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Abstract 

Robustness of transportation networks is one of the major challenges of the 21st century. This paper investigates 

the resilience of global air transportation from a complex network point of view, with focus on attacking strategies in 

the airport network, i.e., to remove airports from the system and see what could affect the air traffic system from a 

passenger’s perspective. Specifically, we identify commonalities and differences between several robustness 

measures and attacking strategies, proposing a novel notion of functional robustness: unaffected passengers with 

rerouting. We apply twelve attacking strategies to the worldwide airport network with three weights, and evaluate 

three robustness measures. We find that degree and Bonacich based attacks harm passenger weighted network most. 

Our evaluation is geared toward a unified view on air transportation network attack and serves as a foundation on 

how to develop effective mitigation strategies. 
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1 Introduction 

Air transportation is one critical network infrastructure for a nation and it is becoming extremely important for public 

policy considerations. Disruptions of air transportation systems, either due to extreme weather conditions or terrorist 

attacks, can lead to huge economic losses. The eruption of Eyjafjallajoekull volcano in 2010 caused airline losses of 

approximately 1.7 billion US dollars and more than 10 million passengers were affected Error! Reference source not found.. An 

overnight snowstorm on March 12, 2013 disrupted the transport across northwestern Europe; in particular, Frankfurt 

airport was closed and airlines canceled about 700 flights. In order to avoid such high socio-economic costs, it is ex-

tremely critical to assess the robustness of air transportation systems against natural or intentional disruptions.  

Complex network theoryError! Reference source not found. provides powerful tools to understand the structures and dy-

namics of air transportation systems. Airport networks have often been analyzed, where nodes are airports and links 

exist between two airports if there are flight connectionsError! Reference source not found.-Error! Reference source not found.. Several 

research focused on how delay is propagated in airport networksError! Reference source not found.-Error! Reference source not found.. 

Based on fuzzy soft sets, Ref. Error! Reference source not found. evaluated the airport importance and network efficiency with 

US and China’s airport networks as case studies, and the vulnerability of these two networks was also compared. 

Ref.Error! Reference source not found. showed that the vast majority of all Intra-European passengers travel direct and the di-

rectness of the overall system increased from 2002 to 2012. Ref.Error! Reference source not found. studied the robustness of US 

airport network, using attacking strategies based on betweenness, closeness, hyperlinkinduced topic search (HITS), 

and degree, with giant component as robustness measure. Ref.Error! Reference source not found. studied the resilience of Euro-

pean air transport network against random flight failures, based on a multiplex network formalism, where the set of 

flights for each airline is considered as an interdependent network. Robustness of Australian network, based on de-

gree, betweenness, strength, and random attacks, with giant component and network reachability robustness measures 

was investigatedError! Reference source not found.. The worldwide airport network was studied under random attacks as well as 

degree and betweenness-based attacks with the shortest average path length and giant component as robustness 

measuresError! Reference source not found.. 

In air transportation networks, random failures correspond to the closure of an airport (node failure) or the can-

cellation of a flight (link failure) randomly, while targeted attacks correspond to the closure of an airport or the can-

cellation of a flight based on certain criteria. For instance, Beijing Capital International Airport (PEK) has the largest 

number of passengers (77531486) in 2013 in the whole world (Data source: http://www.airdi.net). Such hub nodes are 

critical for the structure of air transportation and they are inherently priorities for targeted attacks. One might think 

that airline routes are impermanent and links come and go all the time, and therefore robustness analysis is less im-

portant for this type of network than for other types of network with a more static structure, e.g., electricity or road 

networks. However, it is a long process to establish a new route for an airline. Before setting up a new route, the air-

line network planning department needs to spend considerable amount of time to analyze the profitability of the new 

routeError! Reference source not found.. Several factors need to be considered, for instance, market demand forecastingError! 

Reference source not found., Error! Reference source not found., competitor analysisError! Reference source not found., Error! Reference source not found., 

aircraft capacity planning, and passenger spill modelError! Reference source not found., Error! Reference source not found.. Ultimately, the 

reason for studying the resilience of the system resides in the time frame associated with an attack to an airport. It is 

true that, if a route is closed (for instance because of adverse weather), alternative solutions can be found fast. Nev-

ertheless, an attack to an airport may have long-term important consequences as in the recent case of 2016 Brussels 

bombings. It is thus important to prevent such attacks. In this research, we perform a systematic robustness analysis 

for the worldwide airport network against random failures and targeted attacks, with focus on several attacking strate-

gies and robustness measures.  

