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Abstract—The hub location problem (HLP) has been studied
by researchers for many years. A number of model variants and
solution techniques for solving the problem have been proposed.
Most researchers consider the uncapacitated HLP(UHLP), given
the difficulty in computation that comes with capacity constraints.
Particularly, together with incomplete hub networks, capacity
constraints have shown to be highly intractable. We develop a
novel, efficient Benders decomposition algorithm to solve the
CHLP with incomplete hub networks. In order to explore the
impact of capacity constraints on hubs and backbone arcs, the
CAB dataset is used as a case study. In addition, we compare the
performance of our improved algorithm to the classical one. We
find that capacity constraints on hubs and backbone links tend
to render a robust network with more fully connected hub node
pairs and flexible linking structure. In addition, the computation
time is significantly reduced, up to one order of magnitude,
compared with the state-of-the-art. We believe that our work lays
the foundation for solving more realistic hub location problems.

Index Terms—Network design, Capacitated hub location prob-
lem, Benders decomposition

I. INTRODUCTION

Since the pioneering work by O’Kelly [1], hub location
problems (HLPs) have gained popularity among various re-
search areas such as air transportation [2] [3], telecommu-
nication [4] and trucking industries [5]. The role of hubs
is especially evident in terms of air transportation where it
is uneconomical to serve the demand by assigning a flight
between every city pair. Through intermediate hubs, traffic
can be redirected, aggregated and disaggregated [6], which in
turn can reduce operational costs and exploits economies of
scale in inter-hub links.

The main decisions of HLPs involve the location of hub
nodes and paths for sending flows between origin-destination
(OD) pairs. While the topology of a network constituted by
both hub nodes and non-hub nodes depends on applications,
there are some common assumptions that characterize most
HLPs, such as the eight protocols proposed by O’Kelly [7]
based on three options:

o Multiple/Single allocation: whether each non-hub node

can be connected to more than one hub.

o Direct/Indirect OD arcs: whether arc between every two

non-hub OD nodes can be established.

o Complete/Incomplete hub network: whether all hub nodes
are fully interconnected.

Apart from these mathematical assumptions, one important
property is the capacity restriction which divides HLPs
into Uncapacitated HLPs (UHLPs) and Capacitated HLPs
(CHLPs). Although CHLPs are more pragmatic, additional
capacity constraints make it difficulty to solve the problem.
Models for CHLPs must be delicately formulated and efficient
algorithms are needed. Recent works like [8] studied the
CHLP with the single assignment, where they used Lagrangian
relaxation to solve an instance of over 200 nodes. The model
presented by [9] also assumes the single allocation. They used
memory structure to devise heuristic methods for CHLP with
modular links which are originally proposed by Yaman [10].
Correia [11] took demand uncertainty into account for the
multi-period stochastic CHLP with the multiple assignment.
The readers are referred to [12] for more previous papers on
CHLPs.

For most papers on CHLPs, the subgraph constructed by hub
nodes is complete. While this assumption exploits the possible
lowest transportation cost, it could be counterproductive in
some cases. Specifically, when great circle routes do not follow
triangular inequality and few demand needs to be transported
through two distant hubs, using intermediate hubs to serve
the flow may be better. Therefore, incomplete hub networks
allows for more practical linking structure. As for CHLP with
incomplete hub network, Rodriguez-Martin [13] proposed a
model and two algorithms for exact and heuristic solution.
Based on this model, Kratica [14] modified the formulations
to get a more compact model and two evolutionary algorithms
are devised for large-scale instances. In the incomplete UHLP
presented by Alumur [15], decision variables are related to the
installation of links can be extended to CHLP with constraints
on inter-hub links. The multi-product CHLP model proposed
by Correia [16] features an incomplete hub network aggregated
by the complete network for each product. Although the
assumption about complete hub network is relaxed in these
studies, their models didn’t incorporate fixed cost for installing
hub and arcs which could result in a more flexible and



generalized network structure in response to cost pressures
[17].

In particular, this paper targets at CHLP with an incomplete
hub network. The objective function of our model considers
a set of fixed and variable cost components which was
introduced by O’Kelly [17]. The capacity limitation is imposed
on both hubs and inter-hub links to restrict the number of non-
hub nodes allocated to each hub and the number of installed
inter-hub links. These features not only enable airline operators
to devise appropriate flight schedule by calibrating cost pa-
rameters but also make the mathematical formulation difficult
to solve, when there are more integer decision variables and
fewer constraints on network topology.

