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Abstract: Many real-world systems can be seen as complex networks, where nodes denote elements in the systems and links
denote relationships between elements. Since most of the real-world systems are vulnerable under disruptions, it is necessary
to perform research on network robustness. However, finding the optimal attack on networks is a NP-hard problem, thus many
methods based on ranking certain network metrics are proposed, for their low computational time complexity. Although strategies
can be obtained quickly according to the ranking methods, the quality of the strategies is unsatisfying, because no single metric
can represent all the properties of a network. In this paper, we propose a ranking-free method to attack networks. The main idea
of our method is to identify components, which are likely to be in the final network after attack. Our research targets a trade-off
between expensive optimal attacks and fast ranking-based heuristics. The evaluations, both on random networks and real-world
networks, show that our method behaves better than popular ranking methods.
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1 Introduction

During recent years, research on complex networks has
been a hot topic in many fields, such as social [1], traffic [2],
biological [3] and economic [4] networks. Some researchers
excavate the structure of the communities in the networks [5]
to analysis the group behavior of elements, especially for the
researches on social networks. The robustness of networks
recently stimulated researchers interest, given that a rather
small error or an intended attack may heavily damage a real-
world network. For example, there are several power system
blackouts, the most famous of which occurred in East Amer-
ica and Canada on August 28, 2003, resulting from only 4%
of the power grid crashing [6]. Among the researches on
the network robustness, most methods are based on rank-
ing nodes in terms of certain aspect of property. After rank-
ing nodes, attacking methods simply select nodes according
to the importance in a decreasing order. The reason for re-
searchers ranking nodes is that if one wants to attack a net-
work on a fixed number of nodes, computing the optimal
strategy is computationally expensive, and ranking methods
can obtain a relative good strategy with usually much lower
time complexity.

Among the current researches on network robustness,
there are several popular methods to find the vulnerability
of the network. Four of the most popular methods are de-
gree, betweenness, closeness and pagerank. Degree is the
simplest metric of networks denoting a node’s number of
neighbors. Betweenness of a node is the proportion of the
shortest paths through this node relative to the number of
total shortest paths in the network. Closeness of a node is
the reciprocal of the average distance between this node and
all other nodes in the network. All the details of these three
methods introduced above can be seen in [7]. Pagerank is a
dynamic ranking method where each node assigns its value
to all its neighbors according to the neighbors’ values, for
details see [8].

A new method called Collective Influence (CI) was pre-
sented recently to rank importance of nodes [9]. This
method defines a node’s importance as CIl(i) = (ki −
1)

∑
j∈∂Ball(i,l) (kj − 1), where i is the start node, ki means

the degree of node i and l is the distance between node i and
node j. Ball(i, l) means the set of all the neighbors, which
are l steps away from node i. Nodes with higher CI values
are more important in terms of the collective influence.

Different metrics usually induce different attacking strate-
gies. Moreover, when the number of attacked nodes in-
creases, shorter optimal attacks are not necessarily prefixes
of longer optimal attacks. However, when we restrict our-
selves to rankings, we can only have a version of importance
order of nodes for one network, independently of the length
of the attack. We conclude that methods based on ranking
network metrics have their merits, but also several limita-
tions when analyzing the robustness of a network.

In this light, we propose a method to detect vulnerability
of the network without solely ranking the nodes according
to a given network metric. We search the optimal attacks
on networks by counting out some components, which are
likely in the final networks after an attack of a given length.
Our method exploits the fact that attack resistance in net-
works is usually measured by the size of giant component
(GC size). Evaluations both on random networks and real-
world networks are presented in our study, comparing with
popular ranking methods. The results show that our method
can find better attacks than the other popular methods, at the
price of having a longer running time.

This paper are organized as follows: In Section 2, we dis-
cuss the limitations of ranking-based methods and introduce
our novel ranking-free method; In Section 3, we evaluate
our method on three types of random networks and three
real-world networks, compared with some popular ranking
methods; Section 4 presents the conclusion and future work.