Several research on the robustness of the worldwide airport network has been conducted in the past years. Lordan 

et al. presented a methodology for the detection of critical airports in the worldwide airport network, and the network 

robustness was measured by the size of giant componentError! Reference source not found.. The airports are isolated based on 

several node selection criteria, and especially a novel criterion, Bonacich power centrality, has been tested. Wei et al. 

introduced the flight route addition/deletion problem and compared three different methods to optimize the robust-

ness of the airport network, with algebraic connectivity as the robustness measure; the Virgin America network was 

used as a case study with the link failure probability as weightError! Reference source not found.. Wang et al. compared the be-

havior of two real networks and two synthetic networks under degree based attacks using the size of giant compo-

nent Error! Reference source not found.. Louzada et al. proposed to reroute a series of flights within certain distances of original 

destination airports in order to improve the robustness of the worldwide airport network under degree targeted attacks, 

where robustness is measured by an estimation of the number of stranded passengers in the giant componentError! Ref-

erence source not found.. Verma et al. analyzed the resilience of the worldwide airport network and revealed that it is a re-

dundant and resilient network for long distance air travel, otherwise it breaks down completely due to removal of 

short insignificant connectionsError! Reference source not found.. Woolley-Meza et al. investigated the eruption of Eyjafjalla-
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joekull volcano, September 11th terrorist attacks, and geographical disruptions in the worldwide airport network; 

effective distance was used to quantify the impact of disasters on the networkError! Reference source not found.. Wuellner et al. 

analyzed the individual structures of seven US largest passenger airline networks and examined the networks’ resili-

ence to random/degree/betweenness targeted node deletionError! Reference source not found.. Lordan et al. also analyzed the 

robustness of three major airline/alliances route networksError! Reference source not found., Error! Reference source not found.. Wei et al. 

also studied the optimization of the robustness of the airport network, with algebraic connectivity as the robustness 

measureError! Reference source not found., Error! Reference source not found.. The effective distance is based on the idea that a small 

fraction of traffic is effectively equivalent to a large distance, and vice versaError! Reference source not found.. The size of giant 

component and travel cost in the giant component were used to quantify the network performance under various dele-

tion processes. Moreover, the design of a robust hub network has also been studiedError! Reference source not found.. Ko-

tegawa et al. measured the robustness of airline service route network topology under random and targeted disrup-

tionsError! Reference source not found.. Closely related works are summarized in terms of robustness measures, attacking strat-

egies, and network weights in Table 1.  

Table 1 Summary of related works and proposed approach on robustness of worldwide airport network 
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Survived links        
 

Unaffected passengers with re-

routing 

   
   

 
 

 Attacking strategy         

Degree targeted attack 
 

 
      

Betweenness targeted attack 
 

    
   

Closeness targeted attack        
 

Eigenvector targeted attack        
 

Bonacich targeted attack 
 

      
 

Damage targeted attack 
 

      
 

 Network weight         

Unweighted 
 

 
 

  
   

Geographical distance     
 

  
 

Number of passengers    
  

  
 

   

 

Fig.1 Worldwide airport network in 2013.  

In this research, which was motivated by the work of Ref.Error! Reference source not found., we extract data from the Sabre 
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Airport Data Intelligence (ADI) (http://www.airdi.net) to build the worldwide airport network, and an excerpt is 

shown in Figure Error! Reference source not found.. Each node is one airport, and the size of a node is proportion-

al to its degree, which is weighted by the number of passengers. In this figure, we only show the links which have 

more than 100000 passengers travelling per year. Note that spherical links are not always drawn as the shortest con-

nection, but go through the center of the projected map. We consider the network as directed and weighted; two dif-

ferent weights are used for this study: geographical distances and the number of passengers travelling between two 

airports. Given a consistent view on the worldwide airport network, the goal of this research is to make clear, through 

comparison, which attacking strategy harms the network most and which robustness measure is more appropriate for 

the network under disruptions.  

We are interested in the robustness of air transportation systems under disruption from the function point of 

view Error! Reference source not found.-Error! Reference source not found.: transferring passengers from their origins to destinations. We 

use unaffected passengers with rerouting as a baseline measure from the passenger stakeholder’s perspective: if an 

airport is closed due to convective weather or intentional human disruptions, how many passengers can still make 

their journeys? We compare our baseline metric to three other robustness measures: the size of giant component, al-

gebraic connectivity, and survived links. Formal definitions of these robustness measures can be found in Section 2.3. 

We consider twelve different attacking strategies: targeted attacks based on six network metrics (degree, betweenness, 

closeness, eigenvector, Bonacich, and damage) in descending and ascending order.  

In our research, we only consider the robustness of the worldwide airport network as single mode transportation, 

i.e., passengers are not allowed to take any alternative transportation means, such as buses or trains. We think that it is 

necessary to understand this single mode case first. Another important reason for this hypothesis is that working with 

the world network, alternative transportation means are not usually available. For instance, if a passenger has to go 

from Europe to China and the flight is canceled, a bus is not really an option in this case. Previous research on the 

robustness of airport networks mainly focused on topological robustness measures, for instance, the size of giant 

component and algebraic connectivity. Furthermore, a multitude of attacking strategies were proposed based on dif-

ferent network metrics. Given a consistent view on the worldwide airport network (related work techniques were 

evaluated on largely different datasets), our research aims at presenting an overview of the state-of-the-art in single 

mode air transportation robustness and provides the starting point for future research on the robustness of mul-

ti-modal air transportation.  

This paper is organized as follows. Section 2 presents our methodology to assess the robustness of air transporta-

tion systems, and German airport network is used as a small running network example to explain our methodology. In 

Section 3, we present the results of robustness analysis for the whole worldwide airport network. Finally, conclusions 

are drawn in Section 4.  

