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Abstract 

 Air transportation, as the dominant mode for long-distance passenger 

travels, plays a critical role for a sustainable and greener future. Therefore, the 

analysis and understanding of air transportation systems is crucial. We 

investigate air transportation networks and their layers as induced by spatial 

aggregation. Existing studies analyze network layers individually, ignoring 

interactions/couplings between the layers. Here, we aim to provide a unified 

understanding of the transitions among network layers, based on the worldwide 

air transportation networks for the year 2015. We derive aggregated network 

instances at six different levels. While few nodes are important at all levels of 

aggregation, others only become important for few aggregation levels. 

Moreover, we report our analysis results of different layers’ robustness.  
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1  Introduction 

With steadily increasing long-distance travel demand, air transportation networks become an 

essential part of transportation infrastructures in modern societies [Zanin and Lillo2013, Cook et  al. 

2015]. In order to better understand their structures and dynamics, a significant amount of research 

has been conducted, for instance, on topological properties of air navigation route networks [Sun and 

Wandelt2014, Sun et  al. 2017b], evolution of airport networks [Azzam et  al. 2013, Sun et  al. 2015], 

network resilience against airport closures or flight cancellations [Wei et  al. 2014, Wandelt et  al. 

2015, Sun et  al. 2017a], as well as multiplex properties of airline networks [Zanin2015]. It is 

nevertheless by and large recognized that modeling the network around individual airports only 

provides a limited view on air transport in general [O’Connor and Fuellhart2016]. This is especially 

relevant in metropolitan areas, with increasing long-distance mobility demand being served by more 

than one airport. Therefore, the conceptual notion of Multi-Airport Region (MAR) is often used in air 

transport research, defined as a group of two or more major commercial airports in a metropolitan 

region [O’Connor and Fuellhart2016]. For instance, intentional airport substitution inside a MAR is 

an efficient way to mitigate supply demand imbalances. The concept of MAR also facilitates the 

study of resilience of air transport systems: if an airport in a MAR was disabled, alternative airports 

could be identified as backups. Recently, the idea of airport aggregation has been further taken to the 

level of provincial and country networks [Wandelt and Sun2015]. Investigation and comparison of 

different aggregation levels of air transportation networks, regarding their topological features and 

connectivity, can reveal hidden network properties.  

In this study, we propose a new view on air transportation networks, taking different levels of 

aggregation into consideration. While other studies look at single such networks separately, we aim to 

provide a unified understanding of the transitions between airports/regions among network layers. As 

a case study, we investigate the worldwide air transportation network for the year 2015. Based on a 
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consistent global dataset, we first build the traditional airport network, for then obtaining all other 

aggregation levels through a contraction operation. In total, we derive aggregated network instances 

at six different levels: airports, cities, spatial distance of 100 km, spatial distance of 200 km, regional 

and country network. The aim of the analysis is to understand how the worldwide air transportation 

network evolves from fine-grained to coarse aggregation levels. Our results highlight some important 

facts, the main ones being that: 

1. The network structure varies significantly among different aggregation levels, and specifically, 

aggregated networks have higher clustering coefficients and shorter average path length. 

2. The importance of nodes gradually changes among aggregation levels, while few nodes are 

important in all of them. We also find that node degree and betweenness are weakly correlated at 

all aggregation levels. 

3. Resilience analysis suggests that networks at higher aggregation levels are more robust than the 

fine-grained counterparts. Moreover, airports in Asia and Europe are often more important for the 

network robustness than other airports.  

4. Most network communities follow geographical boundaries with few exceptions. The number of 

communities and their structures do not change significantly from fine-grained to coarse 

aggregation levels, which indicates that the community structure is a rather stable property of air 

transportation networks. 

The remainder of our study is organized as follows. Section 2 presents our methodology to 

construct multi-scale air transportation networks with different aggregation levels. In Section 3, we 

present the results of multi-scale worldwide air transportation networks for the year 2015. Finally, 

conclusions are drawn in Section 4.  

2  Data and Methodology 

We extract the global air traffic data from Sabre Airport Data Intelligence (ADI, 

http://www.airdi.net) to build the aggregated worldwide air transportation network for year 

2015. The data set contains information on a yearly basis for all commercial direct flights, including: 

origin/destination airports, number of passengers, revenue, average fare, and traffic type (scheduled 

or charter). This data is used to reconstruct the traditional airport network as follows: an airport is a 

node if it is either an origin or destination of any flight; and a link is created between two nodes if 

there is at least one direct flight between the corresponding airports. In general, all other aggregation 

levels are obtained by a contraction operation on the original airport network. Given a network with 

nodes  and links , we define a mapping , such that the domain of  is  and the range of  is 

the set of transformed nodes . The links  are obtained by applying the mapping to the nodes of 

each link in the original network, i.e. if , then we have . Below we 

describe how we derive the mapping  for all aggregation levels. 

