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Abstract—Hub location problems have been studied by re-
searchers for three decades, yet, most algorithms do not perform
well for large-scale networks because of their high computational
complexities. Methods that scale up to large networks are usually
tailored specifically towards a particular hub location problem
instance and cannot be adapted easily to other problems without
significant efforts.

In this paper, we propose a General Contraction Method
(GCM), which explores and exploits the idea of efficiently
computing hub locations on a reduced network instance, so-
called contracted network, and then rewriting the obtained
solution back to the original network. If the contracted network
preserves major flows and spatial properties, it can be used as a
boilerplate for finding good solutions to the original network. In
order to evaluate the performance of the contraction methods,
three commonly-used datasets (CAB, TR and AP) are used as
case studies. We find that GCM provides high-quality initial
solutions within a few seconds even for very large-scale prob-
lems. GCM can be combined with specifically tailored solution
techniques/heuristics and better solutions can be provided within
much shorter time further. Moreover, we show that by varying
the size of the contracted network, we can nicely explore a
fine trade-off between highly efficient computation and close-to-
optimal solutions. We believe that GCM can be adapted to many
different types of hub location problems, and thus, our work
contributes towards the development of scalable transportation
network design.

Index Terms—Hub location problems, Contraction, Scalability

I. INTRODUCTION

Hub location problems involve the optimal location of hub
facilities in a network [1]. They are successfully applied in
several fields, including transportation [2]–[5] and telecom-
munication [6], [7]. In many standard hub location problems,
flows are collected from origin nodes by their hubs first; then,
flows are transferred to hubs of destination nodes through
the hub network; and finally, flows are distributed to their
destinations. Economies of scale provide cost discounts for
the transportation between hubs, and thus, provide a strong
incentive for the research of hub location problems [8], [9].
Since the seminal work by [10], hub location problems have
been studied intensively for three decades. A number of so-
lution techniques have been proposed, such as Lagrangian re-
laxation [11], Benders decomposition [12], variable neighbor-
hood search [13], branch-and-price [14], branch-and-cut [15],
clustering-based methods [16] and genetic algorithms [17].

Apart from few exceptions, hub location problems are NP-hard
[8], [18]. Therefore, most algorithms do not perform well on
large networks. On a network with hundreds of nodes, state-
of-the-art techniques usually require hours of run time, without
the guarantee of finding the optimal solutions. Although some
algorithms may provide good results for a specific problem,
the adaption to other problems is often onerous and requires
a significant amount of work.

In this paper, we propose General Contraction Method
(GCM), a novel and general heuristic which aims at computing
solutions for hub location problems in very large networks
within short computation time. We propose to transform the
input network, for which we are seeking an assignment, into a
smaller network with similar topological and flow properties.
We refer to this process as contraction: Nodes in a network
are merged into representative nodes, preserving the structure
and flow demands. Solving the hub location problem on the
smaller network is significantly faster than for the original
network, and the running time and solution quality can be
controlled by a single parameter nicely: The size of the
contracted network. We show that the solution for the smaller
network can be easily rewritten to a solution for the original
network. Our experiments on real-world datasets reveal that
the solutions obtained are highly competitive with state-of-
the-art techniques. The major steps of GCM are visualized
in Fig. 1 for the CAB dataset. Although GCM is used to
solve uncapacitated single allocation p-hub median problems
(USApHMP), the algorithm can be easily adapted to many
different types of hub location problems.

The remainder of this paper is organized as follows. We
provide a literature review on hub location problems in Sec-
tion II. The formulation of uncapacitated single allocation p-
hub median problem is provided in Section III. The rationale
and process of GCM are proposed in Section IV. To evaluate
the performance of the contraction methods, the CAB dataset,
the TR dataset and the AP dataset are used as case studies in
Section V. The paper concludes with Section VI.

