i . Its cost per unit flow
is:

Costc
i j = min

{
b1cik + Costo

k j | k ∈ Hub1o
i \{ho}

}
Thus, the difference of the total cost for removing the collection link i − ho is:

dCiho
rem =

∑
j∈V, j,i

(
Costc

i j −Costo
i j

)
wi j − ( f 1 + Aiho )ciho

=
∑

j∈V, j,i

(
min

{
b1cik + Costo

k j | k ∈ Hub1o
i \{ho}

}
−Costo

i j

)
wi j − ( f 1 + Aiho )ciho

In the ‘adding’ operator, a collection link from spoke i to hub hc is established. The difference of total cost for
installing the collection link i − hc is:

dCihc
add =

∑
j∈V, j,i

min
{
b1cihc + Costo

hc j −Costo
i j, 0

}
wi j + ( f 1 + Aihc )cihc

Finally, regarding the ‘replacing’ operator, the difference of total cost for replacing the collection link i − ho with
i − hc is computed as follows:

dCihohc
rep =

∑
j∈V, j,i

(
min

{
b1cik + Costo

k j | k ∈ {hc} ∪ Hub1o
i \{ho}

}
−Costo

i j

)
wi j − ( f 1 + Aiho )ciho + ( f 1 + Aihc )cihc

For each spoke node i and its collection hub node ho, we select the best operator and alternate hub node hc

with the minimum new total cost (if the ‘removing’ operator is selected, then hc = Ø). If the current solution is
improved, the set of hubs Hub1

i , variable costs Costo
i j and paths Patho

i j for j ∈ V are updated. The pseudo-code for
removing/adding/replacing access links is shown in Algorithm 8–10.

Property 2. The computational complexity of one iteration for removing/adding/replacing access links are O(n2 p2),
O(n2 p) and O(n2 p3), respectively.
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Algorithm 8 Local search for modifying access links, Operator Removing
Input: A network instance with n nodes, the set of nodes V, current total cost Objo, variable costs Costo

i j and transportation
paths Patho

i j (i, j ∈ V).
Output: The final total cost Obj, updated variable cost Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: for each spoke node i ∈ V do
3: Sort the hubs that are connected to node i as a list Hc

i with the order of decreasing distances
4: for each h1 ∈ Hc

i do
5: Simulate removing the access link between h1 and i. Compute the new total cost Objo and new Costo

i j and Patho
i j.

6: if Objo <Obj then
7: Remove the access link. Let Obj=Objo, Costi j=Costo

i j, Pathi j=Patho
i j (i, j ∈ V).

8: end if
9: end for all

10: end for all

Algorithm 9 Local search for modifying access links, Operator Adding
Input: A network instance with n nodes, the set of nodes V, current total cost Objo, variable costs Costo

i j and transportation
paths Patho

i j (i, j ∈ V).
Output: The final total cost Obj, updated variable cost Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: for each spoke node i ∈ V do
3: Sort the hubs that are not connected to node i as a list Hn

i with the order of increasing distances
4: for each h1 ∈ Hn

i do
5: Simulate adding the access link between h1 and i. Compute the new total cost Objo and new Costo

i j and Patho
i j.

6: if Objo <Obj then
7: Let Obj=Objo, Costi j=Costo

i j, Pathi j=Patho
i j (i, j ∈ V).

8: end if
9: end for all

10: end for all

Algorithm 10 Local search for modifying access links, Operator Replacing
Input: A network instance with n nodes, the set of nodes V, current total cost Objo, variable costs Costo

i j and transportation
paths Patho

i j (i, j ∈ V).
Output: The final total cost Obj, updated variable costs Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: for each spoke node i ∈ V do
3: Sort the hubs that are connected to node i as a list Hc

i with the order of decreasing distances
4: Sort the hubs that are not connected to node i as a list Hn

i with the order of increasing distances
5: for each h1 ∈ Hc

i do
6: Let Objc = in f .
7: for each h2 ∈ Hn

i do
8: Simulate adding the access link between h2 and i and removing the access link between h1 and i. Compute the new

total cost Objo and new Costo
i j and Patho

i j.
9: if Objo <Objc then

10: Let ĥ = h2.. Let Objc=Objo, Costc
i j=Costo

i j, Pathc
i j=Patho

i j (i, j ∈ V).
11: end if
12: end for all
13: if Objc <Obj then
14: Add the access link between ĥ and i and remove the access link between h1 and i. Let Obj=Objc, Costi j=Costc

