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Abstract 

 Understanding and improving urban transportation networks is one of the 

key challenges in the 21st century, since the economy of a region largely 

depends on its accessibility. Existing studies on urban transport usually collect 

data by hand or directly receive them from network operators; making the data 

inaccessible for other researchers. This has three consequences: First, 

researchers spend a significant amount of time to obtain the data. Second, 

experiments often cannot be reproduced without having the same dataset. Third, 

results obtained for one network cannot be transferred to other networks easily. 

In this study, we use public available data from Openstreetmap to extract the 

subway networks for more than 150 cities worldwide, and propose several 

techniques to solve data inconsistency problems. Moreover, we investigate the 

potential of this data for urban complex network research and provide a 

preliminary comparison of the topology and the resilience of subway networks. 

Our work contributes towards understanding and improving cities’ 

infrastructure from a complex network point of view.   
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1 Introduction 

The understanding and improvement of urban transportation systems is one of the global 

challenges, since an efficient transportation network is one prerequisite for the well-functioning of a 

region. There are several modeling mechanisms for urban transportation systems, one of them is the 

view as complex networks [Von  Ferber et  al. 2009, Wandelt et  al. 2015, Sun et  al. 2017]. Complex 

network techniques have become very popular during the last decade, giving ground-breaking 

research on artificial and human-made systems modeled as a network of nodes interconnected by 

links [Newman2003, Barabási2016, Costa et al. 2007]. Existing studies on the analysis of urban 

transportation networks often rely on hand-curated data or data from network operators [Huynh et  

al.m 2016, Fielbaum et  al. 2016]. In the former case, the preparation of data is rather time-

consuming and it is often difficult to transfer results from one urban region to another, simply 

because of different data modeling and processing methodologies. In the latter case, one needs to rely 

on the cooperation of network operators to publish their infrastructure and schedule data online. 

While there has been a great progress in this area recently, following the Open Big Data movement, it 

is still difficult to obtain consistent and comparable transportation datasets for different urban 

regions. This limitation of data availability has two major consequences. First, the unavailability of 

data makes it very difficult to reproduce results of studies and use them in other scenarios. Second, 

with more data available to the public, more researchers will attempt to solve real-world problems 

with this data. Some work already geared towards making data for single regions available for 

research purposes [Gallotti and Barthelemy2014].  
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The objective of this study is to address these data availability and data management challenges 

by investigating the possibility to extract urban transportation complex networks from Openstreetmap 

(OSM), a community-based effort to create a freely available map of the world, ran by a large 

number of volunteers [Haklay and Weber2008]. Since 2006, the year of the establishment of the 

Openstreetmap Foundation, the quality of the data, as well as the coverage, have increased 

significantly, particularly in regions with high population densities [Hochmair et  al. 2013]. This 

makes it possible to extract data for urban regions at a large scale and compare structural similarities 

and differences of networks.  

The paper is structured as follows. Section 2 introduces our algorithms and implementations for 

extracting a useful complex network representation of subway systems and Section 3 reports our 

initial results for comparing more than 150 urban subway networks, with a particular emphasis on the 

resilience analysis. With Section 4 we summarize our results and discuss some future research 

directions.  

2 Methodology 

A naive method for extracting the subway network of an urban region does not provide sufficiently 

accurate and cleansed data for sound complex network analysis. Therefore, in the following section, 

we introduce a few data management and cleansing techniques, which allow us to extract a useful 

and representative snapshot of the subway network inside a region. Our evaluation on several urban 

regions worldwide (Barcelona, Beijing, Berlin, London, and New York) shows that the methodology 

yields accurate and stable results for distinct parts of the world.  