2 Methodology  

In this section, we describe how airport networks can be attacked. We formally define the notation of weighted net-

works and the attack on weighted networks in Section 2.1. In Section 2.2, we present several attacking strategies in 

our attack model. We define a set of appropriate robustness measures in Section 2.3. In each section, we use the 

German airport network as a running example, since it is helpful to explain our methodology using an example based 

on a smaller network. We report on our evaluation for the worldwide airport network in Section 3.  

2.1 Attacks on airport networks 

Definition 1 (weighted networks). A weighted networkWN  consists of a set of nodes, denoted with 

nodes(WN)  and a set of weighted links between nodes, denoted with links(WN) . Each weighted link is repre-

sented as a tuple ( , , )u v w , where  is the source of the link,  the target of the link, and  the link’s weight. A 

link is called outgoing ( , , )u v w  for node  and incoming for node . The weight of a link between two nodes  

and  is denoted with weight( , )u v . Please note that our functional notation of weights assumes at most one link 

per pair of nodes. This improves readability, but is no severe restriction on our robustness analysis. The length of a 

path (a sequence of nodes 1 2( , , , )nu u u  is defined as the sum of the weights, i.e. 

1 2 1weight( , )+ +weight( , )n nu u u u- . A shortest path in a weighted network between two nodes u  and v  is 

a sequence of nodes with the shortest length. The number of the shortest paths between nodes u  and v  is denoted 

with 
,u vs .  

Airport networks ( AN ) are instances of weighted networks, so that the nodes are a set of airports 

1 2( , , , )na a a  and the links represent relationships between airports, for instance, geographical distances or the 
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number of passengers travelling between airports. 

We select the origin-destination (OD) airports with at least 6 passengers travelling per month to build the airport 

network for Germany. We further explain our selection in Section 3.1. The German airport network (OD pairs, Janu-

ary 2013) consists of 25 nodes and 187 links (Fig. Error! Reference source not found.). The strength of a link 

grows with the number of travelling passengers. Note that among the three airports in Berlin, only TXL is shown in 

the map, and the other two airports (BER and SXF) overlap with TXL. On average, a link is weighted with 6529 pas-

sengers. The minimum number of passengers for a link is 6 (for instance, DUS  CGN) and the maximum is 53618 

(TXL  MUN). The median number of passengers is 1239 and standard deviation is 12222. 

 

Fig.2 German airport network in January 2013.  

One can distinguish two types of passenger weights: number of passengers from direct flights and number of pas-

sengers from flight intentions (OD pairs). The first type is considered from the physical network point of view: the 

number of passengers travelling between any two airports; passengers with multiple intermediate stops are counted 

for each connecting airport separately. The latter type is considered from the function point of view: the number of 

passengers travelling between origin/destination airports; passengers with multiple intermediate stops are not counted 

for the connecting airports.  

If an airport is closed down, all direct flight connections from/to this airport are directly affected. However, the 

conclusion that all these passengers will not travel anymore is wrong. In Fig. Fig.3, we show a simple example for the 

German airport network: a passenger travels from HAM to STR, via two connecting airports FRA and MUC. Alt-

hough this example might look unrealistic, since Lufthansa offers a direct flight from HAM to STR, six passengers 

booked this kind of travel with Lufthansa in January 2013. We suppose that MUC closes down because of an attack, 

and then one will conclude from direct flight passenger data that six passengers cannot travel from FRA to MUC and 

six more passengers cannot travel from MUC to STR. This conclusion is misleading for two reasons. First, the pas-

sengers can still travel from HAM to STR (via another direct flight, FRA, or any other scheduled airport connection). 

Second, if one really wants to assume that these passengers cannot travel anymore, one also needs to remove the six 

passengers for the flight from HAM to FRA.  

Therefore, in this paper we use the number of passengers from direct flights as the link weight, while we use the 

unaffected number of passengers from origin-destination pairs as a baseline measure for the robustness of the world-

wide airport network. With flight intentions, the unaffected passenger problem boils down to the question whether 
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two airports are still connected via another scheduled flight.   

 

 

Fig.3 One example of an origin-destination pair with passengers travelling through two connecting airports. 

Definition 2 (network attack). Given an airport network AN , an attack is a sequence of nodes 

1 2( , , , )nA u u u= , such that 1) each ( )iu nodes ANÍ  and 2) for each i,j we have that 
i ju u̧ . An attack 

A  is called complete for AN , if A  contains | ( ) |nodes AN  different nodes. An attack sequence to a network 

is applied from left to right. The first step of an attack 1 2( , , , )nA u u u=  removes node 1u  from the network 

and yields a network with nodes as 1( ) \{ }nodes AN u ,links as 

1 1( ) \{ , .( , , ) ( )} { , .( , , ) ( )}links AN v w u v w links AN v w u v w links AN$ Í Ç $ Í . In the second step,  is 

removed from the network, etc.  

In order to design an attack on a network, one can follow different strategies. A very simple strategy is a so-called 

random attack, where the sequence of removed nodes is chosen randomly. The effectiveness of such an attack (meas-

ured in the degradation of the network performance, see below) is usually rather low on average. One heuristic is to 

select the sequence of removed nodes based on certain network metrics. We discuss such attacks in Section 2.2. 