II. LITERATURE OVERVIEW

Hub location problems were introduced by [10], together
with his first mathematical formulation for the p-hub median
problem (pHMP) [1]. Four fundamental hub location problems
(p-hub median, uncapacitated hub location, p-hub center and
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(a) Initial network with 25 nodes (grey).
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(b) Contraction with 10 nodes (blue)
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(c) The optimal assignment of hubs links (red) and spoke links (blue).
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(d) Contracted solution rewritten on the original network

Fig. 1: The process of the General Contraction Method (GCM) on the USApHMP (α = 0.3, p = 4) for the CAB dataset: The
original network with 25 nodes (a) is contracted into a smaller network with only 10 nodes are selected (b). The USApHMP is
solved optimally in the contracted network (c) and the results for the contracted network are rewritten on the original network
(d). The computation time for original network with 25 nodes is 2.8 seconds; while GCM needs less than 0.1 seconds.

hub covering) were defined by [19] and the corresponding
formulations were also proposed. Since then, hub location
problems have been studied by many researchers and a
number of methods have been proposed. Standard methods
deal with hub location problems mostly by solving integer
programmings and they perform well in particular size of
problems. However, the computation time grows fast with
larger networks. Some researchers found that the assignment
for nodes can be easily encoded into chromosomes in genetic
algorithm. The near-optimal solutions could also be accepted
if they could be obtained within a short computation time. The
capacitated case was solved by [20]. In addition, reference [13]
proposed a new general variable neighborhood search method
that searches good solutions in three types of neighborhoods.
Their algorithms were very efficient and could solve uncapaci-
tated single allocation p-hub median problems with up to 1000
nodes and 20 hubs within hundreds of seconds. Reference [21]
proposed a two-stage method to simplify the complexities of
hub location problems by solving a p-median problem before
the original problem. Reference [16] proposed a method that,
based on the spatial and flow properties of nodes, generates
a clustering-based potential hub set, which can help narrow
the solution set and reduce the computational complexity
of the problem. [22] proposed new models considering the
reliability of hubs for single and multiple allocation p-hub
median problems, given that air transportation networks are
often vulnerable to disruptions [23],

III. PROBLEM FORMULATIONS

In this section, we show the formulations of uncapacitated
single allocation p-hub median problems (USApHMP).

In the USApHMP, each pair of hubs are connected with a
link and each node is allocated to a single hub. Let G= (V,E)
be a network. Here V and E are the set of nodes and links
between nodes, separately. The number of nodes and hubs are
n and p. For each pair of nodes (i,j), let cij and wij be the
cost and flow between them. Let Oi =

∑
j∈V wij be the total

flows from the source node i and Di =
∑
j∈V wji be the

total flows to the destination node i [24]. The USApHMP is
formulated as follows [25]:

min
∑
i∈V

∑
k∈V

cikYik(δ1Oi + δ2Di)

+
∑
i∈V

∑
k∈V

∑
m∈V

αckmX
i
km (1)

subject to
∑
k∈V

Yik = 1,∀i ∈ V (2)

Yik ≤ Ykk,∀i, k ∈ V (3)∑
m∈V,m 6=k

Xi
km −

∑
m∈V,m6=k

Xi
mk

= OiYik −
∑
j∈V

wijYjk,∀i, k ∈ V (4)



∑
k∈V

Ykk = p (5)

Yik ∈ {0, 1},∀i, k ∈ V (6)

Xi
km ≥ 0,∀i, k,m ∈ V (7)

Here, the objective function (1) is divided into two terms:
The first term is the costs of flows between hubs and non-
hub nodes; the second term is the costs of flows through the
hub network. Parameters α < 1, δ1 > α, δ2 > α are the cost
coefficients for transporting flows between hubs, from spoke
nodes to hubs and from hubs to spoke nodes, respectively.
Variables Xi

km represent the flows routed on hub link (k,m)
originating from node i. Binary decision variables Yik take the
value of 1, if node i is assigned to hub k and 0 otherwise.

Equation (2) and Equation (3) ensure that each node is
assigned to exactly one hub. Equation (5) shows the number of
hubs p. Equation (4) ensures the flow equilibrium from each
node i for each hub k.