i j,
Pathi j=Pathc

i j (i, j ∈ V).
15: end if
16: end for all
17: end for all

Appendix A.4. Modifying hub links
The third local search strategy modifies the connection of hub links and this strategy is only used in variable

neighborhood search. We sort all connected hub links by decreasing length and all unconnected hub pairs by in-
creasing length, respectively. Given that we do not have a hop-constraint, longer hub links are added only under rare
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Algorithm 11 Local search for modifying hub links, Operator Removing
Input: A network instance with the set of nodes V, current total cost Objo, variable costs Costo

i j, transportation paths Patho
i j

(i, j ∈ V)
Output: The final total cost Obj, updated variable costs Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: Let HL be the list of hub links sorted by decreasing length.
3: for each link ∈ HL do
4: Simulate removing link and compute the new total cost Objo and new Costo

i j and Patho
i j.

5: if Objo <Obj then
6: Remove link. Let Obj=Objo, Costi j=Costo

i j, Pathi j=Patho
i j (i, j ∈ V).

7: end if
8: end for all

Algorithm 12 Local search for modifying hub links, Operator Adding
Input: A network instance with the set of nodes V, current total cost Objo, variable costs Costo

i j, transportation paths Patho
i j

(i, j ∈ V)
Output: The final total cost Obj, updated variable costs Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: Let HN be the list of all pairs of hub nodes that are not connected sorted by increasing length.
3: for each link ∈ HN do
4: Simulate adding link and compute the new total cost Objo and new Costo

i j and Patho
i j.

5: if Objo <Obj then
6: Add link. Let Obj=Objo, Costi j=Costo

i j, Pathi j=Patho
i j (i, j ∈ V).

7: end if
8: end for all

Algorithm 13 Local search for modifying hub links, Operator Replacing
Input: A network instance with the set of nodes V, current total cost Objo, variable costs Costo

i j, transportation paths Patho
i j

(i, j ∈ V)
Output: The final total cost Obj, updated variable costs Costi j and transportation paths Pathi j (i, j ∈ V).

1: Let Obj=Objo, Costi j=Costo
i j, Pathi j=Patho

i j.
2: Let HL be the list of all hub links sorted by decreasing length.
3: Let HN be the list of all pairs of hub nodes that are not connected sorted by increasing length.
4: for each link1 ∈ HL do
5: Let Objc = in f
6: for each link2 ∈ HN do
7: Simulate removing link1, adding link2 and compute the new total cost Objo and new Costo

i j and Patho
i j.

8: if Objo <Objc then
9: Let ˆlink = link2. Let Objc=Objo, Costc

i j=Costo
i j, Pathc

i j=Patho
i j (i, j ∈ V).

10: end if
11: end for all
12: if Objc <Obj then
13: Remove link1 and add ˆlink. Let Obj=Objc, Costi j=Costc

i j, Pathi j=Pathc
i j (i, j ∈ V).

14: end if
15: end for all

circumstances, as long as multiple-hop paths of similar lengths exist in the hub network already. For each pair of hub
nodes, we try to remove, add or replace the link between them. Different from the direct links and access links, the
modification of hub links might affect any pair of origin node and destination node.

First, after removing an hub link k-m, the paths with the minimum costs need to be found again for the OD pairs
that used hub link k-m with the method presented in Appendix A.1. Second, for an unconnected hub pair (k,m), the
difference of total cost after adding a link between them is computed as follows:

dCkm
add =

∑
i, j∈V,i, j

min
{
Costo

ik + b2ckm + Costo
m j −Costo

i j, 0
}

wi j + ( f 2 + Aihc )ckm

In the operator ’replacing’, for each connected hub links k0 − m0 and each unconnected hub pairs (k1,m1), we try
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to remove the link k0 − m0 and establish the link k1 − m1. If the total cost is decreased, we perform this operator. If
the current solution is improved, the link connection Link2, variable costs Costo

i j and paths Patho
i j for i, j ∈ V, i , j are

updated. The pseudo-code for removing/adding/replacing hub links is shown in Algorithm 11–13.

