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Abstract

In this research, we study the Multi-Commodity Flow Problem (MCFP) in the context of air trans-
portation systems. MCFP deals with assigning a variety of goods to flow from sources to their destinations
in a network. While many optimization problems in transportation networks can be formulated as
classic MCFP, previous research mostly considered the edge capacity as a network flow constraint.
Based on traditional path-flow model and edge-flow model, this research proposes new modifications
with the consideration of node capacity in the network. In addition, we implement new optimization
heuristics improving the path-finding stage of the algorithm. These optimizations allow us to solve the
MCFP for networks with around one hundred nodes. Based on these results, we define and compute
the node-dependency relationship in MCFP networks. For preliminary evaluation, our novel techniques
are evaluated on an air transportation network consisting of 164 nodes. The experiment showed that
dependencies on a node are the results of joint influence of the network structure factors and flows.
Moreover, the dependencies in our network come in geographical clusters.
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I. INTRODUCTION

The multi-commodity flow problem (MCFP) deals with the assignment of commodity flows
from sources to destinations in a network. If the commodities don’t influence each other, then
the problem can be solved by solving each single-commodity problem. However, in practice,
commodities often share the same set of arcs and nodes. For example, in air transportation,
passengers with different origin-destination pairs might share the same physical flight. Thus,
solving the single-commodity problem is not an option, if we are interested in optimal results[1].

MCFP has been studied by a number of researchers with a variety of methods, such as
column generation, Lagrangian relaxation, and Dantzig-Wolfe decomposition. Tomlin (1966) first
proposed the column generation approach which is one of the frequently-used methods [2]. He
was also one of the early users of the general Dantzig-Wolfe decomposition approach. In the
next half a century, a number of new algorithms based on column generation idea and Dantzig-
Wolfe decomposition have been presented. The branch-and-bound approach based on column
generation can be used to solve MCFP. Further, Barnhart et al. (2000) proposed a modified
version for origin-destination integer multi-commodity flow problems [3]. They improved the
algorithm for the path-flow model by presenting a new branching rule and adding cuts. The cuts
can observably reduce the computational complexity in majority situation. The Dantzig-Wolfe
decomposition has also been improved by researchers. Karakostas (2008) proposed polynomial
approximation approaches based on Dantzig-Wolfe decomposition for MCFP [4]. The schemes
were based on some previous algorithms [5][6] and the computation time depended least on
the number of commodities. Models based on paths were usually used while solving MCFP in
the past. However, Pierre-Olivier et al. (2013,2015) presented a point that path flows could be
represented by other variables. In order to solve the maximum concurrent flow problem that is a
portion of MCFP, they proposed a generic aggregate model based on column generation [7][8].
Instead of generating paths for each commodity, they generate groups of paths in appropriate
ways. They introduced 3 ways in their paper that the commodities can be aggregated into trees,
into a single set, or into several trees. After comparing with primary models, the generic aggregate
model was shown to be good in computing time. Based on previous research, MCFP can also be



modified, such as the bi-objective problem. In order to solve this problem, Moradi et al. (2015)
proposed a column generation approach [9]. The algorithm was a combination of simplex method
and Dantzig-Wolfe decomposition. It was shown that the average computation time doesn’t
necessarily increase with increasing the number of commodities. In addition to the research
above, there are also researchers studying the application, such as [10][11][12][13][14][15]. In
our work, based on the column generation approach, we present new modifications of the path-
flow model and show how this leads towards effective quantification of node dependencies in
networks.

In this paper, two modifications of previous model for solving MCFP are proposed. Most
previous research on MCFP only considered the traffic capacity on edge as one network flow
constraint. In the real-world transportation networks, the number of passengers who can get
through a node within a certain time is limited. We incorporate this information into our model.
Moreover, new algorithms for reducing computation time are also implemented. Based on these
algorithms, we are interested in studying the importance of nodes in multi-commodity flow
networks. This importance can be assessed by the effect of one node’s absence on the whole
network. Similarly, the effect of one node’s absence on one other node can be used to denote
the dependency of the second node on the first one. Node dependencies have been studied by
several researchers. A portion of previous research was based on a structure of the node’s local
surrounding [16]. However, Kenett et al. (2012) proposed a new method to analyse the activity
and topology dependencies between nodes in directed networks [17]. The approach was able to
show hidden properties on the network structure. Despite all this, the node dependencies based
on network flows have not been studied in previous research. Therefore, dependencies between
nodes that denotes effect of one node on the passenger flows from the other node in MCFP
networks is obtained in this paper.