IV. GCM: SOLVING HUB LOCATION PROBLEMS BY
NETWORK CONTRACTION

Given models and formulations from Section III, many
algorithms have been proposed to solve hub location problems
in the past. Most algorithms are designed and tuned to obtain
close-to-optimal solutions on small network instances. For
larger networks, however, existing solution techniques either
need long computation time or provide solutions with low
quality. Moreover, scalable solution techniques are tailored
towards a specific problem instance, making it not directly
usable for another; for instance, the highly-efficient variable
neighborhood search for the uncapacitated single allocation p-
hub median problems [13]: Incrementally adapting the flows
throughout the exploration of neighborhood solutions is a
difficult task for many hub location problems.

In our study, we propose GCM, which first contracts an
input network, then solves the hub location problem in the con-
tracted network, and finally rewrites the solution back to the
original network. The rationale of GCM is further described
in Section IV-A. Four types of strategies for contraction are
proposed in Section IV-B. Finally, a strategy for rewriting
based on neighborhood search is presented in Section IV-C.

A. Rationale for GCM

With the analysis of the optimal solutions for a number
of hub location problems, several observations for the hub
selection and spoke allocation can be obtained, as extracted
from [16]: The hubs and their spokes are often distributed
in clusters. These distributions would not be changed with
different cost coefficients. In addition, those nodes with larger
flows and closer to the spatial centers of clusters are more
likely to be selected as hubs in the optimal solutions. With
these insights, contraction methods are proposed to reduce the
computation time for large-scale problems. The major steps of
GCM are visualized in Fig. 1 in Section I.

1) Contraction: For a given number k, we define a con-
traction function f: V → V on the set of nodes V such

that |f(V )| = k. Each node i ∈ V is mapped to a node
s ∈ V . Let V ∗ be the image of function f :

V ∗ = f(V )

The elements in set V ∗ are called contraction nodes.
Then, a contracted network is constructed with these
contraction nodes. For a contraction node s, its flow in
the contracted network is the sum flow of nodes that are
mapped to node s. Thus, the flow from contraction node
r to contraction node s after contraction is calculated as
follows:

w∗rs =
∑

i∈f−1(r),j∈f−1(s)

wij ,∀r, s ∈ V ∗

where f−1(s) = {j ∈ V : f(j) = s} is the inverse of f.
2) Solving the contracted network: We define the cost

for any pair of contraction nodes (r,s):

c∗rs = crs, ∀r, s ∈ V ∗, r 6= s

Then the contracted hub location problems are formu-
lated by replacing c,w and V with c∗, w∗ and V ∗ in
Equations (1–7). We solve the hub location problems for
the contracted networks using an existing algorithm and
obtain the optimal solution for the contracted network.
From the solution, the hub set and spoke assignment for
the contracted network are obtained.

3) Rewriting: Based on the solutions of the contracted
network, we reassign the remaining nodes in V \V ∗
for the original network. The solution for the original
problem is obtained afterwards.

B. Strategies for contraction

For a given k, we first generate k cluster, using agglomer-
ative clustering [26]. Nodes are distributed in these clusters
depending on the distance among each pair of them. Here,
the distance could have different definitions. In this paper, in
addition to the Euclidean Distance (ED), we define a new
distance ĉij with the consideration of flows between nodes
(FD) as follows: ĉij = cij ∗ wij .

Note that if the flow between two nodes is small, these two
nodes are closer to each other by FD. They would be more
likely to be in one cluster. Therefore, most large flows between
nodes in the original network would be transformed into flows
between clusters, but not between nodes in the same cluster
in this case.

For each cluster, one contraction node is selected based on
the properties of nodes and the remaining nodes in the cluster
are mapped to this contraction node. The contracted network
is constructed then. Two strategies for selecting contraction
nodes with the consideration of flows and spatial positions are
introduced as follows. Four contraction strategies (ED flow-
based, ED centrality-based, FD flow-based, FD centrality-
based strategies) are visualized in Fig. 2.