Despite great efforts have been made, it remains challenging
to solve CHLPs. This difficulty is boosted when a more general
model with capacity constraints is considered. Because our
model’s formulations are amenable to decomposition method,
we use the Benders decomposition algorithm to solve this
problem. This algorithm has been proposed by Benders [18]
to solve problems with complicated variables. In general, this
technique partitions the whole problem into a master problem
(MP) and a sub problem (SP). The algorithm proceeds with
iterations between MP and SP until the gap between lower
bound (LB) and upper bound (UB) reaches a given threshold.

Since the introduction of Benders Decomposition, it has
achieved success in many fields such as production planning
[19] and airline scheduling [20]. While most researches aim at
its application, some general improvements have been made
to enhance its efficiency [21]. Because the convergence rate is
closely related to the optimality or feasibility cuts generated
from SP, several methods are explored to enhance these cuts.
Magnanti [22] proposed the Pareto-optimality cut to find the
strongest cut for degeneracy. Thereafter, Mercier [23] and
Papadakos [24] relaxed the restriction for using this cut. In
contrast, Mercier [25] and Camargo [26] proposed theories
and models for feasibility cuts. We use a problem based on
Mercier’s [25] model for stable and efficient Benders cuts.

The remainder of the paper is organized as follows. Sec-
tion II provides definition and notations for CHLP. In sec-
tion III, an improved Benders decomposition scheme is de-
vised to speed up the overall convergence rate. Section IV
compares the optimal topology under different capacity sce-
narios and reports the computational result of the improved
Benders decomposition algorithm with the classical one. Fi-
nally, conclusions are made in Section V.

II. MODEL FORMULATION

In this section, we formulate the CHLP features incomplete
hub network. In addition, non-hub nodes can be interconnected
and capacity constraints are imposed on both hub nodes
and inter-hub links. The cost coefficients for constructing
the network and routing OD demand which is proposed by
O’Kelly [17] are used as a starting point.

Given N as the number of demand nodes including hub
nodes and non-hub nodes, three kinds of arcs are established
in the network. Specifically, direct arcs are only allowed to

connect and serve the demand between two non-hub nodes.
Non-hub nodes are allocated to hub nodes through tributary
arcs, and we differentiate arcs starting or ending at non-hub
nodes as starting tributary or ending tributary arcs. While the
flow between two hub nodes is transmitted on backbone arcs.
Symbols 0,1,2,3 are used to decide these aforementioned arcs:
direct, starting tributary, ending tributary and backbone arcs.

The demand from origin i to destination j is denoted by
w;j. The distance between node i and node j is represented by
cij. Some other parameters are defined as follows: s the

u

fixed cost for installing a hub facility in node u, f°, f!, f2, f3

and v°, v!, v?,v3 are fixed cost and variable cost for four arcs

respectively. Parameter A;; refers to the arc specific fixed cost
to connect i and j. I'Z and FiLj denote capacity restriction on
hub node u and backbone arc (ij).

Considering that customers’ dissatisfaction may be incurred
during transfer flight, we define S as the maximum steps for
traversing from origin to destination. Although it is common
in previous papers that specify the number p of hubs to be
installed to ensure at most p+1 steps for each OD path, such
assumption may result in poor economic performance with
more backbone arcs. To clearly explain our model, an OD
pair (i,j) is illustrated in Fig 1. In this case, S is set to 5.
The OD flow starts from non-hub node i, goes through hub
nodes u and v, and ends at non-hub node j. For normalization
purpose, we establish two dummy hub nodes v’ and v” to
stretch the path length to S. Because the distance of (vv’)
and (v’,v”) is zero, these dummy hub nodes do not ichange
the objective value of the model. In this way, we propose the
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Fig. 1. Dummy graph with S=5

model for CHLP over incomplete hub network. The decision
variables are zy, yy;, Uiy Yois Yay» binary variables that decide
whether to install hubs, direct arcs, starting tributary arcs,
ending tributary arcs, backbone arcs and z}/,,, continuous
variable that indicates the fraction of flow going through node
u, v at step s for OD pair (i,j). With some adaptation from
[26] the problem is formulated as follows:
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where clj =i (fO+ A” +v w,J) et = cm(f1 + A,
é?)j = Cvj(f + AUJ) uv = Cuv(f + Auw), € 1u = civ',
612)] = cmv2, civ = Cup¥S. Objective function (1) aims to
minimize the total cost including fixed installation cost for
arcs and hubs, variable cost for transporting demand through
arcs. All the flow paths are divided into § steps. In s=1, flow
starts from its origin i and end at its destination j when s=S.