Intuitively, one can distinguish two types of attacks in a network: strong attacks and weak attacks. Strong attacks 

refer to attacking important nodes first, while weak attacks refer to attacking unimportant nodes first. Strong attacks 

often require more knowledge about the targeted network: not only concerning topological properties, but also the 

traffic.  

2.2 Attacking strategies 

In addition to attacking a network randomly, attacks can also be based on the values of network metrics. In the fol-

lowing, we briefly review six chosen standard network metrics. 

(1) Weighted degree: The degree of a node  is the sum of all weights for the incoming and outgoing links of .  

(2) Betweenness centrality:
( )

( ) st

s t
st

u
B u

s

s¸
=ä , where ( )st us  is the number of the shortest paths going from 

node s  to node t  and passing through node u 42. 

  

(3) Closeness centrality: 
( 1)

( )
( , )Gj u

n
C u

d u j
¸

-
=
ä

, where ( , )Gd u j  denotes the length of a shortest path be-

tween node u  and node j , | nodes( ) |n WN=  is the number of nodes, and 1n-  is a normalizing con-

stantError! Reference source not found.. This metric is the average distance from a given starting node to all other 

nodes in the networkError! Reference source not found.. 

(4) Eigenvector centrality: It is the eigenvector of the largest eigenvalue of the adjacency matrix. This metric 

measures the influence of a node in the network. Nodes with high eigenvector centrality also connect to other 

nodes which have high eigenvector centrality. 

(5) Bonacich power centrality: This centrality is based on the idea that the status of a node is influenced by the sta-

tus of his neighborsError! Reference source not found.: 
1( , ) ( )C I A Aa b a b-= - , where a is a 

scaling factor, b the degree to which a node’s status is influenced by his neighbors’ status, I  the identity 
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matrix, A  the adjacency matrix, and  a matrix of all ones. When 0b> , Bonacich power centrality in-

creases if one’s neighbors have many connections; When 0b= , Bonacich power centrality only considers di-

rect connections; When 0b< , Bonacich power centrality increases if one’s neighbors have few connections, 

i.e., having weak neighbors is a source of power. In this paper, we choose  

1
0.995*

largest eigenvalue of the adjacency matrix
b=- , since we are interested in the pow-

er-dependence of the networkError! Reference source not found., Error! Reference source not found..  

 

(6) Damage: This attacking strategy is proposed by Latora and Marchiori, and the importance of a node is measured 

by the drop of the network performance caused by deactivation of that nodeError! Reference source not found.. The 

performance of the network is measured by 
1 1

( 1) i j N
ij

Efficiency
n n d¸ Í
=

-
ä , where 

ijd  is the smallest 

sum of the links throughout all possible paths in the network from a node i  to a node. When the network is 

unweighted, 
ijd  is just the minimum number of links traversed from node i  to node j ; when the links in the 

network are weighted (for instance geographical distance), the smallest sum of the links represents the shortest 

weighted path from  to j .  

Table 2. Top 10 ranked German airports according to descending order of six network metrics  

Top degree betweennessclosenesseigenvector bonacichdamage Top degree betweennessclosenesseigenvector bonacichdamage

1 MUC HAM FRA MUC MUC DUS 1 MUC BER HAJ MUC MUC DUS

2 HAM MUC NUE HAM STR CGN 2 TXL HAM LEJ TXL TXL CGN

3 STR NUE CGN TXL FDH STR 3 HAM DUS BER DUS HAM FMO

4 TXL STR DUS FDH HAM FRA 4 DUS MUC FDH HAM STR BER

5 FDH FRA STR STR NUE MUC 5 FRA CGN HAM CGN FRA LEJ

6 DUS DUS LEJ DUS TXL NUE 6 CGN FMO MUC FRA DUS HAM

7 NUE CGN MUC DRS FRA HAM 7 STR FDH DUS STR DRS FDH

8 DRS TXL HAM FMO CGN LEJ 8 NUE BRE FRA NUE NUE BRE

9 FRA FMO FMO NUE DUS HAJ 9 DRS STR CGN HAJ CGN MUC

10 CGN FKB DRS FRA DRS FMO 10 HAJ TXL FMM DRS LEJ HAJ

distance weighted network metrics passenger weighted network metrics

 

Each of these metrics can be exploited as a strategy for attacking a network by either removing nodes in the order 

of descending metric values or ascending metric values. A common practice is, for instance, to attack nodes in de-

creasing order of degree. The intuition is that nodes with a high degree - often called hubs - are important for the 

network structure and therefore the removal of high-degree nodes harms the network most. In our study, we provide a 

complete picture of possible attacks: random attacks, strong attacks (descending values of metrics), and weak attacks 

(ascending values of metrics).  

Table 2 shows the top 10 ranked nodes in the German airport network based on the descending order of the six 

network metrics. Two different weights are used: geographical distances between two airports and the number of 

passengers travelling between two airports. All of the metric orders yield a different ranking. Therefore, it is interest-

ing to further investigate which attacking strategy harms the network most. 