Flow-based strategy: In this strategy, we compute the flow
Fi = Oi+Di for each node i. The node with the largest flow
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(a) ED Flow-based strategy
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(b) ED Centrality-based strategy
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(c) FD Flow-based strategy
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(d) FD Centrality-based strategy

Fig. 2: Visualization of four contraction strategies in the CAB dataset: (a,b) Clusters are generated with the Euclidean distance
(ED); (c,d) Clusters are generated with a new distance based on flows (FD). Note that those nodes with small flows between
them are more likely to be in the same cluster in FD, although they might be far away from each other by the Euclidean
distance.

is selected to be the contraction node for each cluster and the
remaining nodes in the cluster are mapped to this node. The
visualization of 10 clusters and contraction nodes with largest
flows in the CAB dataset is shown in Fig. 2(a,c). Because the
spatial properties of nodes are not considered in this strategy,
the selected contraction nodes could be far away from the
spatial centres of clusters.

Centrality-based strategy: We assume that Cl is the set
of nodes in each cluster. For node i ∈ Cl, its centrality is
computed with Cei = 1/

∑
j∈Cl,j 6=i cij . If a node is closer

to the centre of the cluster, the average distance between this
node and other nodes in the cluster would be shorter. Thus, the
node with the highest centrality Ce is selected as contraction
node with this strategy. The visualization of 10 clusters and
contraction nodes with the largest centrality in the CAB dataset
is shown in Fig. 2(b,d).

C. Rewriting strategy based on neighborhood search

After solving problems in the contracted network using an
existing algorithm, the hub set H and spoke assignment ASSI
for the contracted network are obtained. In order to rewrite
the solution to the original network, each remaining spoke is
allocated to its closest hub initially. Then, a strategy based on
neighborhood search is presented to find the best assignment.
This strategy does not change the locations of hubs. For each
spoke node, we try to change its allocation. Assume that
the hub of spoke i is swapped from hub ko to hub kc. Let
Win[i][k] and Wout[i][k] be the flow originating from and

targeting to node i through hub k, separately. The change of
total cost is shown as follows:

dC =δ1(cikc − ciko)wii + δ2(ckci − ckoi)Di

+δ2(ckci − ckoi)wii + δ1(cikc − ciko)Oi
+
∑
k∈H

α [(ckkc − ckko)Win[i][k] + (ckck − ckok)Wout[i][k]]

In each iteration, we do the operation for one spoke node
and update Win[i][k] and Wout[i][k] in O(n) if the current
solution is improved. The program is terminated if the solution
cannot be improved within a certain number of consecutive
iterations.

V. EVALUATION

In this section, we report the results of our experiments
for GCM. In Section V-A, three datasets used in our study
are introduced. The experiment setups are also provided in
this section. In Section V-B, we compare the performance
of four contraction strategies of GCM. The evaluations of
GCM compared with state-of-the-art methods are presented
in Section V-C. The visualization of the results is presented
in Section V-D.

A. Datasets and experimental setup

To evaluate the performance of GCM proposed in Sec-
tion IV, three well-known datasets are used as case studies.
The CAB (Civil Aeronautics Board) dataset that is based
on the airline passenger interactions between cities in the



(a) CAB dataset with n = 25 (b) TR dataset with n = 81 (c) AP dataset with n = 200

Fig. 3: Visualization of the three datasets with flows of nodes: CAB dataset with 25 nodes, TR dataset with 81 nodes and AP
dataset with 200 nodes. The size of each node is proportional to its flow (Fi = Oi +Di).
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(a) Solution values for the USApHMP
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(b) Computation time for the USApHMP

Fig. 4: The comparison of four contraction strategies for solving USApHMP with α = 0.3, p = 4 in the CAB dataset.