2 Methodology

In this section, we introduce our method. Before introduc-
ing our method, we show the limitations of ranking-based
methods on four small example networks. In Figure 1, we
present four standard networks: a line network, a ring net-
work, a star network and a mesh network. Table 1 shows the
importance of the nodes in each network in Figure 1 accord-
ing to three popular ranking methods. For the line network,
if we want to attack one node, node a is the best choice ac-
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Fig. 1: Four types of example networks: line network, ring network, star network and mesh network.

Network degree betweenness CI (d = 2)
Line network a = b = c > d = e a > b = c > d = e b = c > a = d = e
Ring network a = b = c = d = e = f a = b = c = d = e = f a = b = c = d = e = f
Star network g > a = b = c = d = e = f g > a = b = c = d = e = f a = b = c = d = e = f = g

Mesh network a > c > b = d > f > e = g a > c = f > b = d = e = g f > b = c = d > a = e = g

Table 1: Importance of each nodes in example networks calculated by 3 popular methods.
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(b) Add the node a (the lowest degree) into the component.
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(c) When there are more than one nodes having the lowest degree, we
choose one from them according the order recorded in the method (here it
is node i).
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(d) When the set union of the component and its direct neighbors covers
the whole network, the search for the given initial node (here: b) stops.

Fig. 2: Four typical statuses of example attack on a network while counting out components. The red nodes means those in the component; the yellow ones
are the component’s neighbors (candidate choices).

cording to betweenness, but it is not the best one based on
CI (d = 2). In the ring network, all nodes in the network
are equally important no matter which method we use, since
the nodes cannot be distinguished based on graph-theoretic
properties. As for the star network, if we want to remove one
node, we cannot find difference on the basis of CI (d = 2)
method, since every node has the same importance in the
network. When it comes to mesh network, node a and node
c are the top two nodes according to degree and between-
ness methods, but they have the lowest status in terms of
CI (d = 2). Therefore, if we want to remove one node,
we will choose node a according to the first two methods,
but we would choose node f based on CI (d = 2). And if
the number of attacked nodes is two, degree and between-
ness’ choice should be node a and node c, while CI (d = 2)
will choose node f and node b, which is absolutely different
from that of those two methods. Another thing we should
note is that the theoretically best choices for a network are
always not a super-set of less-number attacks when the num-
ber of attacked nodes varies. However, if we want to attack

four nodes totally, the choice obtained according one rank-
ing method must be a combination of that of three attacked
nodes and one new nodes in the network, for the reason that
once a network is given, the importance of each nodes in the
network is fixed after executing an order-based prefix of an
attack.

Considering the limitations of ranking-based methods on
attacking networks, we design a method to attack networks
without explicitly exploiting rankings of node importance
only. Inspired by the measurement criteria of attacks on a
network, size of the giant component, we intend to find sets
of nodes that can divide the network into specific compo-
nents. When the number of attacked nodes varies, we search
different sets of nodes for the final attack choice. This makes
our method’s attack strategy different from ranking-based
techniques.

In Figure 2, we present an example for our method to
count out components. Let us assume, we want to identify
interesting components, starting from a random node; here
we use b. In the Figure 2 (a), if we start from node b, we put
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Fig. 3: Flow chart of our method. The left side shows the first step of our method; The right side shows the second step. The dashed frame denotes the scope
of the for loop, and when they are finished, the flow chart goes on.

it into a set that means a component (filled in red). Then we
make another set to hold the component’s neighbors (filled
in yellow). After we store the information of the component
and its neighbors, we choose one neighbor with the lowest
degree from all the neighbors (in this figure, it is node a).
The intuition is that this node in the network is particular
sensitive to an attack. The situation is depicted in Figure 2
(b). After we add node a into the component, the compo-
nent’s neighbors change. Then we record the new informa-
tion of the current component and its neighbors. When there
is more than one node having the lowest degree, as shown
in Figure 2 (c), we deterministically choose the node with
a smaller index. We repeat the steps above until the union
of the component and its neighbor nodes cover the whole
network, a situation which can be seen in Figure 2 (d).