2.1 Extraction of the base network 

In a first step, we extract the base physical infrastructure network from OSM, by identifying a super 

set of required elements first, in order to carefully remove redundant and unnecessary elements 

afterwards. Initially, we iterate all relations within the region of interest ( ) and identify all 

relations with either route=subway or subway=yes, denoted as . For all relations in , 

we extract their member way ids (added to ) together with member node ids (added to 

). Furthermore, for all member ids of the relation, we assign a derived mode by propagating 

subway mode information from relations to ways and from ways to nodes. Next, we iterate over all 

ways in the region ( ) and identify all ways tagged with either route=subway or subway=yes, 

plus all ways occurring in . For each such way, we check, whether it is annotated as a station. 

If yes, we extract the center point of the way polygon and add this node to . If not, we extract 

all way segments of the way and add them to . In the latter case, for all node member ids of the way, 

we assign a derived mode and added the relevant nodes to . Finally, we iterate the subset of 

nodes in  plus all nodes tagged as subway stations, and extract their geo-coordinates together 

with tag dictionary. If the node is tagged as a station, the node is added to . In a cleanup step, 

we first remove all links and stations from the network, which are being tagged as under construction 

(having disused=="yes" or "construction" as a key of the dictionary). Second, we remove all stations 

from the network, whose derived mode is not equal to subway. After this pre-processing, we have the 

following data:  

• : A set of nodes which build the subway network by providing way points.  

• : A set of links which constitute the base subway network after extraction.  

• : A set of stations which are candidates for being subway stations in the network.  
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2.2 Aggregating links and adding disconnected stations 

With the base network from the previous section, given by , , and , we address 

the problem of improperly/disconnected stations next. As discussed above, these stations are mainly 

introduced by mapping errors, where links are not accurately connected to a station, or when 

redundant stations are inserted after the initial layout of the infrastructure network was finished. In 

general, we want to attach stations to nearby links, whenever it is appropriate. In order to achieve 

this, we follow some simple rules:  

• We identify a set of connectable stations. All these stations are disconnected (i.e. the degree is 

0) and there is no other station within a given distance threshold. The rational is as follows: If 

there is a nearby connected station, then the disconnected station is very often redundant, i.e. 

has a similar name and location.  

• For each link, we use an approximation to find the connectable stations and connect the station 

if it is within a given perpendicular distance. We use the latter distance, since way segments 

often pass by a station very close, while the spanning nodes of the segments are not close.  

• A naive solution would be to compare all links with all connectable stations and check the 

distance. However, in order to avoid a quadratic time complexity, we use a KD tree [Error! 

Reference source not found.] over all connectable stations to find station candidates near way 

segments.  

In Algorithm 2.1, we formalize this method. The distances were chosen empirically, by analyzing 

datasets for different regions. These results showed that stations should be considered connectable, if 

there is no other connected station within 200m. Moreover, we found that the perpendicular distance 

between disconnected stations rarely exceeded 50m. Finally, we remove all stations which are still 

disconnected after this step. 

 



4 

 

 

2.3 Merging stations 

Following the previous steps, we have a subway network with all links passing through nearby 

stations. However, many stations are in fact redundant, because they have been introduced by 

different mappers or for modeling distinct purposes. From a complex network point of view, we are 

merely interested in one station per node. Therefore, we want to merge nearby stations into one node, 

as long as we have sufficient evidence that these distinct stations model the same object. The major 

question is how to decide whether two nearby stations should be merged. We follow a two-faced 

merging strategy here, based on two observations:  

1. The closer two stations are, the more likely they represent the same real-world object.  

2. Stations with similar names are more likely to represent the same real-world object.  

The proximity of two stations can be measured by their geographical distance (using the 

Haversine formula [Error! Reference source not found.]). In order to measure the similarity of two 

names, we exploit the relative edit distance between the two names encoded as strings: The edit 

distance, also known as Levenshtein distance [Error! Reference source not found.], between two 

strings,  and , is defined as the minimum number of add, remove, replace operations on 

symbol level necessary to transform  into . For instance, the edit distance between 

’Friedrichstraße’ and ’Friedrichstrasse’ is , since the ’ß’ in ’Friedrichstraße’can be replaced by one 

’s’ and the other ’s’ has to be added in addition. The edit distance is computed by standard algorithms 

following a dynamic programming model. The relative edit distance between  and  is 

then defined as . For example, the relative edit distance of ’Friedrichstraße’ and 

’Friedrichstrasse’ is , which means the strings are rather similar (with 0 indicating identity 

and 1 maximum dissimilarity). 