United States in 1970 [1]. The TR (Turkish Postal) dataset
includes 81 cities with distance and flows between each other
in Turkish postal system [27]. The AP (Australia Post) dataset
provides 200 postcode districts with coordinates and flows in
Australia [25]. The visualization of these datasets with flows of
nodes is shown in Fig. 3. In order to show the travel demand
of nodes, the size of each node is proportional to its flow
(Fi = Oi + Di). There are self-flows for nodes in the AP
dataset, i.e., the flows from nodes to themselves. We set these
flows to zero. The cost coefficients of hub location problems
are set to α ∈ {0.3, 0.5, 0.7}, δ1 = δ2 = 1 for the TR dataset
and CAB dataset, and α = 0.75, δ1 = 3, δ2 = 2 for the AP
dataset.

We solve hub location problems for contracted networks
with the commonly-used programming solver CPLEX in Sec-
tion V-B and Section V-C. Because CPLEX uses multiple
threads as default, we use a single thread for all experiments to
obtain comparable results. The maximum computation time is
set to 2 hours. All experiments were executed on a Dell laptop
with Intel Core i5-4310M processor and 16 GB RAM, running
Fedora 24.

B. Comparison of different contraction strategies

As presented in Section IV-B, there are four strategies (ED
flow-based strategy, ED centrality-based strategy, FD flow-
based strategy and FD centrality-based strategy) for contrac-
tion. In order to evaluate their performance, the CAB dataset
is used as a case study. The problems with k ∈ {p + 1, p +
2, ..., 25} are solved here. The results for the USApHMP with
α = 0.3, p = 4 are shown in Fig. 4.

As shown in Fig. 4(a), the solution values obtained by
four contraction strategies with different k are compared. The
performance of two FD-based strategies (green squares and
blue points) is better than ED-based ones (red stars and yellow
circles). In addition, the solutions of FD Flow-based strategy
are slightly better than that of FD Centrality-based strategy.
The difference of flows between nodes in the CAB dataset is
quite large. Several important nodes have much larger flows
than other nodes. Thus, it is a good strategy to select those
nodes with large flows as hubs. In addition to the solution
values, the computation time for four strategies is shown in
Fig. 4(c). It indicates that their computation time is close to
each other for most values of k, because their computational
complexities are similar to each other.

Finally, based on the results obtained in this section, we
select the FD Flow-based strategy in the following evaluations
because the flows of nodes are distributed quite unevenly in
these three datasets. The contraction size k plays an important
role on the qualities of final solutions and both n and p should
be taken into account. A set including three values of k is
generated as follows: Lk =

{
2p, 2
√
n, n2

}
.

In Section V-C, we report the results of GCM with three
values of k.

C. Comparison between state-of-the-art methods and GCM

In this section, the properties of GCM for solving US-
ApHMPs in the TR dataset with α ∈ {0.3, 0.5, 0.7}, p ∈
{4, 6, 8, 16} and the AP dataset with α = 0.75, p ∈
{4, 6, 8, 10, 20, 40} are evaluated. As mentioned in Sec-
tion IV-A, the contracted problems in GCM can be solved with



TABLE I: Gaps of solutions and computation time for solving the USApHMPs. The symbol “-” represents that no acceptable
solution is obtained within 2 hours. The symbol “*” shows that GCM cannot be used if k is less than p.

Datasets n α p Results
GCM CPLEX

with k=2p
GCM CPLEX

with k = 2
√
n

GCM CPLEX
with k = n

2

CPLEX
GCM GVNS

with k=2p
GCM GVNS

with k = 2
√
n

GCM GVNS
with k = n

2

GVNS RCBS

TR 81 0.3 4 gaps 6.88% 1.71% 1.43% 0.11% 6.65% 1.71% 0.10% 0.00% 1.18%
time (s) 0.45 0.44 20.75 7204.43 0.24 0.21 0.32 0.70 47.12

6 gaps 15.46% 4.67% 1.63% 0.00% 4.71% 4.67% 1.25% 0.00% 6.75%
time (s) 0.49 1.05 44.70 6233.72 0.28 0.27 0.41 1.01 82.69

8 gaps 6.92% 6.59% 1.82% 0.00% 4.60% 4.21% 0.50% 0.05% 3.42%
time (s) 0.65 1.00 36.54 7205.10 0.31 0.37 0.48 1.96 255.62