This paper is organized as follows. The problem description and modifications of two models
are proposed in Section II. Two improved algorithms for finding paths are presented in Section III.
Dependencies between nodes and node groups in MCFP are quantified in Section IV. In Section
V, an air transportation network including 164 nodes and over 4000 edges is chosen as a case
study. This paper concludes with Section VI.

II. PROBLEM DESCRIPTION AND MODEL MODIFICATIONS

In this section, MCFP is described and two modifications based on previous models [10] are
presented.

A. Problem description
We introduce the MCFP in the context of passenger transportation below. Let G = (V,E) be

a directed graph with n nodes and m edges, where V and E are the sets of nodes and edges,
respectively. Each edge (i, j) has a length of cij and a capacity of capij . Now, passengers need
to be transported from origin nodes to their destination nodes. Let the passengers with the same
origin and same destination be in a group and K be the set of these groups. For each group
k ∈ K, o(k) and d(k) represent the origin and destination of k, respectively. dk is the travel
demand (i.e. the passenger number) of k. Now, we need to find the minimum value of the total
path length for all passengers, satisfying all travel demand in set K. The problem above is the
traditional MCFP; it only considers the edge capacity as a network flow constraint. In this paper,
the node capacity is considered as a new restriction. Assume the capacity of node i is capni. To
solve the new problem, we improve the old model [10] and then get the new ’path-flow model’
and ’edge-flow model’.

B. Path-flow model
The path-flow model is based on an obvious fact that every group k needs at least one path

from its origin to destination, and these paths consist of a series of edges laid end to end. For



each group k, we assume that Hk is the set of paths from the origin to destination of k, and fk
h

is the travel flow on the path h ∈ Hk. Then we have the path-flow model:

minimize z(f) =
∑

(i, j)∈E

∑
k∈K

∑
h∈Hk

fk
hδ

h
ijcij (1)

subject to
∑
h∈Hk

fk
h = dk, ∀k ∈ K (2)∑

k∈K

∑
h∈Hk

fk
hδ

h
ij ≤ capij, ∀(i, j) ∈ E (3)∑

k∈K

∑
h∈Hk

fk
h δ̃

h
i ≤ capni, ∀i ∈ V (4)

fk
h ≥ 0, ∀k ∈ K, ∀h ∈ Hk (5)

where f = [..., fk
h , ...]h∈Hk, k∈K is the flow vector on all the paths.

The total path length of all passengers is represented in equation (1). The equation (2)-(5)
represent travel demand constraint, edge capacity constraint, node capacity constraint, and non-
negative constraint, separately. ∆ = [δhij] in equation (3) and ∆̃ = [δ̃hi ] in equation (4) are the
incidence matrixes between paths and edges as well as paths and nodes. They can be defined as
the follows:

δhij =

{
1, if edge (i, j) is in path h

0, otherwise
(6)

δ̃hi =

{
1, if node i is in path h

0, otherwise
(7)

With the model above, MCFP can be solved generally. However, there may be a case that the
travel demand in equation (2) can not be completely satisfied due to the edge or node capacity.
At this time, the maximum number of passengers that can be transported should be computed
first. Assume the number is nm. Then the MCFP can be solved by adding the constraint (8)
and replacing ′ =′ with ′ ≤′ in (2). In addition, new algorithms for finding paths is proposed in
Section V-A. It can reduce path-finding time significantly.

∑
k∈K

∑
h∈Hk

fk
h = nm (8)

C. Edge-flow model
For each group k, the travel flow on edge (i, j) is represented by gkij , so we have:

minimize z(g) =
∑

(i,j)∈E

∑
k∈K

gkijcij (9)

subject to
∑
j∈N+

i

gkij −
∑
j∈N−

i

gkji = bki , ∀i ∈ V, ∀k ∈ K (10)

∑
k∈K

gkij ≤ capij, ∀(i, j) ∈ E (11)∑
k∈K

(
∑
j∈N+

i

gkij +
∑
j∈N−

i

gkji) ≤ capni, ∀i ∈ V (12)

gkij ≥ 0, ∀k ∈ K, ∀(i, j) ∈ E (13)



where g = [..., gkij, ...](i,j)∈E, k∈K . is the flow vector on all the edges.
In a same way, equation (9) represents the total length for all passengers, and the equation