Property 3. The computational complexity of one iteration for removing/adding/replacing hub links are O(n2 pt),
O(n2 p4) and O(n2 p3t), respectively. Here p and t are the numbers of hubs and hub links.



Appendix B. Numerical results for Section 5.3

Table B1: The comparison of solutions between the enhanced Benders decomposition method (de Camargo et al., 2017) and HUBBI on the CAB
dataset.

Datasets Size Fixed cost & Number of Solution of Time of Solution of Time of Gap (%)
Variable cost hubs p Benders Benders (s) HUBBI HUBBI (s)

CAB 25 2 511,711,559 238.0 511,711,559 1.1 0.00
CAB 25 [2500,3000,3500,3000] & 3 477,904,481 367.5 477,904,481 6.2 0.00
CAB 25 [0.08,0.04,0.03,0.04] 4 468,438,577 586.9 468,438,577 11.1 0.00
CAB 25 5 461,450,560 628.1 461,450,560 16.5 0.00
CAB 25 2 420,299,769 267.2 420,299,769 1.3 0.00
CAB 25 [1000, 1000, 1000, 1000] & 3 373,381,181 336.5 373,381,181 6.1 0.00
CAB 25 [0.10, 0.04, 0.02, 0.04] 4 353,596,483 441.7 353,596,483 12.5 0.00
CAB 25 5 345,296,628 561.6 346,425,661 23.8 0.33
CAB 30 2 134,092,822 470.0 134,092,822 1.7 0.00
CAB 30 [2500,3000,3500,3000] & 3 130,825,592 1265.6 130,825,592 9.6 0.00
CAB 30 [0.08,0.04,0.03,0.04] 4 130,500,123 1005.6 130,500,123 16.9 0.00
CAB 30 5 131,482,612 1246.5 131,482,612 23.4 0.00
CAB 30 2 81,648,551 418.5 81,648,551 1.8 0.00
CAB 30 [1000, 1000, 1000, 1000] & 3 84,162,120 650.6 84,162,120 9.9 0.00
CAB 30 [0.10, 0.04, 0.02, 0.04] 4 87,765,039 939.4 87,765,039 18.1 0.00
CAB 30 5 92,598,192 1321.5 92,598,192 27.3 0.00
CAB 40 2 103,388,853 2294.0 103,388,853 4.8 0.00
CAB 40 [1000, 1000, 1000, 1000] & 3 104,862,318 10804.7 104,862,318 30.2 0.00
CAB 40 [0.10, 0.04, 0.02, 0.04] 4 106,854,604 8233.4 106,854,604 53.2 0.00
CAB 40 5 110,113,426 13879.1 110,113,426 82.3 0.00
CAB 50 2 140,071,617 11301.7 140,071,617 11.7 0.00
CAB 50 [1000, 1000, 1000, 1000] & 3 137,600,147 46684.4 137,600,147 69.4 0.00
CAB 50 [0.10, 0.04, 0.02, 0.04] 4 134,873,311 39268.9 134,873,311 138.0 0.00
CAB 50 5 137,579,008 38669.4 137,579,008 233.2 0.00
CAB 60 2 273,409,717 59346.4 273,409,717 24.4 0.00
CAB 60 [1000, 1000, 1000, 1000] & 3 255,000,118 123450.1 255,000,118 155.7 0.00
CAB 60 [0.10, 0.04, 0.02, 0.04] 4 241,106,048 194266.4 241,106,048 298.7 0.00
CAB 60 5 233,530,171 84196.7 233,530,171 532.5 0.00
CAB 70 2 440,806,160 283498 440,806,160 54.7 0.00
CAB 70 [1000, 1000, 1000, 1000] & 3 398,179,132 182982.2 399,809,129 277.9 0.41
CAB 70 [0.10, 0.04, 0.02, 0.04] 4 361,973,046 253073.7 362,172,993 598.8 0.06
CAB 70 5 341,191,927 308427.4 341,191,927 955.6 0.00
CAB 80 2 538,916,337 438901.3 538,916,337 100.8 0.00
CAB 80 [1000, 1000, 1000, 1000] & 3 473,982,039 473471.3 473,982,039 423.8 0.00
CAB 80 [0.10, 0.04, 0.02, 0.04] 4 434,713,733 359767.4 434,713,733 838.1 0.00
CAB 80 5 414,202,998 613328.5 414,202,998 1370.1 0.00
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Table B2: The comparison of solutions between the enhanced Benders decomposition method (de Camargo et al., 2017) and HUBBI on the AP
dataset.

