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Abstract

Solving the vast majority of hub location problems is NP-hard, implying that optimally solving large-scale instances

(with hundreds of nodes) with exact solution techniques is extremely difficult. While heuristics have been developed

which scale up to hundreds of nodes for specific problem types, these techniques do not scale up for further larger

instances (with thousands of nodes) or intriguing problem variants.

In this paper, we propose EHLC (Efficient Hub Location by Contraction), which exploits the idea of efficiently

computing hub locations on a reduced network instance, so-called contracted network. The obtained solutions are

rewritten back to the original network, followed by a final optimization step. A rich set of computational experi-

ments on instances with up to 5000 nodes and different problem types, i.e., USApHMPC, CSApHMPC, USApHMPI,

UMApHMPC, CMApHMPC, and UMApHMPI shows that EHLC outperforms the existing solution techniques by

orders of magnitude regarding execution time, while achieving solutions with identical gaps for almost all datasets and

parameter combinations. For large enough datasets or complex hub location problems, EHLC has a speedup of over

20 times (such as GA, GVNS for USApHMPI on URAND1000 and Benders for UMApHMPI on TR40), compared

to non-contracted methods. Given the same time limit, EHLC provides final solutions with similar or better qualities

for most instances, such as EHLC GVNS and NC GVNS reach the optimal solutions for most instances.

Keywords: Location, Hubs, Contraction, Scalability

1. Introduction

Hub location problems optimize the location of hubs in a network (O’Kelly 1987), with important applications in

transportation (Gelareh and Nickel 2011, O’Kelly 2012) and telecommunication systems (Yaman and Carello 2005,
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Kim and O’Kelly 2009). Demands between origin nodes and destination nodes are collected, transferred and dis-

tributed by these hub facilities. Economies of scale provide cost discounts for the transportation between hubs. Since

the seminal work by O’Kelly (1986), hub location problems have been studied intensively for more than three decades.

A large number of exact solution techniques has been proposed in the literature, e.g., based on Lagrangian relaxation,

Benders decomposition, branch-and-price, and branch-and-cut. Apart from a few exceptions, hub location problems

are NP-hard (Yang et al. 2013, Sadeghi et al. 2015). Given the inherent difficulty to solve large-scale instances towards

optimality, a wide range of meta-heuristics have been proposed, which, essentially, aim to enumerate feasible solu-

tions and identify a solution with minimum cost, such heuristics include Tabu search, variable neighborhood search,

and genetic algorithms. Depending on the problem types and sizes of the networks, these heuristics require minutes

to hours of computation time.

It is well known that the quality of a hub assignment largely depends on the distribution of travel demands between

nodes and their spatial positions in the network (O’Kelly 1992, Peker et al. 2015). Several meta-heuristics exploit this

rule-of-thumb when creating initial solutions or limiting the search space, by preferably selecting hubs with high

demand or central positions in the network. Beyond this rather implicit use, spatial insight is not exploited further in

the existing literature. Based on the above discussion, the following question arises: Can we locate the hub facilities

and spoke assignments for a given network by solving a reduced-size instance first and exploit insights gained from its

solutions? Such a novel view and design has the potential to lead towards tremendously reduced computation times,

while partially preserving and utilizing the spatial structure present in the original network.

In this study, we propose EHLC (Efficient Hub Location by Contraction). EHLC transforms the input network,

for which we are seeking an assignment, into a smaller network with similar topological and demand properties

(see Section 3 for details). In order to evaluate the performance of EHLC, five datasets (TR, AP, URAND1000,

WORLDAP, and RAND5000) are used as case studies. The general variable neighborhood search (GVNS), genetic

algorithms (GA), and Benders decomposition are compared and applied to solve the contracted/original problems.

Our experiments on real-world datasets reveal that the solutions obtained by EHLC are highly competitive; state-

of-the-art algorithms/heuristics need orders of magnitude more computation time to identify similar solutions for

large-scale problems. While we evaluate EHLC on several standard types of hub location problems, we believe that

the methodology can be applied to a much wider range of other hub location problems. We hope that EHLC will

become a prolific framework for all kinds of large-scale hub location problems.