Based on the concept of relative edit distance, the overall algorithm for merging stations is 

introduced next. First, we build a KD tree over all stations. Afterwards, we iterate over all stations 

and find the nearest neighbor stations (within 500m distance). We compute the spatial distance and 

relative edit distance, and merge the two stations only if 

. This formula has been verified by experiments on 
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many urban city networks and, as required, decreases the likelihood of merging with an increasing 

distance. For each station pair, we record whether they are mergeable or not. In a second step, we 

decide which stations to be merged (we prefer to keep stations with names over unnamed stations, 

and prefer stations tagged as station). Finally, we iterate all links and replace stations by their 

representative station after merging. The algorithm is formalized in Algorithm Error! Reference 

source not found.. 

 

 

 

 

Region N L AvgDeg Density CC ASPL 

 New York 377 448 2.3 0.0063 0.09 19.2 

 Seoul 322 365 2.2 0.0071 0.02 19.2 

 Paris 303 356 2.3 0.0078 0.03 12.6 

 Shanghai 297 351 2.3 0.0080 0.02 14.4 

 Beijing 294 325 2.2 0.0075 0.02 16.6 

 London 257 302 2.3 0.0092 0.04 15.4 

 Madrid 249 284 2.2 0.0092 0.02 14.7 

 Tokyo 219 270 2.4 0.0113 0.06 10.5 

 Berlin 169 184 2.1 0.0130 0.02 14.1 

 MexicoCity 165 179 2.1 0.0132 0.03 12.5 

 Moscow 164 221 2.7 0.0169 0.17 8.9 

 New-Delhi 157 161 2.0 0.0131 0.01 18.3 

 Guangzhou 152 168 2.2 0.0146 0.01 12.8 

 Barcelona 151 168 2.2 0.0148 0.01 11.3 

 Duesseldorf 129 129 2.0 0.0156 0.00 15.5 
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Table 1: An overview over the Top 15 subway networks, according to the number of nodes in the 

giant component. Number of nodes (N), number of links (L), average degree (AvgDeg), density, 

average clustering coefficient (CC), average shortest path length (ASPL).  

 

2.4 Creating the logical network 

The previously described transformations have led us to a cleansed infrastructure network, with 

stations connected appropriately and redundant connections being removed. However, we still have 

many nodes modeling the detailed infrastructure, i.e., the physical layout of routes in between 

stations. From a logical, complex network point of view one is (usually) not interested in these, but 

rather like to have only links between stations. In order to create such a network, we extract the 

logical network, given the cleansed infrastructure network. Intuitively, we prefer to remove all non-

station nodes, i.e., all nodes which are only inside the dataset for modeling way points. Simply 

removing these nodes from the network will disconnect all stations. Therefore, we introduce our 

method for transforming the physical infrastructure network into a logical network below. 

First, we iterate over all stations in the network and find their direct neighbors, since we want to 

identify station pairs which are directly connected, without any other station on the way. Then, for 

each pair of stations, we compute the shortest geodesic path in the network. From the path, we extract 

the total length in km, as induced by the way segments spanning up the path. In general, we could 

add this link between these two stations to the logical network, weighted by the computed distance. 