2.3 Robustness measures 

In this section, we use the unaffected passengers with rerouting as a baseline measure for the robustness of air trans-

portation systems. Further, we introduce another robustness measure: survived links. For the purpose of comparison, 

we also briefly review two existing robustness measures: giant component Error! Reference source not found. and algebraic 

connectivity Error! Reference source not found..  

The unaffected passengers with rerouting (UPR) captures how many passengers still can travel when an airport is 

closed, with the reallocation of the passengers taken into account; this is denoted as dynamic robustness in Ref. Error! 

Reference source not found.. Note that our analysis focuses on the connectivity of the airports: passengers between certain OD 

pairs can still make their trips as long as the OD airports are connected via other airports from the original schedule.  

Definition 3 (unaffected passengers with rerouting). UPR for a network AN  against a base-
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line network baseAN  is defined as 

baselinks(AN )
weight( )

i

R

l
Íä

, where 

( , , ) links(AN)
rerouting( , , )

u v w
R u v w

Í
=ä  and we let rerouting( , , )u v w w= , if connected(AN, , )u v  

and 0 otherwise. 

Fig.4 presents the scatter plot between the number of passengers and revenue in the year 2013(Each circle represents 

one ticket sold in year 2013.). There is a general trend that the revenue increases with the number of passengers 

(Power law correlation: 
0.8694 2Revenue=882.45 Passengers , =0.8458R³ ). Intuitively, the revenue would be 

higher with more passengers travelling. We also investigate another robustness measure: Unaffected Revenue with 

Rerouting (URR). However, since the number of passengers and the revenue are highly correlated, the two measures 

yield very similar results. Therefore, we only present the results using UPR as the baseline robustness measure for the 

worldwide airport network. 

The survived links (SL) is the number of remaining connections between airports after an attack on the network. 

 

Fig.4 Number of passengers versus revenue in worldwide airport network in 2013 

 

 

Definition 4 (survived links). SL for a network AN  against a baseline network baseAN  is 

defined as 
base

links(AN)

links(AN )
, i.e., the ratio of links after nodes are removed from the network to the 

number of links in the original network. 

In a network, the Giant Component (GC) is a group of connected nodes where every node is reachable from all 

other nodesError! Reference source not found.. 

Definition 5 (giant component). GC for a network AN  against a base network baseAN  is defined as  

base

max({|nodes(c)||cÎconnectedComponents(AN)})

max({|nodes(c)||cÎconnectedComponents(AN )})
, i.e., the ratio of the new size of GC after nodes 

areremoved from the network to the GC of the original network.  

For a graph, Algebraic Connectivity (AC) is defined as the second smallest eigenvalue of the Laplacian matrix 

L , and -L = D A , where D  is the diagonal degree matrix and A  the adjacency matrixError! Reference source 

not found.. AC plays a special role in the robustness of complex networks, since it measures the extent to which it is 

difficult to break a network into disconnected componentsError! Reference source not found.. In the context of air transportation, 

a network with a larger value of AC has a higher robustness against node (node) and link (flight connection) failure.  
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Definition 6 (algebraic connectivity).  AC for a network AN  against a base network 
baseAN  is defined as 

base

AN

AN

AC

AC
, i.e., the ratio of the new AC after nodes areremoved from the network to the AC of the original network. 

 

Fig.5 Comparison of robustness measures for 1000 random attacks on German airport network. 

We generated 1000 complete random attacks for the German airport network. For each of these attacks, we com-

puted the attack traces: robustness measures compared to the percentage of removed nodes during an attack. The re-

sults are shown in Fig.5 (a).  

In order to visualize the commonalities of these random attacks, e.g. data points which occur frequently and in-

dependently of the chosen attack, we show the two-dimensional kernel density estimation for the percentage of re-

moved nodes against the robustness measures in Fig.5(b). White areas indicate infrequent/unused points and darker 

areas represent commonalities. We draw the following conclusions:  

• UPR is the baseline for the robustness measure. It calculates the percentage of passengers who can still travel 

after an attack took place. The attack traces are wide-spread. While some attacks are very successful (if im-

portant nodes are removed early), under other attacks the network keeps robust (with robustness of 80%) even if 

50% of the nodes are removed. The two-dimensional kernel density of UPR shows the commonalities among 

random attack traces, which can be summarized as follows: 1) if only a few nodes are removed, the network re-

mains robust (dark area in the top-left of the chart) and 2) if more than 60%-70% of the nodes are removed, the 

network’s robustness is very low (dark area in the bottom-right of the chart). Intuitively, this is correct, since for 

the range between (say 1%-70%), the random attacks do not have anything else in common.  

• GC-robustness curves are either on or closely below the diagonal line. For most of the time, each attack can re-

duce the size of giant component of a network by one or zero, depending on whether the removed node was in 

the giant component before. Note that there are some cases that an attack can reduce the size of giant component 

more than one. we consider a network composed of two communities and connected by a central node. If that 

central node is deleted, the size of giant component would be greatly reduced. Since the size of giant component 

cannot be larger than the number of remaining nodes, the upper-right triangle of the attack trace area is unused. 

The two-dimensional kernel density suggests that for GC most of the random attacks have very similar proper-
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ties (black diagonal). This conclusion contradicts the observation from UPR.  