• Airport network: The mapping  is simply an identity mapping, i.e. all airports in the 

network are preserved.  

• City network: The mapping  maps each airport to the city it belongs to. The information 

about the cities of the airports comes from the Sabre dataset.  

• Distance-based network of 100 km: The mapping , as inspired by previous research 

works on MARs [Bonnefoy2008, Bonnefoy et  al. 2010, Wittman2014, O’Connor and 

Fuellhart2016], is created as follows. First, we sort the airports according to the total number of 

passengers in the year 2015, including both inbound and outbound passengers. Next, we iterate 

over all airports in the descending order of passengers and compute the Haversine distance to all 

http://www.airdi.net/
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other airports. Once the distance to the larger airport is below a threshold , we assign that airport 

as belonging to the MARs of the larger airport. Finally, we mark the airport as being assigned to 

avoid reassigning it in the future.  

• Distance-based network of 200 km: The mapping  is created similarly to , with 

a threshold of . 

• Regional network: The mapping  is based on , and maps each city to its ISO 3166-2 

code. ISO 3166-2 is a short, unique alphanumeric code representing sub-national administrative 

territories of all countries in the world. In practice, the cooperating/competing regions can 

improve the overall system performance [Zhang et  al. 2011b]. Each code consists of two sub-

codes: a first ISO 3166-1 alpha-2 code of the country, and the second part containing up to three 

alphanumeric characters. For instance, the code US-AK stands for United States-Alaska. 

• Country network: The mapping  maps each airport to the country it belongs to, based on 

the region as codified by the ISO 3166-1 alpha-2 code. Following the previous example, the code 

US stands for United States.   

  

 Network metrics airport city havd100 havd200 region country 

 Number of nodes 3097 3034 2228 1373 1442 231 

 Number of links 50694 45701 38199 26948 29559 5675 

 Network density 0.01057 0.00993 0.0154 0.02861 0.02845 0.21363 

 Average node degree 32.7 30.1 34.3 39.3 41.0 49.1 

 Network radius 4 4 4 3 3 2 

 Network diameter 7 7 7 6 5 3 

 Average clustering 

coefficient 

0.61278 0.61951 0.62552 0.62191 0.6281 0.69392 

 Average shortest path 

length 

2.84307 2.83462 2.70962 2.56049 2.49874 1.82564 

  

Table 1: Topological properties of worldwide air transportation networks at six different aggregation 

levels. 

3  Results 

We report the results of our experimental evaluation, following the methodology outlined in 

Section 2. We provide an overview on standard topological properties of the network at different 

scales in Section 3.1. Section 3.2 discusses how the importance of nodes gradually changes from 

fine-grained aggregations to coarser levels. In Section 3.3, we analyze the resilience of all networks 

against random failures and targeted attacks. The community structure of all networks is compared in 

Section 3.4.  
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    Figure 1: Top ten nodes based on the number of airports in air transportation networks with four 

different aggregation levels. Large regions are highlighted with their convex hull as a black line. 

3.1  Network overview 

First, we discuss and compare several relevant topological properties for the six network aggregation 

levels. The results are summarized in Table 1. As one may expect, the airport and city networks have 

the largest number of nodes; and, with further aggregation, the network’s size and link density 

respectively decreases and increases. The country network, the coarsest aggregation, has 231 nodes 

and a 20 times higher density than the original network. Accordingly, the average node degree is 

increasing from around 30 to almost 50. Radius, diameter, and average shortest path length of the 

network are gradually decreasing with higher aggregation levels, meaning that the nodes are 

becoming closer to each other. The clustering coefficient is rather stable, ranging from 0.61 to 0.69.  

We have performed additional experiments to analyze whether these derived networks can be 

considered as small-world. In a small-world network [Watts and Strogatz1998], nodes tend to form a 

large number of triangles, thus indicating a dense micro-scale connectivity; but, at the same time, this 

does not affect the average distance between pairs of nodes, which scales sub-linearly with the size of 

the network. This yields a simple two-fold criterion to assess the small-world property of a network: 

first, an average clustering coefficient significantly higher than an equivalent random network, 

constructed with the same number of nodes and links; second, a similar average shortest path length 

[Watts and Strogatz1998]. Our experiments show that all networks considered in this study are small-

world. The average shortest path length of the air transportation network ranges from 1.8 (country) to 

2.8 (airport, city); while the clustering coefficients are from 0.62 (airport, city) to 0.69 (country). For 

the random network counterparts, however, we observe clustering coefficients between 0.01 (airport, 

city) and 0.21 (country), i.e. significantly lower than in the real-world networks.  