16 gaps 4.71% 14.66% 3.38% 0.00% 1.30% 2.95% 1.24% 0.18% 2.61%
time (s) 3.44 0.76 10.13 908.68 0.77 0.54 0.81 2.76 6213.79

0.5 4 gaps 4.80% 4.33% 0.06% 0.00% 4.80% 2.33% 0.49% 0.79% 2.35%
time (s) 0.24 1.13 57.29 6529.70 0.21 0.26 0.27 0.76 270.14

6 gaps 8.57% 4.69% 1.52% 0.00% 5.36% 4.19% 0.93% 0.83% 5.26%
time (s) 0.49 2.05 92.68 7204.21 0.38 0.32 0.39 1.02 883.96

8 gaps 3.95% 3.21% 0.00% 0.15% 2.15% 2.57% 0.51% 0.40% 2.68%
time (s) 0.78 1.30 72.47 7204.46 0.40 0.31 0.57 1.45 950.94

16 gaps 4.37% 6.78% 4.08% 0.00% 1.51% 2.74% 1.26% 0.00% 2.31%
time (s) 4.50 1.00 15.84 2904.95 0.77 0.54 1.21 4.12 7204.09

0.7 4 gaps 10.08% 5.13% 1.91% 0.00% 5.11% 2.17% 0.73% 0.37% 3.13%
time (s) 0.35 2.44 144.52 7201.14 0.21 0.19 0.30 0.61 925.25

6 gaps 5.77% 5.19% 1.99% 0.22% 4.60% 6.39% 2.34% 0.00% 12.17%
time (s) 0.39 2.04 296.41 7204.18 0.53 0.29 0.50 0.85 684.96

8 gaps 5.89% 3.55% 3.80% 0.89% 4.04% 3.37% 0.67% 0.00% 3.44%
time (s) 1.27 1.47 150.37 7204.15 0.49 0.31 0.61 1.24 1635.38

16 gaps 2.37% 9.44% 3.20% 0.02% 1.98% 2.76% 1.91% 0.00% -
time (s) 5.08 0.96 19.39 7206.82 0.97 0.61 1.02 3.68 -

AP 200 0.75 4 gaps 6.04% 1.36% - - 1.34% 1.36% 0.69% 0.00% 5.57%
time (s) 1.25 4.90 - - 1.54 0.93 1.96 7.66 1547.07

6 gaps 5.31% 0.79% - - 4.53% 0.79% 0.78% 0.00% 4.57%
time (s) 1.43 5.56 - - 1.19 1.57 2.58 9.18 7298.88

8 gaps 7.84% 2.94% - - 5.02% 1.91% 1.16% 0.00% 5.67%
time (s) 2.12 5.21 - - 2.50 1.84 3.83 16.65 7297.64

10 gaps 6.58% 6.54% - - 3.95% 1.71% 0.65% 0.00% 5.81%
time (s) 3.37 3.77 - - 2.00 2.81 3.48 10.55 7272.42

20 gaps 7.11% 10.32% - - 2.02% 2.04% 1.04% 0.00% 3.58%
time (s) 9.30 12.93 - - 4.84 4.75 11.22 34.41 7298.47

40 gaps 1.84% * - - 1.50% * 0.91% 0.00% -
time (s) 847.84 * - - 19.43 * 24.82 116.86 -

any existing techniques. It is shown that solving hub location
problems with CPLEX directly is not a good strategy [20],
[28], [29]. However, in order to evaluate the performance of
the contraction methods completely, CPLEX is used here. The
results obtained by solving hub location problems directly with
CPLEX are also reported as benchmarks. General variable
neighborhood search method (GVNS) [13] performs well for
solving large-scale USApHMPs. We have implemented it as a
competitor, and we also use it to solve the contracted problems
for GCM. Finally, a heuristic called restricted clustering-based
potential hub set method (RCBS) proposed by [16] is imple-
mented. Similarly with GCM, this algorithm can be applied
to different types of hub location problems. The performance
of GCM will be compared with it.