Datasets Size Fixed cost & Number of Solution of Time of Solution of Time of Gap (%)
Variable cost hubs p Benders Benders (s) HUBBI HUBBI (s)

AP 25 2 1,760,477,796 203.9 1,760,477,796 1.4 0.00
AP 25 [2500,3000,3500,3000] & 3 1,540,035,763 319.9 1,540,035,763 7.9 0.00
AP 25 [0.08,0.04,0.03,0.04] 4 1,396,507,965 377.2 1,403,077,812 13.7 0.47
AP 25 5 1,292,015,281 444.7 1,292,015,281 16.2 0.00
AP 25 2 596,879,564 199.8 596,879,564 1.6 0.00
AP 25 [1000, 1000, 1000, 1000] & 3 528,515,107 359.7 528,515,107 7.9 0.00
AP 25 [0.10, 0.04, 0.02, 0.04] 4 482,733,233 405.4 487,899,274 13.7 1.07
AP 25 5 452,974,383 499.9 452,974,383 17.4 0.00
AP 30 2 2,161,139,148 511.1 2,161,139,148 2.5 0.00
AP 30 [2500,3000,3500,3000] & 3 1,866,724,032 872.7 1,866,724,032 12.3 0.00
AP 30 [0.08,0.04,0.03,0.04] 4 1,699,507,758 1277.8 1,703,343,083 24.8 0.23
AP 30 5 1,593,740,162 1602.4 1,593,740,162 27.6 0.00
AP 30 2 730,896,391 506.8 730,896,391 2.7 0.00
AP 30 [1000, 1000, 1000, 1000] & 3 637,268,637 811.8 637,268,637 12.3 0.00
AP 30 [0.10, 0.04, 0.02, 0.04] 4 584,920,385 1182.3 585,281,722 24.6 0.06
AP 30 5 554,411,017 1752.1 554,411,017 27.9 0.00
AP 40 2 950,762,322 2974.0 950,762,322 5.3 0.00
AP 40 [1000, 1000, 1000, 1000] & 3 827,786,171 6985.3 827,786,171 31.9 0.00
AP 40 [0.10, 0.04, 0.02, 0.04] 4 744,814,010 9342.3 744,814,010 65.7 0.00
AP 40 5 701,658,008 12769.9 705,521,151 74.6 0.55
AP 50 2 1,176,312,740 13520.4 1,176,312,740 9.2 0.00
AP 50 [1000, 1000, 1000, 1000] & 3 1,016,706,255 27627.4 1,016,706,255 85.8 0.00
AP 50 [0.10, 0.04, 0.02, 0.04] 4 889,216,748 26928.5 889,216,748 165.8 0.00
AP 50 5 835,527,844 52023.2 835,527,844 231.9 0.00
AP 60 2 1,385,736,507 51089.4 1,385,736,507 17.3 0.00
AP 60 [1000, 1000, 1000, 1000] & 3 1,198,319,519 109477.2 1,198,319,519 153.6 0.00
AP 60 [0.10, 0.04, 0.02, 0.04] 4 1,060,190,998 93018.6 1,060,190,998 289.2 0.00
AP 60 5 974,812,578 110775.7 974,812,578 343.5 0.00
AP 70 2 1,687,850,457 96426.9 1,687,850,457 28.9 0.00
AP 70 [1000, 1000, 1000, 1000] & 3 1,430,761,480 227529.4 1,430,761,480 287.0 0.00
AP 70 [0.10, 0.04, 0.02, 0.04] 4 1,251,319,135 219192.9 1,251,319,135 614.2 0.00
AP 70 5 1,158,450,719 303828.2 1,161,223,813 638.6 0.24
AP 80 2 1,844,646,986 228716.8 1,844,646,986 46.8 0.00
AP 80 [1000, 1000, 1000, 1000] & 3 1,566,411,361 485130.6 1,566,411,361 443.8 0.00
AP 80 [0.10, 0.04, 0.02, 0.04] 4 1,379,464,866 616853.6 1,379,464,866 916.8 0.00
AP 80 5 1,255,718,409 829368.4 1,255,718,409 1163.2 0.00
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Table B3: The comparison of solutions between the enhanced Benders decomposition method (de Camargo et al., 2017) and HUBBI on the TR
dataset.