In addition, dummy hubs would be established to ensure
that exact S arcs are constructed for every OD path. Constraints

(2)—(8) describe the necessary installation of hubs and arcs for

feasible paths. Without loss of generality, we specify that flow
can stay at origin i for s=/ or destination j only when i and j
are hubs. Constraints (9)—(10) are the capacity constraints for
hub nodes and backbone links. Constraints (11)-(19) state all
the possible coherent connection for s=1, s=2... S-1 and s=S
respectively. To be specific, once a flow departures from its
origin i to other nodes (instead of i) or arrives at its ultimate
destination j, it is impossible for the flow to return to i or
leave j (for other nodes rather than j). In other words, those
circumstances are irreversible. Besides, flow paths are always
successive: from u to v in step s, and leave v for other nodes
in step s+1.

After the introduction of the five-index decision variable
chfvs and infrastructure constraints (2)—(8), we are able to
propose reasonable linear capacity constraints (9)—(10) as
compared to the quadratic constraint on hub capacity proposed
by [10]. On the other hand, the model contains (4N? — 3N)
integer variables, (N*S — N3S) continuous variables and
(3n* + (S — 6)n® 4 (5 — S)n* — n) constraints, which is a
challenge for traditional branch-and-cut algorithm. As decom-
position methods are effective for those large-scale mixed
integer programs (MIP), an improved Benders decomposition
algorithm is presented to solve this NP-hard problem.

III. METHODOLOGY FOR BENDERS DECOMPOSITION

Benders decomposition has been successfully applied to
combinatorial optimization problems. Its main idea is to
decompose a complex model into a master problem (MP)
and sub-problem (SP). Because the variables of MP can be
treated as known number in constraints when solving SP, the
dual problem of SP features an objective function containing
variables from MP which can be used as the Benders cuts to
be added to MP’s constraint pool. In this way, a convincing
optimal result can be obtained from the iterative interaction
between the solution from MP and DSP. Many variables in
the original problem are replaced by constraints with only
part of the complicated variables. In this section, the original
CHLP with incomplete hub network model is partitioned into
an MP and an SP whose dual problem and related Benders
cuts are presented here. Benders decomposition algorithm is
further improved through optimality Benders cuts and feasi-
bility Benders cuts with a bounded dual SP which generates
feasibility cuts of high quality over the traditional practice.



A. The Master Problem

The MP of our CHLP model aims to calculate decision
variables of the original problem. MP contains variables for in-
stallation of hubs and arcs (z,y°, ', y?, y). Some additional
constraints are added to speed up the convergence. Moreover,
a new variable 7 is introduced to estimate the objective value
of SP. In this way, MP is formulated as follows:
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Constraints (23)—(24) specify that direct arcs are established

between two non-hub nodes. Likewise, constraints (25)—(30)
set the condition for installing tributary and backbone arcs.
With constraint (31), each node is connected with at least 2
arcs. Constraints (32)—(33) guarantee that there exist arcs to
connect its origin and destination for each OD pair.

B. The Sub Problem

MP is a relaxed form of the original CHLP model, an
LB is expected to be obtained when MP is solved. The
solutlon Wthh contalns the values of complicating variables
(z,7°, 74, %%,7°) will be transferred to the SP for further
calculatlon Moreover, since DSP has an objective function
with these complicated variables which benefits the generation

TABLE I
VARIABLES FOR DSP FROM CHLP

Variables Domain Description
ol R Vi,j,u € Nyse{l...S}:i#j
dual variables from constraints (2), (11)—(19)
'IZJ’U [07+OO) Vi,}u,ueN:i;ﬁj,u;ﬁv
dual variables from constraint (3)
v | 10,400) Vi, j,u,0 € N i # jiu#v
dual variables from constraint (4)
Oty [0, +00) Vi, j,u,v € N :i# j,u#v
dual variables from constraint (5)
e 0,+00) | Viju€N:i#ju#iu#j
dual variables from constraint (7)
0,-‘,- R Vi,je N:i#j
dual variables from constraint (6)
Gij R VijeN i
dual variables from constraint (8)
Pu [0, +00) Yu € N
dual variables from constraint (9)
Puv [0, 4+00) Yu,v € N:u#wv
dual variables from constraint (10)