(10)-(13) represent node flow constraint, edge capacity constraint, node capacity constraint, and
non-negative constraint, separately. N+

i = {j ∈ V : ∃(i, j) ∈ E}, N−i = {j ∈ V : ∃(j, i) ∈ E}.
bki in equation (10) represents the change number of remained passengers on node i, and it can
be defined as follows:

bki =


dk, if i is the origin of k

− dk, if i is the destination of k

0, otherwise

(14)

D. Comparison of two models
After comparing the formulations of the two models, it is shown that there is a significant

difference between them. In a given MCFP, the dimension of variable g in edge-flow model is
constant and it is equal to the product of edge number and group number. However, the dimension
of variable f is uncertain. It is the number of selected paths. It is able to take all the paths into
account if the network size is small. However, the path number can increase rapidly as the growth
of the network scale. This indicates that the computational complexity of the model can be very
large. There exists the same trouble in the edge-flow model.

In this case, the advantages of the path-flow model come in handy. The complexity of the
problem can be kept outside the optimization. The path set is also allowed for scaling. It does
not need to take all the paths into account before the optimization. If we can find an appropriate
subset of paths and solve the problem with it, the computational complexity of the problem can
be reduced greatly [10]. Although the solution found with this method may be not optimal in
general, it can be acceptable in value.

III. HEURISTIC FOR PATH-FINDING

The ‘path-flow’ model is used in this study, and the first step during computation is path-
finding. For each group k, it is necessary to construct a set of available paths from its origin to
its destination. However, because of large numbers of nodes and edges, the number of paths can
be very large. A naive implementation at this stage will significantly limit the applicability to
real world networks. The advantage of path-flow model, proposed in Section II-D, can be nearly
seen here. Instead of finding all the paths for each passenger group k, we just need to construct
a promising subset of paths. The optimization problem is then solved on this subset. The goal of
MCFP is to get the minimum total path length solution. Therefore, short paths are more likely
to be used in the optimal solution. The passenger flows on long paths are often zero anyways;
e.g., air passengers having tickets from origin to destination with more than three stopover are
very uncommon.

Therefore, in the path-finding stage, the constraints of the path length and edge number are
considered in the algorithm. The path length for each group k should be less than α times of
the shortest path length. α > 1 is a coefficient. The edge number of each path must not exceed
a given number Ns.

As shown in Fig. 1, dis is the distance matrix of the network and next nodes(k) is a set of
nodes that have edges from the last node of path(k).

The algorithm can be simplified further because the path number for some groups can be still
a lot after selection by the algorithm above (For example, in Section V, when we set α = 1.5
and Ns = 3, there are hundreds or over one thousand feasible paths for almost each group k.).
Thus, after the selection by edge number constraint, a certain number of shortest paths can be
chosen to the path subset directly. This number is defined as Np.



Figure 1. path-finding algorithem

We name the two algorithms above after α-algorithm and Np-algorithm, separately. With these
two algorithms, we can find the subset of all available paths for each passenger group k. The
result got with this subset may not be the theoretically optimal solution. However, the flows on
most paths of optimal solution are zero, and what we choose are the short paths (in term of
length and edge number), so the result with smaller path set can be close to the theoretically
optimal solution if the parameters α and Np have appropriate values.

IV. NODE-DEPENDENCY

Dependencies between nodes have been studies by several researchers. However, most of them
focused on the structure or topology of networks. Therefore, dependencies based on network
flows are studied in this section. Dependency between nodes denotes effect of one node on the
passenger flow from the other node. Dependency between node groups is similar. Interestingly,
dependency of a node on the all-node set can show this node’s importance to the whole network
flow. In this section, we will introduce the dependency between nodes and node groups in MCFP
networks.

A. Model modification
When we consider the dependency of node s on node j in MCFP, the basic method is to study

the effect of absence of node j on the passenger travel situation from node s. Thus, we must
get the optimal assignments which transport the most number of passengers from node s to their
destinations, within the shortest path length in the case that node j is present or absent.