Datasets Size Fixed cost & Number of Solution of Time of Solution of Time of Gap (%)
Variable cost hubs p Benders Benders (s) HUBBI HUBBI (s)

TR 25 2 273,822,824 183.6 273,822,824 1.1 0.00
TR 25 [2500,3000,3500,3000] & 3 262,054,430 291.2 262,054,430 5.5 0.00
TR 25 [0.08,0.04,0.03,0.04] 4 257,959,765 333.5 257,959,765 9.8 0.00
TR 25 5 261,026,538 416.4 261,026,538 15.1 0.00
TR 25 2 216,517,536 186.4 216,517,536 1.2 0.00
TR 25 [1000, 1000, 1000, 1000] & 3 203,834,757 298.3 203,834,757 6.0 0.00
TR 25 [0.10, 0.04, 0.02, 0.04] 4 197,010,925 279.0 197,010,925 10.9 0.00
TR 25 5 197,595,574 381.5 197,595,574 18.0 0.00
TR 30 2 362,997,492 480.8 362,997,492 2.2 0.00
TR 30 [2500,3000,3500,3000] & 3 349,521,392 845.4 349,521,392 10.8 0.00
TR 30 [0.08,0.04,0.03,0.04] 4 344,297,964 1032.1 344,302,034 19.3 0.00
TR 30 5 343,031,781 1372.2 343,035,851 32.0 0.00
TR 30 2 289,569,897 496.2 289,569,897 2.5 0.00
TR 30 [1000, 1000, 1000, 1000] & 3 273,351,870 811.5 273,351,870 11.8 0.00
TR 30 [0.10, 0.04, 0.02, 0.04] 4 264,608,513 1061.7 264,608,513 22.4 0.00
TR 30 5 256,670,023 1147.4 256,670,023 35.0 0.00
TR 40 2 874,941,740 4050.9 874,941,740 10.4 0.00
TR 40 [1000, 1000, 1000, 1000] & 3 785,921,235 10388.5 785,921,235 55.0 0.00
TR 40 [0.10, 0.04, 0.02, 0.04] 4 720,557,545 11198.5 720,557,544 90.2 0.00
TR 40 5 667,368,174 10046.7 670,413,080 134.9 0.46
TR 50 2 1,218,645,558 14742.4 1,218,645,558 31.9 0.00
TR 50 [1000, 1000, 1000, 1000] & 3 1,096,381,415 20624.9 1,096,381,415 108.5 0.00
TR 50 [0.10, 0.04, 0.02, 0.04] 4 1,000,474,005 17422.6 1,000,474,005 228.0 0.00
TR 50 5 933,121,175 21458.3 933,143,216 316.5 0.00
TR 60 2 1,519,149,133 60389.4 1,519,149,133 63.3 0.00
TR 60 [1000, 1000, 1000, 1000] & 3 1,388,169,186 120311.2 1,388,169,186 265.7 0.00
TR 60 [0.10, 0.04, 0.02, 0.04] 4 1,279,763,150 95900.9 1,279,763,150 447.0 0.00
TR 60 5 1,205,363,138 113056.0 1,205,363,137 677.0 0.00
TR 70 2 1,869,856,077 94478.9 1,869,856,077 165.3 0.00
TR 70 [1000, 1000, 1000, 1000] & 3 1,697,685,138 139709.8 1,697,685,138 387.0 0.00
TR 70 [0.10, 0.04, 0.02, 0.04] 4 1,576,487,744 173331.2 1,576,487,744 646.2 0.00
TR 70 5 1,487,520,419 224004.2 1,487,520,419 1258.8 0.00
TR 81 2 2,102,164,638 442593.0 2,102,164,638 297.6 0.00
TR 81 [1000, 1000, 1000, 1000] & 3 1,894,998,242 387055.7 1,895,006,222 680.1 0.00
TR 81 [0.10, 0.04, 0.02, 0.04] 4 1,771,026,963 634818.8 1,771,026,963 1131.2 0.00
TR 81 5 1,660,915,673 753291.2 1,660,915,673 1868.1 0.00
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