of Benders cuts, a DSP formulation is presented:
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The decision variables which are associated to constraints in
the original problem and they are illustrated in Table I. During
Benders decomposition, DSP is solved iteratively. Whenever
a bounded solution status is achieved, an optimality cut will



be added to the MP’s constraints pool:
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When DSP turns out to be unbounded, a feasibility cut will
be generated from the extreme ray:
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Where the vector (a;]Sa 91’]3&55 Cij’ piv@ijv B:fvv 71?1)7 5:51)) in
constraints (44)—(45) represents the extreme point and the di-
rection of extreme ray respectively. With the result of bounded
SP and MP, a UB is obtained. The gap between LB and UB
is checked for each iteration and this determines the occasion
to terminate the algorithm.

C. Performance Improvement for Benders Decomposition

The speed of Benders decomposition algorithm depends, to
a large extent, on the quality of optimality cuts along with
feasibility cuts. Good cuts enable the global optimality to be
reached within fewer iterations. Frequently, DSP is solved to
be bounded or unbounded which is caused by the value of
complicated variable y. When the feasible region of DSP is
bounded, there may be multiple extreme points leading to
the optimal result (i.e. DSP is degenerate). In contrast, if an
unbounded solution occurs, it is quite challenging to find the
direction of the extreme ray from a bunch of rays. This paper
presented a problem for obtaining Pareto-optimality cuts and
extreme ray direction. For the sake of simplicity, we rewrite
the MIP as min cz + f'y : Av+ By > b,z > 0,y € Y.
Here the size of all vectors and matrices are matchable.
Introducing a dual variable «, one can get the DSP: max(b —
By)'a : A/la < ¢,a > 0. To overcome the aforementioned
difficulties, [22] proposed the well-known Magnanti-Wong
point to pick up the strongest optimality cuts (i.e. Pareto-
optimality cuts) for DSP’s degeneracy. While Papadakos [24]
provided a more practical definition of Magnanti-Wong point
and thus changed the direction of cuts with Pareto-optimal
SP: max (b — ByMW)a : A'a < c,a > 0. Here yMW
is the Magnanti-Wong point which can be updated during
every iteration: y™" = (1 — \)yMW + \y. If ¥ leads to
a bounded solution of SP, then 0.5 is the most effective value
for A. Obviously, once an unbounded solution is achieved for
a yMW it is proved to be invalid for generating sequential
Magnanti-Wong points [27]. Thus an auxiliary SP has been
proposed for getting an appropriate A:

max A (46)
sit. Az > b— B[(1 - Ny + 7] 47
0<A<05 (48)

Algorithm 1 Benders decomposition with Branch-and-Cut.
1: Initialize UB=-+00,LB=0, GAP=+o00,yMW
2: while GAP>0 do
3: Solve Benders Pareto-Optimality SP(dual)

4 Add optimality BCs (44) to MP

5: LB<Solve MP

6: DSP* < Solve Benders DSP

7: if DS P*optimal, then

8: A =05

9: Add optimality BCs (44) to MP
10: Update UB

1 GAp={UB_LB)

12: else

13: (\*, Ray)<Solve Benders BDSP
14: Add feasibility BCs (45)to MP
15: A =min{0.5, \*}

16: end if

17: Update Magnanti-Wong point
18: end while

In this paper, we transform the model proposed by [27] to
match the Bounded DSP (BDSP) model presented by [25].
Without loss of generality, the domain of A is relaxed:

(49)
(50)
(G

min — A
s.t. Az + B(y —
0<A<1

yMWIA > b — ByMW

As Mercier [25] proved that the BDSP is always bounded and

its extreme point corresponds to exactly the direction of the
extreme ray of DSP, given that a unique variable is inserted
into each constraint artificially. In constraint (50), the term
B(y — yMW)\ is the artificial variable we introduced to the
SP. By solving its dual problem, both the value of A and the
extreme ray’s direction can be measured explicitly. The BDSP
takes the form like:

max (b— By™"Ya -8 (52)
st. Ala<0 (53)
[B@—y"")a-B< -1 (54)
a,8<0 (55)