Therefore, we just need to consider the passengers sending out from node s. Let Ks represent
the set of passenger groups whose origin is node s, then the path-flow model can be modified
as follows:



minimize z(f) =
∑

(i, j)∈E

∑
k∈Ks

∑
h∈Hk

fk
hδ

h
ijcij (15)

subject to
∑
h∈Hk

fk
h = dk, ∀k ∈ Ks (16)∑

k∈Ks

∑
h∈Hk

fk
hδ

h
ij ≤ capij, ∀(i, j) ∈ E (17)∑

k∈Ks

∑
h∈Hk

fk
h δ̃

h
i ≤ capni, ∀i ∈ V (18)

fk
h ≥ 0, ∀k ∈ Ks, ∀h ∈ Hk (19)

B. Quantification of node dependency
In the model above, h ∈ Hk is a path connecting node s and destination node of k. The value

of fk
h is the flow on this path. Let Lk

h be the length of path h. We set two parameters DP (s|j+)
and DP (s|j−) that can denote the situation of passenger travel when the node j is present and
absent, separately. They can be formulated as follows:

DP (s|j+) =
∑
k∈Ks

∑
h∈Hk

fk
h (j

+)

Lk
h

(20)

DP (s|j−) =
∑
k∈Ks

∑
h∈Hk

fk
h (j
−)

Lk
h

(21)

where fk
h (j

+) and fk
h (j
−) are the passenger flows along path h when node j is present and

absent, separately. The values of fk
h (j

+) can be found in Section IV-A, and we can get fk
h (j
−)

in Section IV-C.
The aim of our model is to transport the most number of passengers within the shortest path

length, so for each path h with non-zero passenger flow, we sum up the ratios of fk
h and Lk

h.
Thus, we have the dependency of node s on node j:

D(s|j) = DP (s|j+)−DP (s|j−) (22)

Note that the numbers of passengers starting from different origins may be very different,
which results in differences of the value of the dependency of each node on itself. Obviously,
for each node, the dependency on itself is the largest. So, we can standardize D(s|j):

d(s, j) =
D(s|j)

max
j∈V

D(s|j)
=
D(s|j)
D(s|s)

(23)

Thus, d(s, j) is the dependency of node s on node j, and the range of its value is [0, 1].

C. The method with absence of node j
The path-flow model may have no feasible solution if the node j is absent, i. e. the travel

demand in equation (16) may not be satisfied completely. Thus, we should calculate the maximum
number of passengers starting from node s who can be transported to their destinations,



maximize nj(f) =
∑
k∈Ks

∑
h∈H

fk
h (24)

subject to
∑
h∈Hk

fk
h ≤ dk, ∀k ∈ Ks (25)∑

k∈Ks

∑
h∈Hk

fk
hδ

h
il ≤ capil, ∀(i, l) ∈ E (26)∑

k∈Ks

∑
h∈Hk

fk
h δ̃

h
i ≤ capni, ∀i ∈ V (27)

fk
h ≥ 0, ∀k ∈ Ks, ∀h ∈ Hk (28)

fk
h = 0, if j ∈ h, ∀h ∈ Hk, ∀k ∈ Ks (29)

Assume that the value of the optimal solution nj(f) obtained from the algorithm above is nm,
then we solve the minimum total path length problem:

minimize z(f) =
∑

(i,l)∈E

∑
k∈Ks

∑
h∈Hk

fk
hδ

h
ilcil (30)

subject to (25)(26)(27)(28)(29)(32) (31)∑
k∈Ks

∑
h∈H

fk
h = nm (32)

The solution fk
h (h ∈ Hk, k ∈ Ks) of this programme is just the fk

h (j
−) required in Section

IV-B.

D. Dependency between node groups
Similarly with the algorithm above, the dependency of node group S on node group J in

MCFP is related to the effect of absence of all nodes in J on the passenger travel situation
starting from nodes in S. Thus, we define DP (S|J+) and DP (S|J−) as follows:

DP (S|J+) =
∑
k∈KS

∑
h∈Hk

fk
h (J

+)

Lk
h

(33)

DP (S|J−) =
∑
k∈KS

∑
h∈Hk

fk
h (J

−)

Lk
h

(34)

where fk
h (J

+) and fk
h (J

−) are the passenger flows along the path h when all nodes in J are
present and absent, separately. Their values can be obtained similarly with fk

h (j
+) and fk

h (j
−)

in Section IV-A and Section IV-C. Then, we have

D(S|J) = DP (S|J+)−DP (S|J−) (35)

After standardizing D(S|J), and we get the dependency of node group S on node group J :

d(S, J) =
D(S|J)

max
J⊂V

D(S|J)
=
D(S|J)
D(S|S)

(36)

The range of its value is [0, 1].
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Figure 2. MCFP results for 599 groups I: The change of nm, path number, z(f), and computation time while Np increases
from 1 to 120.
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Figure 3. MCFP results for 599 groups II: The change of nm, path number, z(f), and computation time while α increases from
1 to 1.29.