The gaps [30] of solutions (the difference between the
obtained solutions and the optimal solutions) and computation
time for solving the USApHMPs in the TR dataset and
AP dataset with GCM and other methods are presented in
Table I. As discussed in Section V-B, three particular values of
k ∈ {2p, 2

√
n, n2 } are used for the GCM. The results obtained

by solving contracted problems with CPLEX and GVNS are

provided in columns 6–8 and columns 10–12.
It indicates that CPLEX provides good solutions (gap< 1%)

within 2 hours for the TR dataset because of low computa-
tional complexities. However, we cannot obtain any acceptable
solutions for the AP dataset with CPLEX directly. In terms of
solution gaps, GCM CPLEX and GCM GVNS have similar
quality with contraction size k. With increasing values of k,
both of them provide better solutions with smaller gaps. How-
ever, because of the low efficiency of CPLEX on large-scale
problems, the computation time of GCM CPLEX increases
much faster than that of GCM GVNS. For instance, the former
needs hundreds of seconds while the latter needs less than 5
seconds when k = n

2 for the AP dataset.
In the twelfth column, GCM GVNS with k = n

2 provides
solutions with gaps less than 1% in most cases. Compared
with the results in the thirteenth column, it reduces more
than a half of computation time and provides close solutions.
With increasing sizes of networks and hub sets, the reduction
of computation time becomes more significant. The speed of
GCM can be faster further if it is combined with other better
algorithms. In addition, GCM can be applied to many types of
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(a) GCM GVNS with k = n
2

(31,305,361,942; 0.41s)
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(b) CPLEX (30,917,872,699; 6233.72s)
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(c) GVNS (30,917,872,699; 1.01s)
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(d) RCBS (33,003,293,094; 82.69s)

Fig. 5: The visualization of solutions for the USApHMPs with α = 0.3, p = 6 in the TR dataset. The hub nodes and links
between hubs are represented by red dots and red lines. The numbers at the end of the caption in each sub-figure represent
the solution values and corresponding computation time.

(a) GCM GVNS with k = n
2

(132,830; 2.58s) (b) GVNS (131,797; 9.18s) (c) RCBS (137,820; 7298.88s)

Fig. 6: The visualization of solutions for the USApHMPs with α = 0.75, p = 6 in the AP dataset. The hub nodes and links
between hubs are represented by red dots and red lines. The numbers at the end of the caption in each sub-figure represent
the solution values and corresponding computation time.

hub location problems, while GVNS can only be used to solve
several particular hub location problems, such as USApHMPs.

D. The visualization of solutions and further discussion

In the sections above, we have analyzed the properties of the
contraction methods by comparing the solution qualities and
computation time. In this section, the solutions for the US-
ApHMPs in the TR dataset and the AP dataset are visualized
in Fig. 5 and Fig. 6, respectively. At the end of the caption
in each sub-figure, there are two numbers that represent the
solution value and computation time. The hub nodes and links
between hubs are represented by red points and red lines. Here,
the results of GCM GVNS with k = n

2 are reported as the
representative of GCM because of its good performance in
Section V-C.

The visualization of results for the case of α = 0.3, p = 6
for the TR dataset is presented in Fig. 5. CPLEX (5(b)) and

GVNS (5(c)) provide the same allocation here. Note that two
nodes are selected as hubs in all the cases, i.e., node 6 and
node 34. They are Ankara and Istanbul (the capital and the
largest city in Turkey), respectively. Large flows enable them
to be selected as hub nodes. The selection of FD Flow-based
strategy for contraction is identified again. The results with
α = 0.75, p = 6 for the AP dataset are visualized in Fig. 6.