•   A robustness measure should be monotonically descending. However, AC-robustness is increasing with the 

number of removed nodes. This shows that AC is inappropriate, if node removal is taken into account. AC was 

originally proposed as an edge-based robustness measure, where the number of nodes remains unchanged. In 

our attack scenario, AC yields unusable results. Therefore we will disregard AC below. The other three 

measures are monotonically descending.  

• SL robustness curves are quite similar to UPR robustness curves. Compared to GC, SL also 1) allows to repre-

sent attack traces above the diagonal line and 2) does not (wrongly) suggest very strong commonalities between 

random attacks.  

3 Results  

When a network is attacked, it is open how to select the order in which the nodes should be removed [Error! Refer-

ence source not found.]. In this study, we apply twelve different attacking strategies to the worldwide airport net-

work with three different weights (unweighted, distance weighted and passenger weighted): removing nodes based on 

six network metrics (degree, betweenness, closeness, eigenvector, Bonacich and damage) in descending and ascend-

ing order separately. We use three robustness measures to detect the decrease of the network performance caused by 

these attacks. In total we have 108 attacking scenarios (3 weights, 12 attacking strategies and 3 robustness measures). 

We are interested to find out which attacking strategy harms the network most. We introduce the database in Sec-

tion 3.1. Section 3.2 presents the results of several attacking strategies to the worldwide airport network with different 

robustness measures.  

3.1 Database 

For the application and analysis of the metrics, recent data from 2013 ADI was obtained Error! Reference source not found.. The 

OD Market Section in ADI provides the details of the passenger itineraries: the total number of passengers and the 

total revenue between the origin and destination airports. For each OD pair, up to three connecting airports are rec-

orded.  

From this database, we select the origin and destination airports with at least 72 passengers travelling per year 

(i.e., 6 passengers travelling per month). Note that there is no standard threshold for the number of passengers or the 

number of flights between two airports when the airport network is constructed. For instance, Lehner selected the 

links with at least 600 flights per year (50 flights per month) in the European airport network Error! Reference source not found.. 

Kotegawa et al. selected the links with at least 365 flights per year (i.e., airports are required to have an average of at 

least one operation per day) in the U.S. airport network Error! Reference source not found.. In this study, to our best knowledge, 

our threshold (72 passengers travelling per year) has the finest granularity.  

We consider the worldwide airport network as directed and weighted; three different weights are used: un-

weighted, geographical distances, and the number of passengers travelling between two airports. In total, there are 

3885 nodes and 228080 links. The unweighted worldwide airport network has an average path length of 2.946 and an 

average clustering coefficient of 0.645. These values are comparable with the worldwide airport network constructed 

in Ref. Error! Reference source not found.: average path length 3.94 and an average clustering coefficient 0.64. On average, 

there are 11845 passengers per airport connection. The minimum number of passengers is 73 and the maximum is 

4418200 (CJU: Jeju International Airport, South Korea  GMP: Gimpo International Airport, South Korea). The 

median number of passengers is 592 and standard deviation is 61986.  

The average values of the six metrics in the worldwide airport network with three different weights are presented 

in Table 3. Each of these metrics is exploited as a strategy to attack the network.  

Table 3 Average values of six metrics in worldwide airport network using different weights with 3885 nodes and 228080 links. 

 Worldwide airport network Degree Betweenness Closeness Eigenvector Bonacich Efficiency 

 Unweighted 59 0.00048 0.34849 0.08199 0.00563 0.35586 

Distance weighted 231619 0.00069 0.00010 0.00630 0.00318 0.00017 

Passenger weighted 692998 0.00072 0.00052 0.00273 0.00363 0.00201 
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Fig.6 Cross-comparison among three robustness measures (UPR, GC and SL) in passenger weighted worldwide air-

port network with targeted attacks based on descending order of six network metrics. 

3.2 System analysis of robustness for worldwide airport network 

We perform system analysis of the robustness for the worldwide airport network with three different weights (un-

weighted, distance weighted and passenger weighted) measured by UPR, GC and SL under attacks, respectively. The 

comparison of different attacking strategies is presented in Section 3.2.1, while the computational efficiency is com-

pared in Section 3.2.2. 

3.2.1 Comparison of attacking strategies 

Intuitively, one is more interested in strong attacks (descending order of metric values), since they are more harmful 

to the network than weak attacks (ascending order of metric values). Fig.6 presents the robustness measures (UPR, 

GC and SL) in the passenger weighted worldwide airport network under strong attacks. When UPR is used as the 

robustness measure, attacks based on Bonacich power centrality and degree are equally most harmful to the network. 

Bonacich power centrality is better for the initial phase of an attack (up to 7% of removed nodes) and degree is 

slightly better when more than 7% of the nodes are removed. With comparable attacking effectiveness, the computa-

tion of degree is 1-2 orders of magnitude faster than the computation of Bonacich. Since the computation time is of-

ten the bottle-neck for large-scale networks, degree is a very good candidate for an effective and lightweight attacking 

strategy, especially in the case of interactive attacks on large-scale networks.  