Contraction for USAPHMPC has been presented at the 2017 IEEE Symposium Series on Computational Intelli-

gence (Dai et al. 2017); this work is extended as follows. First, we lift our contraction methodology from heuristics

to exact methods. A new strategy for the contraction step has been designed. The network is contracted by merg-
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ing nodes with close distance and similar distribution of travel demands. Second, the original problems are resolved

by using the rewritten solutions as the initial inputs. It further improves the qualities of final solutions. In addi-

tion, in the new strategy, the nodes that are not selected as representatives can sometimes appear as hubs in the

final solution. Third, we have used multiple methods (GA, GVNS, Benders decomposition) to solve the contracted

problem and resolve the original problem. In addition, multiple types of hub location problems (USApHMPC, US-

ApHMPI, CSApHMPC, UMApHMPC, CMApHMPC, and UMApHMPI) have been solved by EHLC. Compared to

USApHMPC in Dai et al. (2017), other types hub location problems have different challenges to solve. For instance,

USApHMPI and UMApHMPI need to determine the connection of hub links; CSApHMPC and CMApHMPC need to

consider the capacities of hub nodes. These results emphasize the generality of EHLC, for not only different solution

techniques, but also different types of hub location problems. Finally, we have extended the range of experiments

significantly, by performing sensitivity analysis on the contraction size and reporting experiments with networks of

size up to 5,000 nodes. In the real world, there are over 50,000 airports/airfields; about 3,300 of them have scheduled

services. Accordingly, there is a need for techniques with more than 1,000 nodes. In the literature, although some

algorithms provide good solutions for a specific hub location problem in large-scale networks (such as GVNS for

USApHMPC with 1,000 nodes), the adaption of these algorithms to other problems is often very hard or has poor per-

formance. The key contribution of EHLC is its generality. EHLC, which reduces the runtime and keeps the solution

quality for different types of hub location problems, is very competitive in that regard. We have further emphasized

this motivation in the introduction.

The remainder of this paper is organized as follows. We review the literature on hub location problems in Section 2.

The formulations of six types of hub location problems are also provided in this section. The rationale and process of

EHLC are proposed in Section 3. To evaluate the performance of EHLC, experiments on the TR, AP, URAND1000,

WORLDAP and RAND5000 datasets as case studies are presented in Section 4. The paper concludes with Section 5.

2. Literature review

Hub location problems were introduced by O’Kelly (1986), together with the first mathematical formulation for

the p-hub median problem (pHMP) (O’Kelly 1987). Since then, the class of fundamental hub location problems usu-

ally contains (single/multiple allocation) p-hub median problems (Campbell 1996, 2009), uncapacitated hub location

problems, p-hub center problems, and hub covering problems (Campbell and O’Kelly 2012). Additional constraints

lead to many variants, such as capacitated p-HLP (Hoff et al. 2017), hub-arc location problems (Campbell et al. 2003,

2005), continuous p-HLP (Campbell 1993), profit maximizing hub location problems (Taherkhani and Alumur 2019),

and multi-objective p-HLP. We refer the readers to the following reviews for further details (Campbell and O’Kelly
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2012, Farahani et al. 2013). Here, we only review the model formulations of six types of hub location problems

which are the focus of our study. Following the nomenclature in the literature (Campbell and O’Kelly 2012, Farahani

et al. 2013), we call them USApHMPC (Uncapacitated Single Allocation p-Hub Median Problem with Complete

hub network), CSApHMPC (Capacitated Single Allocation p-Hub Median Problem with Complete hub network),

USApHMPI (Uncapacitated Single Allocation p-Hub Median Problem with Incomplete hub network), UMApHMPC

(Uncapacitated Multiple Allocation p-Hub Median Problem with Complete hub network), CMApHMPC (Capacitated

Multiple Allocation p-Hub Median Problem with Complete hub network), and UMApHMPI (Uncapacitated Multi-

ple Allocation p-Hub Median Problem with Incomplete hub network), respectively. For each HLP, we describe the

formulation and refer readers to the related work for further information.

1. USApHMPC: Uncapacitated single allocation p-hub median problem with complete hub network

In USApHMPC, each pair of hubs is connected with a link, yielding a complete hub network, and each node

is allocated to a single hub only. Let G= (V, E) be a network, where V and E are the set of nodes and links

between nodes, respectively. The number of nodes is n and the number of hubs is p. For each pair of nodes

(i,j), let ci j and wi j be the cost and travel demand between them. Let Oi =
∑

j∈V wi j be the total travel demand

from the source node i and Di =
∑

j∈V w ji be the total travel demand to the destination node i (Contreras et al.