Each set of neighbors, discovered during the previously
described search phase, stands for a candidate choice. Cut-
ting out the neighbors will yield the components discovered
up to that point. Thus far, we have constructed a set of can-
didate choices from one (random) node, and each candidate
choice contains one or more nodes. We repeat all the steps
above for each node in the network. After we have con-
structed all the candidate choices, we need to combine some
choices to be a final attack strategy. If we want attack k
nodes in total, we should consider all the candidate choices,
which consist of less than or equal to k nodes. Then we
choose appropriate subattacks according to the decomposi-
tion of k. For instance, decomposition of k could be k = k,
k = (k − 1) + 1, k = (k − 2) + 2, k = (k − 2) + 1 + 1

etc; we potentially need to consider many combinations. To
simplify this process, and investigate the potential of our
technique, we only consider to divide k into 2 parts in our
method, which can significantly decrease the computational
complexity. Our experiments below show that this simpli-
fication already helps to identify significantly better attacks
than ranking-based methods.

Overall, our method has two steps which are explained in
detail below:

1) Make a candidate choice pool: We first construct a
set named candidate choice pool to hold all the sets of
components’ neighbors, whose quantities are less than
or equal to k. The elements of the candidate choice
pool are used to combine the final attack, which con-
tains k nodes. From a start node, we add the node into
an empty set named component, then we have a com-
ponent consisting of only one node. Besides, we record
the neighbors of the component (node) into a set, and
put the set into the candidate choice pool. It is obvi-
ous that if we remove the set of nodes in the candidate
choice pool, we can at least obtain the component we
got beforehand. Next, we choose the neighbor with the
lowest degree from the component’s neighbors and put
it into the component set. After we extend the compo-
nent, we recheck the new component’s neighbors, and
put them into a new set, add it into the candidate choice
pool. The same as above, if we remove nodes in the
new component’s neighbors, we can at least obtain the
new component. The reason why we choose the neigh-
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Fig. 4: The size of giant component (GC size) of three random networks calculated by our method and others’ after first 20% attack; ER stands for Erdös-
Renyi network; BA represents Barabasi-Albert network; WS means Watts-Strogatz network.
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Fig. 5: Running time for 3 random networks in log scale calculated by our method and others’ after first 20% attack; ER stands for Erdös-Renyi network; BA
represents Barabasi-Albert network; WS means Watts-Strogatz network.

bor with the lowest degree here is that though ranking
methods behave poorly in attacking networks, we be-
lieve this kind of nodes are more likely to be in the final
network after attack. We repeat all the procedures of
the start node on each node in the network.

2) Combine some candidate choices into a final attack
strategy: After step 1, we have got a candidate choice
pool consisting of all the candidate choices we have de-
tected. We choose those choices containing less than or
equal to k nodes. Since considering all the decompo-
sition of k is computationally hard, we only concern to
divide k into two parts in our method. For each addend,
we choose a candidate choice consisting of the same
number of nodes, and combine them. Every combina-
tion could be a final attack strategy, and then we record
GC size after attack of each strategy. The best strategy
is that with the lowest GC size.

To visualize our method, we present the flow chart in Fig-
ure 3. The left side of the flow chart represents the first step,
and the right side corresponds to the second step.

3 Evaluation

In this section, we will present our method’s effectiveness
on three types of random networks and three different real-
world networks, compared with ranking-based techniques.

Both, the size of the giant component (GC-size) and run-
ning time, are shown in the evaluations, as the percentage
of attacked nodes increases from 0% to 20%; thus the focus
of our evaluation is on finding good initial attacks, which is
what network scientists are usually interested in. We per-
form all experiments on a laptop with Intel(R) Core(TM)
i7-4610M CPU @ 3.00GHz processor and 4.00 GB main
memory in Python 3.4.1 on Fedora 23.

3.1 Evaluation on random networks
In this part, we evaluate our method on three types of ran-

dom networks with 100 nodes. Before presenting the results
of the experiments, we will introduce the properties of these
random networks first.