On the other hand, the attack based on closeness is least harmful to the network. One explanation is that closeness 

of a node is the reciprocal of the sum of the shortest path distances from this node to all other nodes in the network, 

and since we use the number of passengers as link weight in the shortest path calculation, the closeness metric might 

become less meaningful. Regarding GC and SL, Bonacich power centrality is slightly better than degree, while ei-

genvector is the worst attacking strategy.  

Note that there may be no "best" robustness measure or "best" attacking strategy, and results may depend on the 

objective of a study. The objective of our study is to evaluate the robustness of air transportation systems from pas-

sengers’ perspective, and we propose to use the unaffected passengers with rerouting as a baseline measure. In oppo-

sition to graph-theoretic metrics, this measure directly expresses the impact of airport failure on the traffic - not on 

(theoretical) properties of the graph. 

In order to further investigate the correlation between UPR and other robustness measures, Fig.7 plots the ro-

bustness values of UPR against SL and GC for all six network metrics. The dashed diagonal grey line represents per-

fect correlation; the red line shows the dependency between pairs of robustness measures. The overlapping of the two 

curves indicates strong similarity between two robustness measures. We can observe that UPR and GC are least simi-

lar; SL is closer to the diagonal line and it is more similar to UPR than GC. 
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Fig. 7 UPR versus robustness measures (GC and SL) in worldwide airport network with number of passengers as 

weight.  

 

 

 

Table 4 Description of the most successful targeted attack based on node degree to worldwide airport network with 

number of passengers as weight.  

Nr   Airport UPR Nr Airport UPR Nr Airport UPR Nr Airport UPR

1 PEK (Beijing) 0.971 11 SIN (Singapore) 0.802 21 MNL (Manila) 0.682 31 LGW (London)0.587

2 HND (Tokyo) 0.943 12 ORD (Chicago) 0.787 22 SYD (Sydney) 0.671 32 BOS (Boston) 0.581

3 CGK (Jakarta) 0.924 13 KUL (Kuala Lumpur) 0.775 23 MCO (Orlando) 0.663 33 MEL (Melbourne)0.575

4 LHR (London) 0.904 14 SFO (San Francisco) 0.766 24 DEN (Denver) 0.651 34 SEA (Seattle) 0.568

5 LAX (Los Angeles) 0.886 15 SHA (Shanghai) 0.756 25 SZX (Shenzhen) 0.642 35 AMS (Amsterdam)0.558

6 CAN (Guangzhou) 0.87 16 LAS (Las Vegas) 0.746 26 CTU (Chengdu) 0.635 36 FRA (Frankfurt)0.548

7 PVG (Shanghai) 0.855 17 ATL (Atlanta) 0.726 27 ICN (Seoul) 0.628 37 NRT (Tokyo) 0.542

8 JFK (New York) 0.842 18 BKK (Bangkok) 0.717 28 IST (Istanbul) 0.615 38 GRU (Sao Paulo)0.532

9 HKG (Hong Kong) 0.828 19 BCN (Barcelona) 0.706 29 DEL (Delhi) 0.605 39 MAD (Madrid)0.524

10 CDG (Paris) 0.814 20 DXB (Dubai) 0.691 30 KMG (Kunming) 0.597 40 BOM (Mumbai)0.517
 

Table 4 presents the most successful targeted attacks based on node degree, where the first 40 attacked nodes (out 

of 3885 nodes, less than 1.1%) are listed. These attacks reduce the robustness of the network from 100% down to 

50%, i.e., 50% of the passengers cannot travel any more although rerouting is enabled. The first attacked node is PEK, 

and PEK has the highest weighted degree in the passenger weighted worldwide airport network. Among 3885 airports, 

when we use the attacking strategy based on weighted degree, one only needs to attack 11 nodes (out of 3885 nodes, 

less than 0.3%), and then the performance of the network can be degraded to 80%. Especially, there are 7 Asian air-

ports among these 11 attacked nodes. This shows the importance of Asia for the functioning of global air transporta-

tion systems.  

3.2.2 Comparison of computational efficiency 

During our experiments, we noticed that the computation time of attacking strategies was rather different ranging 

from seconds, minutes to hours. Our initial hypothesis was that longer computation time might generate more effec-

tive attacking results. Therefore, we compare the computational efficiency of different attacking strategies and ro-

bustness measures. The run time for computing the attacking strategies is shown in Fig.8, while the run time for eval-

uating the robustness measures is shown in Fig.9. Note that different scales (seconds, minutes and hours) are used for 

measuring run time. Computing degree and eigenvector takes only a few seconds, while computing betweenness, 
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closeness and Bonacich takes up to several minutes. The run time for SL (right panel in Fig.9.) is less than 0.2 second. 

The slowest attacking strategy (computation-wise) is damage, which takes up to three complete days when applied to 

the initial worldwide network.   

 

Fig.8 Run time for computing attacking strategies regarding six network metrics. 

 

Fig.9 Run time for three different robustness measures when partial attacks are executed on worldwide network.  

In our 108 attacking scenarios, damage did not provide an effective attacking performance, although it took the 

longest time to compute. We think this counter-intuitive finding should draw more attention. Especially in the context 

of interactive simulations with larger networks, e.g., what happens in case of any change to the network (node/link 

addition/deletionError! Reference source not found.), the computational time required for finding interesting (harming) attacks 

becomes more important. 