VI. CONCLUSIONS

In this paper, we proposed GCM, which explores and
exploits the idea of efficiently solving the large-scale hub
location problem in a contracted network, and then rewriting
the solution back to the original network. The USApHMPs
in the CAB dataset were solved to compare the properties
of different contraction strategies for GCM. In order to
evaluate the performance of GCM, the TR dataset and the
AP dataset were used as case studies. Several state-of-the-



art solution techniques (GVNS, RCBS and CPLEX) were
also implemented in order to evaluate the effectiveness and
efficiency of GCM. CPLEX and GVNS were used to solve
the contracted problems for GCM. There are several major
observations obtained from our evaluation. First, the FD Flow-
based strategy is the best contraction strategy for networks
with unevenly-distributed flows of nodes (like CAB, TR, and
AP) for GCM. The numbers of nodes (n) and hubs (p) should
be considered for selecting an appropriate contraction size (k).

Second, GCM can be used directly by solving the contracted
problems with CPLEX for newly designed problems without
efficient solution heuristics. If an appropriate method for the
problem is known (like GVNS for USApHMP), the compu-
tation time could be reduced further with small solution gaps
by solving the contracted network with this method. On the
other hand, better solutions could be obtained by setting larger
contraction size because of the reduced computation time. This
further highlights the generality of GCM.

In our study, we used GCM to solve uncapacitated single
allocation p-hub median problems. We believe that the idea
of contraction can be adapted to many other hub location
problems (such as r-allocation p-hub median problems [31],
p-hub center problems [32] and capacitated hub location
problems [33]) and other types of location problems [34]. Our
methodology contributes towards the development of easily
scalable solution techniques.

ACKNOWLEDGMENT

This study is supported by the Research Fund from Na-
tional Natural Science Foundation of China (Grant Nos.
61650110516,. 61601013, 61521091, and 91538204).

REFERENCES

[1] M. E. O’Kelly, “A quadratic integer program for the location of
interacting hub facilities,” European Journal of Operational Research,
vol. 32, no. 3, pp. 393–404, 1987.

[2] S. Gelareh and S. Nickel, “Hub location problems in transportation net-
works,” Transportation Research Part E: Logistics and Transportation
Review, vol. 47, no. 6, pp. 1092–1111, 2011.

[3] X. Sun, S. Wandelt, M. Hansen, and A. Li, “Multiple airport regions
based on inter-airport temporal distances,” Transportation Research Part
E: Logistics and Transportation Review, vol. 101, pp. 84–98, 2017.

[4] X. Sun, S. Wandelt, and X. Cao, “On node criticality in air transportation
networks,” Networks and Spatial Economics, pp. 1–25, 2017.

[5] X. Sun, S. Wandelt, and F. Linke, “On the topology of air navigation
route systems,” in Proceedings of the Institution of Civil Engineers-
Transport, vol. 170, no. 1, 2017, pp. 46–59.

[6] H. Yaman and G. Carello, “Solving the hub location problem with
modular link capacities,” Computers & Operations Research, vol. 32,
no. 12, pp. 3227–3245, 2005.

[7] H. Kim and M. E. O’Kelly, “Reliable p-hub location problems in
telecommunication networks,” Geographical Analysis, vol. 41, no. 3,
pp. 283–306, 2009.

[8] J. F. Campbell and M. E. O’Kelly, “Twenty-five years of hub location
research,” Transportation Science, vol. 46, no. 2, pp. 153–169, 2012.

[9] M. Sasaki, J. F. Campbell, M. Krishnamoorthy, and A. T. Ernst, “A
stackelberg hub arc location model for a competitive environment,”
Computers & Operations Research, vol. 47, pp. 27–41, 2014.

[10] M. E. O’Kelly, “The location of interacting hub facilities,” Transporta-
tion science, vol. 20, no. 2, pp. 92–106, 1986.

[11] H. Pirkul and D. A. Schilling, “An efficient procedure for designing
single allocation hub and spoke systems,” Management Science, vol. 44,
no. 12-part-2, pp. S235–S242, 1998.

[12] R. S. de Camargo, G. d. Miranda, and H. Luna, “Benders decompo-
sition for the uncapacitated multiple allocation hub location problem,”
Computers & Operations Research, vol. 35, no. 4, pp. 1047–1064, 2008.
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