1) Erdös-Renyi (ER) network. To obtain an ER network,
2 parameters are needed, including the number of the
total nodes n and the probability to make a new link
p. The probability of ER networks means that for each
pair of nodes in the network, a link between them exist
at the possibility of p. Therefore, in the ER network,
there are approximately p ∗ C2

n links. A larger p stands
for better robustness of the network.

2) Barabasi-Albert (BA) networks. In this type of random
network, there are also 2 variables to get a specific



Network n other parameters
Erdös-Renyi network 100 p = 0.03

Barabasi-Albert network 100 l = 3
Watts-Strogatz network 100 k = 5, p = 0.3

Table 2: Parameter settings for the 3 random networks used in our study.

network, containing the number of nodes n and the
number of each new node’s links l. In this model
of networks, when we add a new node to an initial
network, the node choose l nodes in the network to
make links, and the l nodes are selected with a linear
preference of their degree (nodes with more degree
are more likely to be linked). Following this rule, BA
networks have power-law degree distributions. Similar
to ER networks, larger l means larger density.

3) Watts-Strogatz (WS) network. Different from the first 2
types of networks, WS networks have 3 parameters: the
number of nodes n, the initial number of each node’s
degree k and the probability of each node rewiring
p. WS networks with larger k have better robustness,
which is similar to BA networks. Different p can lead
to different degree distributions.

Based on all above and consideration of the networks’ ro-
bustness, we set parameters of each networks as seen in Ta-
ble 2.

In Figure 4 we show the relative size of the giant compo-
nent after attacking a fraction between 0% and 20% of the
network. We find that our method’s results are mostly better
than ranking-based methods’. In ER network, our method’s
result is better than the others’ in first 16%, and when the per-
centage of attacked nodes come to 18% and 20%, CI (d = 2)
is a bit better than ours. We can see that when the percent-
age is 15%, the results of all other methods can only make
the GC size about 70%, while our method can lead GC size
to be about 40%. When it comes to BA network and WS
network, our method behaves better than all other methods
for the first 20% attack. For BA network, CI (d = 4) be-
haves worst among all the 8 methods, and the reason may
be the small number of the nodes in the network. When the
size of the network goes up, CI (d = 4) may be much bet-
ter. Among the other 6 methods, there is no one method has
absolute advantage than the others for the first 20% attack.
As for the WS network, our method behaves much better
than the others. For the current settings, all other methods
can only decrease the GC size to about 80%, among which
75% is the best result, while our method can make GC size
51%. Taking all above into account, our method can attack
networks more seriously when percentage of attacked nodes
is not too large.

In Figure 5, all methods’ running time is presented. The
running time of our method is longer than the other meth-
ods’. However, considering the good performance and the
small-scale of the total time, our method is worth to be-
ing used when networks are attacked. Overall, this study
presents initial results and shows that careful design of an
attacking strategy outperforms ranking-based methods. The
running time is the major limitation, which should be ad-
dressed in the future.

3.2 Evaluation on real-world networks

Network nodes links average degree density
dolphins 62 159 5.129 0.041
football 115 613 10.661 0.046
karate 34 78 4.588 0.067

Table 3: Basic statistics of 3 real-world networks in our study, including
number of nodes, number of links, average degree and density.

To evaluate the effectiveness of our method, we apply our
method to 3 real-world networks. Table 3 shows the basic
statistics of these networks including their number of nodes,
number of links, average degree and density. In each net-
work, we attack nodes from 0% to 20% of the total nodes,
and compare the GC size as well as the running time. Other
7 methods we use in the random network evaluation are also
used in this part.

In Figure 6, we present the variety of GC size as the per-
centage of attacked nodes increase from 0% to 20% in 3 real-
world networks. For dolphins network, our method behaves
better than all the other methods except CI (d = 3) is better
than ours on 3 points. Our method can make the GC size
29%, while most of other methods can only decrease the
GC size to about 70%. The results for football networks
are much more interesting. All other methods can only make
GC size 80% when the percentage of attacked nodes is 20%,
while our method can lead to a component containing 74%
of the total nodes. Our method’s good result on this net-
work can also show the perfect performance of our method
on networks with good robustness. As for karate network,
during the first 20% attack, our method’s result is always bet-
ter than the others’, while CI (d = 3) and CI (d = 4) behaves
badly in this network. When 20% of nodes are attacked, our
method can result in a component containing 14% of nodes.