2009b). USApHMPC is formulated as follows (Ernst and Krishnamoorthy 1996):

min
∑
i∈V

∑
k∈V

cikYik(δ1Oi + δ2Di) +
∑
i∈V

∑
k∈V

∑
m∈V

αckmXi
km (1)

subject to
∑
k∈V

Yik = 1,∀i ∈ V (2)

∑
k∈V

Ykk = p (3)

Yik ≤ Ykk,∀i, k ∈ V (4)∑
m∈V,m,k

Xi
km −

∑
m∈V,m,k

Xi
mk = OiYik −

∑
j∈V

wi jY jk,∀i, k ∈ V (5)

Yik ∈ {0, 1},∀i, k ∈ V (6)

Xi
km ≥ 0,∀i, k,m ∈ V (7)

Here, the objective function (1) is the sum of transportation costs. Parameters α < 1, δ1 > α, δ2 > α are the cost

coefficients for transporting travel demands between hub nodes, from spoke nodes to hub nodes, and from hub

nodes to spoke nodes, respectively. Variables Xi
km represent the flows routed on hub link (k,m) originating from

node i. Let Yik be the allocation variable defined below (Ernst and Krishnamoorthy 1996):
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Yik =


1, if node i is assigned to hub k

0, otherwise

Equation (2) and Equation (4) ensure that each node is assigned to one hub only and it can only be assigned to

a hub. Equation (3) fixes the number of hubs to p. Equation (5) ensures the flow equilibrium from each node i

for each hub k.

Since USApHMPC is a well-known variant of hub location problems, many algorithms have been proposed,

including Benders decomposition (Ghaffarinasab and Kara 2019), Lagrangian relaxation (Pirkul and Schilling

1998), general variable neighborhood search (Ilić et al. 2010), genetic algorithms (Kratica et al. 2007), and Tabu

search (Skorin-Kapov and Skorin-Kapov 1994).

2. CSApHMPC: Capacitated single allocation p-hub median problem with complete hub network

In transportation systems, hubs usually have limited capacities. For instance, Hartsfield-Jackson Atlanta Inter-

national Airport is frequently operating at its maximum throughput, defined by terminal capacity or number of

arrivals/departures. Accordingly, in CSApHMPC, a new constraint enforces that the total flow through each

hub cannot exceed a specific capacity. Using parameter λi to represent the capacity of node i, in addition to

Equations (1–7), the following constraint is required for CSApHMPC (Ernst and Krishnamoorthy 1999):

∑
i∈V

OiYik ≤ λkYkk,∀k ∈ V (8)

Note that a more generic version of capacity constraint, which computes the total travel flow going through the

hub node, was proposed by Campbell (1994). However, only one capacitated HLP (CSApHMPC) is studied

in this paper. Equation (8) with lower complexity is enough for this problem. Because of the capacity con-

straint, it is more difficult to solve CSApHMPC compared to USApHMPC. Several methods, such as Benders

decomposition (Rodrı́guez-Martı́n and Salazar-González 2008), Lagrangian relaxation (Contreras et al. 2009a),

and genetic algorithms (Stanimirović 2012), have been proposed to solve CSApHMPC and similar hub location

problems.

3. USApHMPI: Uncapacitated single allocation p-hub median problem with incomplete hub network

While USApHMPC assumes that the hub network is complete, this is not necessarily the case in real transporta-

tion systems. In USApHMPI, a subset of links between hubs are present only, leading to an incomplete hub

network. Accordingly, in addition to the selection of hubs and allocation of spoke nodes, links between hubs
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also need to be determined. Let Zkm(∀k,m < k ∈ V) be the decision variable:

Zkm =


1, if hub k and hub m are connected

0, otherwise

The formulation of USApHMPI with q hub links is shown as below (Alumur et al. 2009):

min
∑
i∈V

∑
k∈V

cikYik(δ1Oi + δ2Di) + α
∑
i∈V

∑
k∈V

∑
m∈V

ckmXi
km (9)

subject to
∑
k∈V

Yik = 1,∀i ∈ V (10)

∑
k∈V

Ykk = p (11)