In our experiments, however, it turned out that too many stations are connected. The reason is that 

railway-based vehicles can only follow infrastructure lines with physical limitations. In particular, 

rail-based systems will never turn on acute angles, but rather can only follow the infrastructure in 

limited curves. Based on our experiments with real urban networks, we decided to set the threshold 

for rejecting routes at , which eliminates these spurious railway track joins. The complete 

algorithm is formalized in Algorithm Error! Reference source not found.. Please note that if the 

nearest stations to the nodes spanning up a link are not identical (checked in Line 15 of 

Algorithm Error! Reference source not found.), we do not attach either of the stations. In our 

evaluation, we have not found any problems with this approach. However, another way would be to 

iterate over stations and assign them to closest links, using a MX-CIF tree or similar data 

structures [Error! Reference source not found.]. 
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Figure 1: A visualization of the Top 15 subway networks, according to the number of nodes in the 

giant component. The layout of the networks exhibits widely distinct structural properties.  

 TC "1 Topological properties of worldwide air transportation networks at six different aggregation 

levels." \l 1  

3 Preliminary Evaluation 

We evaluate our extraction algorithm on a set of cities obtained from Mapzen-provided Metro-

extracts3. At the time of our download (June 18th, 2016), the list consisted of 713 cities around the 

world. We obtained the OSM files in PBF format, which is a compressed representation of the 

original XML-based OSM files, based on Google Protocol Buffer. The algorithms proposed in this 

study were then executed on each of the files separately, using the Python package imposm4. Please 

note that not all these 713 cities have subway networks. In our experiments, we obtained a total of 

156 subway networks. For the sake of comparison, and in order to be able to compute particular 

network metrics, we report only results for the largest component in each of the subway networks.  

 

                                                           

3  The term "Metro" refers to metropolitan area and is not related to our goal of extracting a subway network. 

Mapzen provides a bounding-box based subset of OSM only, which is more convenient to use than the whole planet file, 

since the whole planet file is 40 GB. Link: https://mapzen.com/data/metro-extracts/ 

4  Link: https://imposm.org/ 
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Figure 2: Scatter plots for the number of nodes versus the number of links (left) and average shortest 

path length (right). We can observe a strong linear correlation between the number of nodes and 

links, with the only outlier being Moscow. There is a wide spread among average shortest path length 

for all subway networks, even for networks with comparable sizes. 

In order to analyze the extracted networks, we investigate a set of standard network properties, 

which have been introduced in the literature. We revisit the definition of these properties below, for 

convenience. For an introduction into the science of complex networks, we refer the reader to several 

excellent surveys/textbooks [Error! Reference source not found., Error! Reference source not 

found., Error! Reference source not found.].  

• Average Shortest Path Length: The average shortest path length of a network is the sum of the 

lengths of all shortest paths divided by the number of node pairs. This number represents the 

average number of steps it takes to get from one node to another.  

• Clustering Coefficient: The clustering coefficient of a node is the ratio of existing links 

connecting a node’s neighbors to each other to the maximum possible number of such links.  

• Degree: The degree of a node is the number of its direct neighbors.  

• Density: The density of a network is defined as , i.e., the ratio of the number of links  

to the number of possible links in the network.  

 

Figure 3: Robustness analysis for the Top 15 subway networks: The number of failed nodes against 

the relative size of the giant component for degree-based attacks (left) and betweenness-based attack 

(right). 

In Table Error! Reference source not found., we provide an overview over the Top15 subway 

networks, according to the number of nodes (=stations) in the network. In our experiments, New 

York has the largest number of stations (377) and largest number of links (448), which is more than 
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twice as much as the subway network ranked number 10 (Mexico City). The average degree of the 

nodes in the network (the degree measures the number of neighbors for a node) is between 2 and 2.7. 

The density of all network is rather low, indicating that we deal with very sparse networks: The 

probability of two random chosen nodes being connected is rather small. Similarly, the average 

(local) clustering coefficient, a measure for transitivity of a graph, is very low. This shows that the 

majority of the networks is line-based, compared to triangle-based. The average shortest path length 

(average number of stops between two randomly chosen nodes) is below 20; and increases with the 

number of stations in the network. To sum up, these subway networks have very small density and 

clustering coefficient, but a significantly varying average shortest path length. 