Based on the improvements on generating feasibility cuts
and updating Magnanti-Wong point with BDSP, an improved
Benders decomposition is presented in Algorithm 1. Magnanti-
Wong point is initialized with a convex combination of
N+1 feasible solutions [27]. During every iteration, Pareto-
optimality SP is first solved with Magnanti-Wong points for
Pareto-optimality cuts. Then the values of variables in MP
are used to update the DSP’s objective function. If DSP has
optimal solutions(i.e. extreme points), A\* is assigned with 0.5
for further updating Magnanti-Wong points. While DSP has
unbounded solutions, BDSP will be invoked for calcualting



A* and the direction of extreme rays. Optimality cuts and
feasibility cuts are generated from extreme points and extreme
rays respectively. This iterating process terminates when GAP
reaches 0.

IV. COMPUTATIONAL EXPERIMENTS

This section reports the experiment results for solving
CHLPs to explore the impact of hub and backbone arc capacity
constraints on the optimal network topology. The quality of
feasibility cuts generated from BDSP and traditional practice
are also compared. All the experiments are carried out on
a Core-i7 6500U processor and CPLEX 12.6 is used as the
solver. We test the mathematical formulation and Benders de-
composition algorithm on the Civil Aeronautics Board (CAB)
dataset with N=15,20,25. The CAB dataset contains Euclidean
distance and air passenger traffic flow between 25 cities in the
U.S. Because cost and capacity values are not provided in
CAB dataset as compared to AP(Australia Post) dataset, we
assign the value for f,b, A randomly. Finally, to avoid the
possible unscaled infeasibility error when solving DSP with
modern solvers, it is also important to rescale parameters in
capacity constraints.

A. Topology Comparison

The first experiment aims to explore the different topology
under varying constraints. Four categories of CHLP are pre-
sented:

« without capacity constraints

o with hub capacity constraints

« with backbone arc capacity constraints

o with hub and backbone arc capacity constraints.

Here the CAB dataset with 25 nodes is used and the maximum
number of steps is 5. Fix and variable costs are set to be
[2500,2500,2500,2500],[0.04,0.04,0.04,0.04] respectively. As
for arc specific cost, 4;; = 1 if ¢;; < 1500 and 2 oth-
erwise. Fixed cost for installing hubs is set to be 3718240.
Capacity values for hub and backbone arc are 32e5 and 9.2e5,
respectively. The results are shown in Fig 2. For all these
figures, the bold triangles and circles denote hub and non-hub
nodes, separately. Solid lines are backbone arcs, dash lines are
tributary arcs and dot lines are direct arcs.

Fig 2(a) is the optimal topology without capacity con-
straints, under this circumstance, Saint Louis(STL) and Pitts-
burgh(PIT) receive much more traffic than other hub nodes.
Meanwhile, backbone arcs between New York(NYC) and PIT
serve the majority traveling demand in northeast America.
Comparing Fig 2(a) with Fig 2(b), the role of constraints on
hub capacity is clearly demonstrated as restricting the number
of nodes connected to a hub. For instance, Backbone arcs
between Denver(DEN) and Chicago(CHI) are established to
alleviate the traffic burden of STL and decreases the number
of nodes allocated to it. Cleveland(CLE) replaces the role of
PIT as the hub nodes. While backbone arc capacity constraints
tend to render a more fully-connected hub network and more
tributary arcs to disaggregate flow on backbone arcs, as is
shown in Fig 2(c), the great volume of traffic in east coast

leads to more tributary arcs towards hubs like PIT and Balti-
more(BWI). Direct arcs are also established for transportation
in Boston(BOS) and non-hub node NYC. For the last graph
Fig 2(d), the joint influence of these capacity constraints
reduces the number of hubs in central America and increases
that in eastern America, indicating the discrepancy in traveling
demand between eastern and western regions. The STL turns
out to be a non-hub node in this case. So traffic from west
coast to east coast actually has more alternative paths to choose
rather than choosing STL as the only intermediate hub. In
this way, capacity constraints indirectly improve the robustness
of the CHLP network and incorporate more practical factors
in contrast to UHLP. Overall, the role of hub and backbone
capacity constraints is non-negligible under the four scenarios.