V. EVALUATION

A. Description of the experiment
Our model is evaluated on an air transportation network as a case study. We select an air

transportation network consisting of 164 countries in the world. We simplify each countries to a
node at its centre and assume that all the passengers start from the centre of one country to the
centre of another country. Thus, we can construct a network with 164 nodes. Flights between
them are represented by 4496 edges. In total, there are 13420 groups of passengers between these
nodes.

TABLE I
25 SELECTED NODES

US: United States GB: United Kingdom DE: Germany ES: Spain CN: China

FR: France IT: Italy JP: Japan AE: United Emirates TH: Thailand

RU: Russian CA: Canada IN: India KR: South Korea TR: Turkey

SG: Singapore CH: Switzerland NL: Netherlands MY: Malaysia TW: Taiwan

SA: Saudi Arabia ID: Indonesia MX: Mexico AU:Australia BE: Belgium

MCFP in this air transportation network can be solved with the path-flow model. However,
note that the number of all groups 13420 is large. In order to obtain appropriate values of α and
Np for this network, a sub-problem with a subset of passenger groups can be solved first. The
subset consists of 599 passenger groups between 25 ‘busiest’ nodes. The 25 nodes are shown in
Table I. After solving the sub-problem, the primal problem with 13420 groups can be computed.

B. The results and analysis
1) MCFP solution: With matlab, the MCFP solution can be computed. In this section, Ns = 3

is fixed and results with different values of α and Np will be discussed.
Results for 599 groups are shown in Figure 2 and Figure 3. Different values of Np and α are

selected. In Figure 2, Np shortest paths are chosen for each passenger group. In Figure 3, path



TABLE II
MCFP RESULTS FOR 13420 GROUPS

Np nm no z(f) path number time/s

1 936,936,526 991,083,149 2.9252E+12 13,420 3640.9

2 958,070,402 991,083,149 3.0807E+12 26,834 3748.8

3 966,342,867 991,083,149 3.1510E+12 40,248 3890.8

4 970,031,210 991,083,149 3.1876E+12 53,662 4128.3

5 973,611,421 991,083,149 3.2219E+12 67,076 4268.9

6 975,346,709 991,083,149 3.2394E+12 80,486 4652.6

7 976,971,015 991,083,149 3.2527E+12 93,890 4974.8

8 977,874,862 991,083,149 3.2613E+12 107,290 5186.1

9 978,742,266 991,083,149 3.2685E+12 120,690 5115.0

10 979,410,264 991,083,149 3.2738E+12 134,084 5348.4

length constraint length(path) ≤ α ∗ length(shortestpath) is also satisfied. nm and no are the
actual transportation number and total travel demand, respectively. z(f) is the optimal total path
length.

It is shown in Figure 2 that nm/no = 97% of travel demand can be satisfied when Np = 1. It
indicates that most of passengers in these 599 groups can be transported with the 599 shortest
paths. The actual transportation number nm increases slowly with increase of Np.

Note that nm = no = 507, 425, 672 when Np = 60 (When Np = 50, nm = 507, 380, 143 < no,
although it seems they are very close in the figure.). It indicates all passengers can be transported
in this case. Then, when Np = 70, the value of z(f) decreases. It shows that extra 10 paths for
each group are used to get better assignment instead of to transport more passengers before.
When Np ≥ 70, the optimal total path length z(f) = 1.8343E + 12 is constant (When Np = 60,
z(f) = 1.8344E + 12). It has the same property in Figure 3 when α ≥ 1.14.

All travel demand can be satisfied and the optimal solution can be obtained with both two
algorithms. However, there is a wide difference between their computation time (about 10 times!).
That is because it must do a comparation between the shortest paths and each generated path in
the α-algoritm and it spends much time. Therefore, Np-algorithm should be selected for solving
the primal problem with 13420 groups

Results of the primal problem are shown in Table II. With Np increasing from 1 to 10, over
98.8% passengers can be transported to their destinations. Computation time also increases with
Np.