Figure 1 reports the top 10 nodes in the aggregated networks, ranked according to the number of 

airports in each of them mapped. The highest-ranked city is London, which is served by five (rather 

large) airports: STN (London Stansted), YXU (London Municipal Airport), LTN (London Luton 

Airport), LGW (London Gatwick Airport) and LCY (London City Airport). However, London is a 

rather exceptional case of a multi-airport city, given that the majority of cities only have one or two 
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airports. The aggregation by Haversine distance is dominated by airport BET (Bethel Airport), 

located in Alaska, US, followed by LHR (London Heathrow, UK) and EWR (Newark Liberty 

International Airport, New Jersey, USA). In general, at the Haversine-distance aggregation level, we 

already find several larger airport regions. At the regional level, Alaska (US-AK) is ranked first, 

containing 132 airports. This latter result deserves further discussion. The size of areas identified by 

ISO 3166-2 codes is rather heterogeneous: while US-AK covers around 1.7 million , other 

regions are significantly smaller - for instance DE-BR (Brandenburg in Germany) only covers 30,000 

. Therefore, the aggregation based on such regions should be understood from an administration-

induced point of view, where the (regional) government can make decisions on the development of 

their airports, or at least provide incentives to set a direction for future development. Similarly, the 

nodes aggregated at country level are to be understood as under control of the national government 

and national authorities. Not surprisingly, US is ranked top in our list with more than 500 active 

airports used for passenger transportation. Altogether, it can be seen that the country ranking 

according to the number of airports largely coincides with their respective sizes, since larger 

countries often need more airports to ensure an efficient passenger transportation.  

 

    Figure 2: Top ten nodes based on degree centrality in air transportation networks with six different 

aggregation levels. Large regions are highlighted with their convex hull as a black line. 
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    Figure 3: Top ten nodes based on betweenness centrality in air transportation networks with six 

different aggregation levels. Large regions are highlighted with their convex hull as a black line. 

3.2  Node importance 

After having discussed some global properties of the reconstructed networks, we here descend to the 

micro-scale to analyze the importance of individual nodes. Several standard metrics are available to 

quantify the node importance from a complex network point of view, the most important and well-

known being the degree and the betweenness centrality. The degree centrality of a node reflects its 

number of direct neighbors, normalized by the total number of nodes. Passengers of an airport with a 

high degree centrality can reach more airports within one step, i.e. using a single flight. The 

betweenness centrality, on the other hand, measures how frequently a node appears on the shortest 

paths of a network.  

We first discuss the degree centrality. Figure 2 presents the top ten nodes ranked according to this 

metric, for the six aggregated air transportation networks. One can observe that the majority of 

important nodes is located in Western Europe and Northern America. London and Amsterdam, for 

instance, are extremely influential according to their degree centrality. We also report the results for 

betweenness centrality. Figure 3 presents the top ten nodes ranked according to this metric. One can 

observe that the majority of important nodes is located in Western Europe and Northern America.  
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Figure 4: Scatter plot of degree centrality vs. betweenness centrality in the six aggregated air 

transportation networks. There is no strong correlation between the degree centrality of a node and its 

betweenness centrality in the networks, expect for the case of country network.  

   

Figure 5: Scatter plot between the number of airports and betweenness centralities in the six 

aggregated air transportation networks at a semi-log scale. With the levels of aggregation going from 

single airports to country entities, betweenness centralities do not scale up. 
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Figure 6: Robustness analysis of the six aggregated air transportation networks: Intentional attacks 

(degree-based (deg), betweenness-based (betw), and the number of airports for an aggregated node) 

as well as random failures (rand1, rand2, and rand3 are three random attacks to the network).  

Figure 4 presents the scatter plot of the degree vs. the betweenness centrality in the six aggregated 

air transportation networks. All aggregation layers present a weak linear correlation (  between 0.64 

and 0.71) between both centralities, with the exception of a quadratic relationship in the case of the 

country network (  of 0.90); both metrics thus agree on the identification of the most important 

hubs. An interesting question is whether the betweenness centrality of a node is strongly connected to 

the number of airports aggregated into that node; in other words, do more airports lead to higher 

centrality values? Figure 5 shows the scatter plots between the number of airports and betweenness 

centralities in the six aggregated air transportation networks at a semi-log scale. Surprisingly, no 

correlation is observed, thus indicating that putting more airports into a region does not necessarily 

increase the importance of that region.  