In Figure 7, the running time of our method in these 3 real-
world networks is similar to that of the random networks.
Our method needs more time than the others. It is interest-
ing for the football network, our method’s running time is
close to that of CI (d = 3) and CI (d = 4) when percent-
age of attacked nodes is about 15%, and goes up afterwards
sharply. It is considerable that even when the percentage of
attacked nodes is pretty small, our method also needs a lot
of time compared with other methods. This would be solved
in future work.

4 Conclusions and Future work

In this paper, we propose a ranking-free network attack
method. Originally, we locate the weak points of a network
by counting out components instead of attacking according
to the order of nodes’ importance calculated through a cer-
tain network metric. We evaluate our method on 3 types
of random networks and 3 real-world networks in terms of
the size of giant component and running time, while vary-
ing the percentage of attacked nodes between 0% and 20%.
Our method, compared to 7 ranking-based techniques, be-
haves well in all the networks in terms of the size of giant
component, while there may be other methods performing
better than ours on only a few points. As for the running
time, our method needs more time than the other popular
methods. Overall, our method can provide a more effective
strategy to attack networks at the cost of increased running



0.
2

0.
4

0.
6

0.
8

1.
0

dolphins
●

●
●

●

●
●

●

●
●

0 % 5 % 10 % 15 % 20 %

Percentage of attacked nodes

G
C

_s
iz

e

0.
70

0.
80

0.
90

1.
00

football
●

●

●

●

●

●

●

●

●

0 % 5 % 10 % 15 % 20 %

Percentage of attacked nodes

G
C

_s
iz

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate
●

●

●

●●

●

● ●

0 % 5 % 10 % 15 % 20 %

Percentage of attacked nodes

G
C

_s
iz

e

● DEG_S BETW_S CLOS_S PR_S CI2 CI3 CI4 Ours

Fig. 6: The size of giant component (GC size) of 3 real-world networks calculated by our method and 7 others for percentage of attacked nodes from 0% to
20%; ER stands for Erdös-Renyi network; BA represents Barabasi-Albert network; WS means Watts-Strogatz network.

0.
00

1
0.

00
5

0.
05

0
0.

50
0

dolphins

●

● ● ● ● ● ● ● ●

0 % 5 % 10 % 15 % 20 %

Percentage of attacked nodes

R
un

ni
ng

 ti
m

e 
(in

 s
)

0.
00

1
0.

01
0

0.
10

0
1.

00
0

football

● ● ● ● ● ● ● ● ●

0 % 5 % 10 % 15 % 20 %

Percentage of attacked nodes

R
un

ni
ng

 ti
m

e 
(in

 s
)

0.
00

1
0.

00
5

0.
02

0
0.

10
0

karate

● ● ● ●●

●

● ●

0 % 5 % 10 % 15 % 20 %

Percentage of attacked nodes

R
un

ni
ng

 ti
m

e 
(in

 s
)

● DEG_S BETW_S CLOS_S PR_S CI2 CI3 CI4 Ours

Fig. 7: Running time for 3 real-world networks in log scale calculated by our method and 7 others for percentage of attacked nodes from 0% to 20%; ER
stands for Erdös-Renyi network; BA represents Barabasi-Albert network; WS means Watts-Strogatz network.

time. We would like to underline that although our method’s
running time is longer than the other popular ranking meth-
ods’, it is much shorter than that of the searching process of
the optimal strategy.

In future work, we would improve our method regarding
several aspects. First, we could count out components more
efficiently as of now. In the current method, we count out
components in the same process on every node in the net-
work, but a huge number of the same components would be
recorded; Second, one should decrease the number of the
candidate choices. One option is to delete some candidate
choices that are impossible in the final network after attack;
Last but not least, we should decide how many parts k should
be divided into intelligently; instead of fixing the number as
in this preliminary evaluation.
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