B. Solution Methods Comparison

The second computational experiment shows the effective-
ness of the BDSP in updating generating feasibility cuts, when
DSP is unbounded in contrast to the traditional feasibility cuts
from solvers (e.g. get_ray function in Cplex Python API).
McDaniel [28] showed that valid initial Benders cuts can be
obtained through warm start phase, which relaxes the integral
restriction of MP. All tests are carried out in warm-start phase
and integer phase. Algorithml is executed for both Benders
decomposition with BDSP and Benders decomposition with
traditional feasibility cuts except for the slight difference in
Ray. The results for CAB dataset of 15, 20, 25 nodes are
shown in Table II. The maximum number of steps for all
the tests is set to be 5 and hub installation cost are set to
be 0, 3248280, 3118240 for instances with 15, 20, 25 nodes
respectively. The results in Table II includes objective function
value(Obj), relative gap between UB and LB(Gap), CPU time
in seconds(CPU times) and the number of iterations(#iter). The
inf denotes a value of 4e7, and it is the maximum possible flow
for all the hubs and arcs, this is uncapacitated situations. From
the results, it is clear that it takes more efforts for Cplex to
deal with CHLP with large scale networks and more capacity
constraints. This is especially obvious for instances with 25
nodes. This testbed also shows that BDSP generates higher
quality and more stable feasibility cuts, when compared to the
traditional methods which reduces the overall computing time
and iterations. The disparity of CPU time for the two method is
enlarged, in the worst case, it can take much longer time. This
might be unacceptable in terms of computational efficiency.
The disparity is further enlarged when both hub capacity
constraints and backbone arc constraints are considered. As
fixed costs and capacity constraints are considered in the
CHLP, infeasible SP (i.e. unbounded DSP) are expected to
occur more frequently than normal HLPs to avoid fixed costs
and satisfy capacity limitations. This shows the pivotal role of
BDSP in finding proper extreme rays in improving the overall
performance of Benders decomposition, when addressing more
practical CHLPs.



(a)Without capacity constraints
obj=451,792,379

(b)With hub capacity constraints
0bj=451,992,919

(c)With backbone arc capacity constraints
obj=451,940,173

(d)With hub and backbone arc capacity constraints
0bj=462,528,368

Fig. 2. The comparison of four CHLPs with and without capacity constraints in the CAB dataset

TABLE I
COMPARISON OF FEASIBILITY CUTS FROM BDSP AND TRADITIONAL METHOD

#Nodes Fixed cost Variable cost ~ Capacity Feasibility cuts from BDSP Feasibility cuts from traditional method

(*1e3) (*le-2) (*1e5) Obj Gap (%) CPU time (s) #iter Obj Gap (%) CPU time (s) #iter

[13,4.4] 145472763 0.0 171.9 16 145472763 0.0 2700.7 48

15 [1,3,3,6] [6,4,4,3] [12,inf] 145472763 0.0 194.9 17 145472763 0.0 430.0 35
[inf,4.4] 144790014 0.0 242.5 16 146361318 -1.085 2644.7 43

[28,12] 286314633 0.0 2189.6 22 286314633 0.0 3610.9 35

20 [2.5,2.5,2.5,5] [5,4,4.3] [28,inf] 286314633 0.0 2377.2 23 286314633 0.0 3586.5 35
[inf,11] 285591833 0.0 2154.3 23 285591833 0.0 3230.9 36

[32,9.2] | 462528368 0.41 18443.7 28 462635377 0.39 31454.1 32

25 [2.5,2.5,2.5,2.5] [4,4,4,4] [29,inf] 462421909 0.0 19763.1 22 488055839 -5.543 85502.3 29
[inf,9.2] | 451940173 0.0 6611.1 20 451940173 0.0 7701.0 25

V. CONCLUSION

In this study, we tackled a capacitated hub location problem
with incomplete hub network. The optimal solution to this
problem is correlated to fixed cost, the maximum length of
a path and capacity constraints on hubs and backbone arcs.
As these assumptions bring great difficulty for computation,
an improved Benders decomposition algorithm was proposed.
In order to explore the impact of capacity constraints of hubs
and backbone arcs, the CAB dataset was used as a case study.
In addition, the performance of the improved algorithm is
compared with the classical one in the evaluation. Our work
provided a more reasonable and robust network structure [29].
Computational challenge has been tackled to a certain extent.

Further research could improve the performance for further
model generalization. We also hope that our methodology can
be adapted to other (re)location problems, e.g. [30]-[32], or
other abstraction levels, e.g. to improve the air route network
structure [33].
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