A visualization of the Top15 subway networks in shown in Figure Error! Reference source not 

found.. We can identify many similarities between the networks: All networks are clearly build 

around a center. The major difference between the networks is the coverage of the center. For 

instance, New Delhi and Duesseldorf only have a very few nodes in the center (main station), from 

which different subway lines leave into all directions. Cities like Paris and Beijing cover a much 

wider area in the center, where separate subway lines are only visible with a considerable distance 

from the most central node. On the other hand, the networks of Barcelona and Mexico-City do not 

reveal any clear network center. 

Next, we analyze all the networks, not only the Top15. In Figure 2 (left), we analyze the 

relationship between the number of nodes and the number of links in the network. It can be seen that, 

with the exception of Moscow, all points form a nice line. In fact, the ratio between the number of 

links and the number of nodes averages neatly around 1.19, i.e., for each station in the network, in 

average 1.19 links are added.  

In Figure 2 (right), we plot the average shortest path length versus the number of nodes in the 

network. The average shortest path length can be seen as a measure for the efficiency in the network: 

The shorter the length, the fewer hops a passenger needs to take between origin and destination. 

Interestingly, there is a wide spread in the average shortest path length, even for networks of similar 

sizes. This suggests that the arrangement of links in the network differs significantly between cities. 

An interesting example are the networks of New Delhi and Moscow: While both networks have a 

similar number of nodes, Moscow has ca. 60 links more. This small difference increases the 

efficiency of the network remarkably, as the average shortest path length in New-Delphi is two times 

higher than for Moscow. 
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One important property of complex networks is their robustness against random failures and targeted 

attacks of nodes in the network, which received much interest recently [Error! Reference source not 

found.]. Most networks are rather robust against random failures, but very vulnerable when the order 

of failing nodes is not at random. In particular, studies on the resilience of networks often use two 

network metric-attacking strategies to simulate failure of nodes in the network: Degree (number of 

neighbors of a node) and Betweenness centrality (how central is the node). In Figure 3, we show the 

results for the resilience analysis of the Top15 networks. Several interesting conclusions can be 

drawn. First, all networks break down rather fast: After the failures of 5–20 stations, the networks are 

broken into disconnected parts, and cannot provide reasonable transportation services anymore. 

Second, few networks are particularly vulnerable, e.g., New-Delphi and Duesseldorf. These networks 

have in common that they are built around few central main stations, whose failures will immediately 

disconnect large parts of the network. Other networks, e.g. New-York and Shanghai, are more robust 

against node failures. Third, the networks are more resilient to betweenness-based attacks than to 

degree-based attacks, which is not the case for many other transportation networks. The reason is that 

betweenness-based attacks preferably remove nodes in the center of a network, while degree-based 

attacks preferably remove transfer stations. 

4 Conclusions 

In this study we automated the extraction of worldwide subway networks from Openstreetmap. We 

showed that a naive extraction method does not lead to satisfying results, given inaccuracies during 

mapping and different mapping styles throughout the world. After applying appropriate data 

cleansing and repair techniques, the quality of the network increased significantly and, closely 

resembling the real networks, are useful for urban transportation research. Our preliminary evaluation 

on more than 150 subway networks around the world revealed interesting structural properties. 

Moreover, we found that subway networks are very susceptible to intentional failures; some of them 

being completely malfunctioning after only disabling a few stations.  

This study gears towards the development of a global mobility dataset, accessible and manageable 

for all researchers, and eventually, a vision of shared public data among scientists working with urban 

transportation data [Error! Reference source not found.]. We hope that our extraction methodology 

can be improved further and yield satisfying results across different transportation modes. Another 

challenge is the extraction of networks for very large regions, which needs to addressed by more 

careful use of data management techniques [Error! Reference source not found.]. 
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