2) Dependency between nodes: With the algorithm in Section IV, the dependencies between
any two nodes in this MCFP network with 13420 groups of passengers can be obtained. As
shown in Table III, the number in ith row and jth column is the dependency of node i on node
j.

On the one hand, note that for one node i, dependencies on most of other 24 nodes are much
less than 1. It is also shown that these nodes with little influence on i are almost all far from
node i. In other words, nodes with significant influence on i are close to node i in general. For
example, there are only two numbers lager than 0.1 in the first row: d(US,CA) = 0.37 and
d(US,MX) = 0.21. From Table I, we can see that node US is United States and node CA,
MX are Canada, Mexico, respectively. Node CA and MX are the only two nodes close to node
US. This ‘close effect’ is also applied to other areas. In Western Europe, there are significant
dependencies between node GB (United Kingdom), DE (Germany), ES (Spain), FR (France) and
IT (Italy). In East Asia, node CN (China), JP (Japan), KR (South Korea) and TW (Taiwan Area)
have large influence on each other as well.

On the other hand, there exists a case that one node i is close to some nodes but its dependencies
on these nodes are tiny. For example, node GB (United Kingdom), DE (Germany), FR (France)



TABLE III
DEPENDENCIES BETWEEN 25 NODES

node US GB DE ES CN FR IT JP AE TH RU CA IN KR TR SG CH NL MY TW SA ID MX AU BE

US 0.04 0.02 0.01 0.01 0.02 0.01 0.02 0.00 0.00 0.00 0.37 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.21 0.00 0.00
GB 0.02 0.12 0.15 0.00 0.1 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.02
DE 0.01 0.15 0.13 0.00 0.07 0.08 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.03
ES 0.00 0.24 0.17 0.00 0.11 0.08 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.04
CN 0.01 0.01 0.01 0 0.00 0.00 0.12 0.00 0.1 0.01 0.00 0.01 0.22 0.00 0.04 0.00 0.00 0.03 0.31 0.00 0.02 0.00 0.01 0.00
FR 0.01 0.17 0.1 0.12 0.00 0.13 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.09 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04
IT 0.01 0.12 0.15 0.11 0.00 0.15 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04
JP 0.03 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.51 0.00 0.01 0.00 0.00 0.01 0.13 0.00 0.01 0.00 0.01 0.00
AE 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.11 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
TH 0.00 0.01 0.01 0.00 0.21 0.00 0.00 0.04 0.01 0.01 0.00 0.04 0.04 0.00 0.15 0.00 0.00 0.08 0.02 0.00 0.02 0.00 0.01 0.00
RU 0.01 0.02 0.07 0.04 0.02 0.02 0.04 0.00 0.02 0.01 0.00 0.00 0.00 0.05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CA 0.82 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
IN 0.02 0.03 0.01 0.00 0.03 0.01 0.01 0.01 0.3 0.07 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.03 0.00 0.09 0.00 0.00 0.01 0.00
KR 0.01 0.00 0.00 0.00 0.35 0.00 0.00 0.47 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.00 0.01 0.00 0.00 0.00
TR 0.00 0.04 0.23 0.01 0.00 0.02 0.02 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.01
SG 0.00 0.00 0.00 0.00 0.1 0.00 0.00 0.02 0.00 0.15 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.27 0.02 0.00 0.2 0.00 0.02 0.00
CH 0.01 0.15 0.22 0.08 0.00 0.15 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.03
NL 0.01 0.36 0.13 0.09 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01
MY 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.01 0.00 0.09 0.00 0.00 0.02 0.01 0.00 0.28 0.00 0.00 0.02 0.00 0.33 0.00 0.02 0.00
TW 0.01 0.00 0.00 0.00 0.65 0.00 0.00 0.17 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.02 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00
SA 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
ID 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.26 0.00 0.00 0.43 0.02 0.01 0.00 0.05 0.02
MX 0.8 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AU 0.03 0.02 0.00 0.00 0.08 0.00 0.00 0.03 0.01 0.04 0.00 0.00 0.02 0.01 0.00 0.09 0.00 0.00 0.07 0.01 0.00 0.13 0.00 0.00
BE 0.01 0.1 0.13 0.14 0.00 0.13 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.06 0.01 0.00 0.00 0.00 0.01 0.00 0.00

and IT (Italy) are all close to node CH (Switzerland), NL (Netherlands) and BE (Belgium),
but dependencies on these nodes in the 2nd, 3rd, 6th and 7th rows of Table III are small. It is
because of the passenger flow factors. This phenomenon shows that the structural factor of the
network can not guarantee a considerable dependency in this multi-commodity flow network.
Dependencies on one node are the result of joint influence of network structure and flows. It is
an interesting finding.