∑
k∈V

∑
m∈V,m<k

Zkm = q (12)

Yik ≤ Ykk,∀i, k ∈ V (13)

Zkm ≤ Ykk,∀k,m < k ∈ V (14)

Zkm ≤ Ymm,∀k,m < k ∈ V (15)∑
m∈V,m,k

Xi
km −

∑
m∈V,m,k

Xi
mk = OiYik −

∑
j∈V

wi jY jk,∀i, k ∈ V (16)

Xi
km + Xi

mk ≤ OiZkm,∀i, k,m < k ∈ V (17)

Xi
km ≥ 0,∀i, k,m , k ∈ V (18)

Yk ∈ {0, 1},∀k ∈ V (19)

Zkm ∈ {0, 1},∀k,m < k ∈ V (20)

Equation (12) forces that the number of links between hubs is q. Equations (14–15) ensure that links can

be established between hubs only. Equations (16–17) are the flow equilibrium constraint and flow capacity

constraint, respectively. In the literature, few algorithms have been proposed for solving USApHMPI specifi-

cally, mixed integer programming is used in most cases (Alumur et al. 2009). Extensions of this problem with

additional constraints can be solved with Tabu search (Calık et al. 2009).

4. UMApHMPC: Uncapacitated multiple allocation p-hub median problem with complete hub network

USApHMPC assumes that each spoke is connected to exactly one hub. In real transportation systems, however,

passengers/cargo can be routed through different hubs, depending on the destination, which leads to further
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reduced costs. Consequently, in UMApHMPC, each spoke node is assigned to more than one hub. Although

a formulation with O(n3) variables has been proposed by Ernst and Krishnamoorthy (1998), it is difficult to

be solved with several general solution techniques, such as Benders decomposition (de Camargo et al. 2009).

Therefore, researchers often use a formulation with O(n4) variables which was initially proposed by Campbell

(1994). Assume variable Yk is used to represent the location of hubs:

Yk =


1, if node k is a hub

0, otherwise

The path for the demand from node i to node j is represented by variable Xi jkm:

Xi jkm =


1, if the demand from node i to node j is routed through hubs k and m

0, otherwise

Overall, UMApHMPC is formulated as follows:

min
∑
i∈V

∑
j∈V

∑
k∈V

∑
m∈V

(
δ1cik + αckm + δ2cm j

)
wi jXi jkm (21)

subject to
∑
k∈V

Yk = p (22)

∑
k∈V

∑
m∈V

Xi jkm = 1,∀i, j ∈ V (23)

∑
m∈V

Xi jkm +
∑

m∈V,m,k

Xi jmk ≤ Yk,∀i, j, k ∈ V (24)

Yk ∈ {0, 1},∀k ∈ V (25)

Xi jkm ∈ {0, 1},∀i, j, k,m ∈ V (26)

Here, the objective function (21) is the sum of transportation costs for all OD pairs. Equation (22) ensures that

the total number of hubs is equal to p. Equation (23) forces that there is one and only one path between node

pair (i, j). Due to Equation (24), only hubs can be used to transport travel demands between nodes. To solve

UMApHMPC and similar hub location problems, algorithms such as Benders decomposition (de Camargo

et al. 2008, 2009), Lagrangian relaxation (An et al. 2015), and genetic algorithms (Kratica et al. 2005) have

been proposed. In this study, we want to solve multiple allocation problems with an efficient exact solution

technique. Benders decomposition is the best choice.
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5. CMApHMPC: Capacitated multiple allocation p-hub median problem with complete hub network

Which is similar with CSApHMPC, a capacity constraint is also added to CMApHMPC. Using parameter λi

to represent the capacity of node i, in addition to Equations (21–26), the following constraint is required for

CMApHMPC (Ebery et al. 2000):

∑
i∈V

∑
j∈V

∑
m∈V

Xi jkmwi j ≤ λkYk,∀k ∈ V (27)

We did not find the appropriate references about Benders decomposition for CMApHMPC. Therefore, we

design this algorithm by ourselves, inspired by de Camargo et al. (2008).

6. UMApHMPI: Uncapacitated multiple allocation p-hub median problem with incomplete hub network

Which is similar with USApHMPI, the hub links between hubs also need to be determined for UMAPHMPI.