3.3  Network robustness 

Air transport, like all other critical infrastructures, is required to maintain the highest fault tolerance 

[Freeman et  al. 2013, Zhang et  al. 2011a, Lee et  al. 2014], since disruptions have huge economic 

and societal impacts [Ball et  al. 2006]. For instance, due to an overnight snowstorm on March 12, 

2013, Frankfurt airport was closed and airlines cancelled about 700 flights. The 2010 ash cloud over 

Europe, caused by eruption of Icelandic volcano Eyjafjallajökull, is estimated to have caused losses 

of approx. 3.3 billion Euro for large European airlines [Mazzocchi et  al. 2010]. Therefore, analysis 

of the robustness is a critical and important issue in air transport, especially for the deployment of 

future improvements. In this study, we quantify the robustness of the network against random failures 

and targeted attacks by measuring the size of the giant component, as often performed in related 

studies [Lordan et  al. 2014, Wang et  al. 2014]. 
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    Figure 8: Community structures in the six aggregated air transportation networks with the Louvain 

method, different colors represent different communities. The communities of the networks largely 

coincide with the administrative boundaries of regions. The number of communities is stable for all 

aggregation levels. 

Figure 6 presents the results of the robustness analysis of the six aggregated air transportation 

networks, for both intentional and random attacks. Intentional attacks disable nodes based on certain 

network metrics: we here consider node degree and betweenness, as previously defined. Essentially, 

the robustness curve of the networks for random failures is along the diagonal line, which means that 

worldwide air transportation networks are rather robust against random failures. Under intentional 

attacks, as induced by degree and betweenness rankings, the network breaks down into isolated 

components much faster. In general, networks at higher aggregation levels, e.g., distance-based 

MARs and country networks, are more robust than the fine-grained counterparts, e.g., airport and city 

networks. One possible explanation is that the aggregated networks have a higher link density, see 

Table 1.  

3.4  Communities 

In complex networks, the notion of community has been developed to identify nodes which are 

densely connected within a group, yet sparsely connected with other groups in the network. The 

detection of communities helps to understand the underlying structures of the network and 

identifying hidden properties between nodes [Palla et  al. 2005, Zhou2003]. In this study, we use the 

widely-known Louvain method [Blondel et  al. 2008] to identify communities in the network. The 

Louvain method is a greedy one, in that it attempts to optimize the modularity of partitions in the 
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network using a sequential procedure, which starts with smaller communities and gradually analyzes 

larger ones. Figure 8 presents the community structures in the six aggregated air transportation 

networks. We find that the communities of the networks largely coincide with the administrative 

regional boundaries. The number of communities is stable for all aggregation levels (usually around 

10 communities are identified by the Louvain method). One interesting insight is how the West-

African coast belongs to the community of Western Europe in all aggregation levels, while the rest of 

Africa is strongly connected to the Arabian region, with connections up to India. 

4  Conclusions 

In this study, we have explored the complex network properties of the worldwide air transportation 

network at six aggregation levels. At each level, nodes have either been aggregated according to a 

distance measure, or to the corresponding administrative boundary. The major findings are 

summarized below. 

1. Network structure: The network structure varies significantly between different aggregation 

levels. The number of nodes ranges from 231 in country network to 3097 in the airport network. 

The country network is much denser (21%) than the city network (1%).  

2. Node importance: The importance of nodes in aggregated networks changes gradually with the 

aggregation level. While few nodes are important at all levels of aggregation, e.g. 

LHR/London/Great Britain or JFK/New York/US, others only become important at some specific 

scales, e.g. SIN/Singapore or Canada.  

3. Network robustness: The degree and the betweenness of a node provide necessary information to 

reduce the functionality of the network, as measured by the size of the giant component. In 

general, networks at higher aggregation levels, e.g. distance-based Multi-Airport regions and 

country networks, are more robust than the fine-grained counterparts, e.g. airport and city 

networks.  

4. Communities: Previous research works were not conclusive on whether communities induced by 

the air transportation structure coincide with geographical and political boundaries. We find that 

indeed most communities follow geographical boundaries, with few exceptions.  

Our current study focuses on topological properties of the worldwide air transportation networks at 

six different aggregation levels; as well as how the networks evolve from fine-grained to coarse 

granularity. In future works, the analysis could be complemented with weight information, using for 

instance information about the number of passengers or number of flights for each direct connection. 

The temporal evolution of the multi-scale properties of the network could also be studied further, in 

order to derive policy implications [Gil-Alana et  al. 2013]. Moreover, additional measures of 

network robustness could be used [Chow et  al. 2015, Pien et  al. 2015, Wandelt et  al. 2017]. Finally, 

our research on network aggregation can be taken over to other modalities, e.g., public transit 

networks from GTFS-encoded datasets [Wandelt et  al. 2016a] or railway networks [Wandelt et  al. 

2016b]. 
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