We provide a visual summarization of dependencies between countries in Figure 4.

Figure 4. Dependencies between countries: An arrow is drawn from country A to country B, if the dependency of A from B
is larger than 5%. The strength of the arrow is proportional to the dependency value.

3) Dependency between node groups: For further discussion, dependency between node groups
can be studied. Here we let one of the node groups be the set of 25 selected nodes denoted by
A and there are 3389 groups of passengers from A to all the 164 nodes. The other one is an
arbitrary node in A, that is denoted by j. Dependency of set A on node j is shown in Table IV.



TABLE IV
DEPENDENCY OF SET A

node j d(A, j) node j d(A, j)

US 0.1041 KR 0.0822

GB 0.2428 TR 0.0337

DE 0.2133 SG 0.0501

ES 0.1759 CH 0.0947

CN 0.1239 NL 0.0878

FR 0.1518 MY 0.0512

IT 0.1225 TW 0.0619

JP 0.0781 SA 0.0199

AE 0.0309 ID 0.0406

TH 0.0418 MX 0.0330

RU 0.0169 AU 0.0094

CA 0.0591 BE 0.0472

IN 0.0273

Next, the number of sum passengers that start from or arrive at node j which is denoted by
pn(j) is shown in Table V.

Similar to the Section V-B2, Table IV shows that dependencies on those nodes with several
close neighbours and appreciable passenger flows are considerable in general. This phenomenon
is obvious in some Western European nodes, such as node GB (United Kingdom), DE (Germany),
ES (Spain), FR (France) and IT (Italy). These nodes occupy important positions in set A.

Another interesting thing is that node US has a close number of passengers to node GB
(pn(US) = 96756227 and pn(GB) = 96791610), but the difference between dependencies
d(A,GB) and d(A,US) is over twice! Go back to Table I, it shows that node US is United
States and node GB is United Kingdom. In set A, node GB can be seen as a hub node and
several close neighbours help it get an important position. However, node US is a spoke node
and it is in the margin of the 25 nodes. This finding shows one node is important to a node set
if and only if this node has considerable number of close neighbours and large passengers flows
in the set.

TABLE V
SUM PASSENGERS OF EACH NODE

node passengers node passengers

GB 96,791,610 TW 28,437,185

US 96,756,227 MY 26,153,812

ES 84,558,791 ID 25,799,113

CN 81,157,741 TR 25,781,874

DE 80,269,238 CH 24,152,254

IT 51,665,756 MX 23,729,680

FR 47,755,201 AE 22,975,566

JP 45,290,605 NL 22,230,311

TH 34,139,534 RU 18,920,872

KR 34,110,903 AU 18,694,758

CA 32,759,138 BE 16,317,261

SG 32,489,286 SA 13,598,676

IN 30,315,952



VI. CONCLUSIONS

In this paper, node capacity constraints are considered in MCFP. Based on that, new modifi-
cation of path-flow model and edge-flow model were proposed. In order to shorten the time for
finding paths, we presented two algorithms: Np-algorithm and α-algorithm. In addition, the node-
dependency relationship in MCFP networks was studied. It was used to assess the importance of
nodes or node groups. Based on the model for MCFP, the dependency parameters with network
flows were presented.

In order to evaluate the algorithms, an air transportation network consisting of 164 nodes and
4496 edges was chosen as a case study. The implemented algorithms for path-finding were shown
to be efficient as long as the parameters Ns and α were assigned appropriately. After comparing
computation time of the two algorithms, Np-algorithm was shown to be better than α-algorithm.
In the experiment, on one hand, there were three large node clusters: Western Europe, East Asia
and North America. In each of them, nodes have high dependencies on each other. It showed the
influence of network structure on the dependencies. On the other hand, importance of some nodes
with several close neighbour nodes was shown to be insignificant. It was because of their limited
passenger flows. Therefore, in general, a node has considerable influence if and only if it has
good structure position and appreciable flows. For future work, we think that our techniques can
be applied for resilience analysis of multi-commodity flow networks. The importance of nodes
can also be used in the stability of network flows under attack.
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