On the other hand, calculating UPR is the most time-consuming operation. For the initial network, it takes 3-4 

seconds to evaluate the robustness. The more nodes are removed, the much time is spent on the rerouting process (up 

to ten seconds). Only when few nodes are left, the rerouting process speeds up recognizably and the run time de-

creases. Evaluating GC takes three seconds for the initial network and the run time is decreased when more nodes are 

removed (because less nodes have to be analyzed for finding the giant component). The fastest robustness measure is 

SL, which is 1-2 orders of magnitude faster than the other two measures. This is an interesting property in the case of 

interactive attacks in future research.  

4 Conclusions 

The safety and reliability of complex air transportation systems are vital for the society. In this study, we performed 

system analysis for the robustness of air transportation systems, with unaffected passengers with rerouting as a base-

line measure. Given the most complete dataset available, we identify commonalities and differences between several 

robustness measures and attacking strategies for the worldwide airport network. The contributions of the paper are as 

follows:  
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1. We applied twelve different attacking strategies (degree, betweenness, closeness, eigenvector, Bonacich and 

damage in ascending and descending order) to the worldwide airport network with three different weights (un-

weighted, distance and passenger) and evaluated three different robustness measures (UPR, GC and SL). All 

experiments were evaluated on the same dataset and give a consistent view on attacking airport networks. In to-

tal, we investigated 108 attacking scenarios.  

2. We find that GC is a rather bad robustness measure, since (1) it cannot represent weak attacks appropriately, and 

(2)it overestimates robustness for very strong attacks. SL is an alternative which solves (1), and reduces the ef-

fects of (2)). Furthermore, SL is 1-2 orders of magnitude faster to compute than GC, which is an interesting 

property in the case of interactive attacks.  

3. The attacking strategies: degree and Bonacich are the best methods for attacking the worldwide airport network 

with passenger weights using UPR. Bonacich is better for the initial phase of an attack (up to 7% of removed 

nodes) and degree is slightly better when more than 7% of the nodes are removed. With comparable attacking 

effectiveness, the computation of degree is 1-2 orders of magnitude faster than the computation of Bonacich. 

Since the computation time is often the bottle-neck for large-scale networks, degree is a very good candidate for 

an effective and lightweight attacking strategy, especially in the case of interactive attacks on large-scale net-

works. Furthermore, closeness is the worst strategy for the robustness measure UPR. For GC/SL, Bonacich is 

slightly better than degree. Eigenvector is the worst attacking strategy. In our experiments, damage took the 

longest time to compute, but did not provide effective attacking performance.  

4. Our analysis shows that knowledge of an attacker significantly influences the effectiveness of attacking strategies. 

When the attacker is aware of the number of passengers travelling on routes (passenger-weighted network), the 

attack is more successful than that conducted by less informed attacker (unweighted or distance-weighted net-

work).  

5. We analyze the computational resources required for each attacking technique on the same airport network. 

While these resources are often neglected in related work, we show that the time to compute an attack is some-

times orders of magnitude faster/slower, while providing similar results. Given that many graph problems are not 

efficiently solvable, i.e. solutions do not scale up with the size of the graph, we advocate the use of simple, yet 

efficient attacking strategies for future robustness analysis of air transportation networks [Error! Reference 

source not found.]. In particular, running interactive robustness analysis on large networks is only feasible with 

short response time, if the attacking strategies can be computed efficiently. 

In this study, we analyzed the robustness of the worldwide airport network under node random failure and target-

ed attacks with several attacking strategies and robustness measures. Our research provides a unified view on attack-

ing air transportation networks and serves as a starting point to further explore effective mitigation strategies to de-

fend against disruptionsError! Reference source not found., Error! Reference source not found..  

In the following, we discuss some limitations of our initial study, which can be addressed in future work. 1) While 

our research focused on static attack generators, in practice, attacks can also have a dynamic nature. Thus, future 

work should take into account the iterative calculation of metric values: after each single-node attack to a network, 

the network metric is recomputed for the remaining nodes and the node with the highest/lowest value is removed next, 

since it was shown that this recalculation of metrics can be more effective than the pre-computation of a static at-

tackError! Reference source not found.. 2) One assumption of our study is that intentional failures in airports can happen all over 

the world, which is impossible to coordinate in practice, if many airports have to be affected. Therefore, future re-

search could investigate other attacking scenarios, where local regions are affected, instead of widely distributed 

nodes. 3) Similarly, we neglect the effect of regional airport system, where multiple airports serve the same metropol-

itan regions. We did not consider the case of multi-modal transportation in a sense that passengers could connect to 

other airports by other means of transportation, e.g., using train or bus connections. We would like to address this 

problem in future work. 4) Furthermore, our analysis relied on the connectivity of the airports: passengers between 

certain OD pairs can still make their trips as long as the OD airports are connected via other airports from the original 

schedule. Capacity constraints should be taken into account in future work. 5) Rerouting passengers after a global air 

transport failure assumes that all passengers still want to travel. Experiences with past terrorist attacks indicate that 

the passengers often cancel their travel plans. Analyzing and modeling such psychological effects can further help to 

understand and improve the robustness of the network. 
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