Using binary variables hi jk (and ti jm) to represent whether OD pair (i, j) uses hub k (and hub m) as the first (and

the last) hub node. The formulation of UMApHMPI with q hub links is shown as below, based on a simplified

version of the model in de Camargo et al. (2017):

min
∑
i∈V

∑
j∈V

wi j

∑
k∈V

δ1cikhi jk +
∑
m∈V

δ2cm jti jm +
∑
k∈V

∑
m∈V

αckmXi jkm

 (28)

subject to
∑
k∈V

Yk = p (29)

∑
m∈V,m, j

ti jm + hi j j +
∑

k∈V,k, j

Xi jk j = 1,∀i, j ∈ V (30)

hi jm +
∑

k∈V,k, j,k,m

Xi jkm =
∑

k∈V,k,i,k,m

Xi jmk + ti jm,∀i, j,m ∈ V, i , m, j , m (31)

ti ji +
∑

m∈V,m,i

Xi jim = Yi,∀i, j ∈ V (32)

hi jk +
∑

m∈V,m, j,m,k

Xi jmk ≤ Yk,∀i, j, k ∈ V, k , i, k , j (33)

hi j j +
∑

k∈V,k, j

Xi jk j = Y j,∀i, j ∈ V (34)

∑
k∈V

∑
m∈V,m<k

Zkm = q (35)

Zkm ≤ Yk,∀k,m < k ∈ V (36)

Zkm ≤ Ym,∀k,m < k ∈ V (37)

Xi jkm ≤ (Zkm if k > m) + (Zmk if k < m),∀i, j, k,m ∈ V, k , j,m , i,m , k (38)
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Zkm ∈ {0, 1},∀k,m ∈ V,m < k (39)

Yk ∈ {0, 1},∀k ∈ V (40)

Xi jkm ∈ {0, 1},∀i, j, k,m ∈ V (41)

hi jk ∈ {0, 1},∀i, j, k ∈ V (42)

ti jk ∈ {0, 1},∀i, j, k ∈ V (43)

Equation (30) forces that each OD pair (i, j) is served by a path. Equation (31) is the flow equilibrium constraint

on each hub m for each OD pair (i, j). Equations (32–34) ensure that the paths between OD pairs can only go

through hub nodes. Equation (35) forces that the number of links between hubs is q. Equations (36–37) ensure

that links can be established between hubs only. Equation (38) ensures that only hub links can be used for transit.

In the literature, Benders decomposition has been used to solve another type of UMApHMPI de Camargo et al.

(2017):.

Afterwards, we focus on the description of the solution techniques presented in the literature. In addition to

HLPs, the concept of contraction is inspired by the aggregation of demand points in networks. However, a big open

question in this topic is how to measure the errors caused by the aggregation. Therefore, we also focus on the error

measurements of demand point aggregation in the literature here.

Exact solution techniques: Many hub location problems are formalized as mixed integer programs (MIP). Ac-

cordingly, they can be solved with standard MIP solvers, e.g., CPLEX and Gurobi. The runtime and usability of

these standard solvers largely depend on the number of variables and constraints in the formulation, the tightness of

LP bounds and additional (usually, constant-time) factors. For instance, while the classical formulation of the single

allocation p-hub median problem had O(n4) variables, Ernst and Krishnamoorthy (1996) reduced the number of vari-

ables to O(n3). Such reductions at an order of magnitude often speed-up solution techniques significantly. Albeit this

improvement, several other optimization techniques have been introduced in the literature, such as Benders decompo-

sition, Lagrangian relaxation, branch-and-price, and branch-and-cut, as explained below. In Benders decomposition,

the original problem is decomposed into a master problem and a sub-problem by keeping the values of some variables

fixed (de Camargo et al. 2008, Contreras et al. 2011a, de Camargo et al. 2017, de Sá et al. 2018, Ghaffarinasab and

Kara 2019). By solving the dual problem of the sub-problem, one or more new constraints (called Benders cuts) are

added to the master problem in each iteration. The upper bound and the lower bound of the problem are updated

accordingly. The algorithm terminates when the upper bound and the lower bound converge to the same value. In

Lagrangian relaxation, a relaxed problem is generated by relaxing some constraints and adding them to the objective
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function with several coefficients (called Lagrangian multipliers) (Pirkul and Schilling 1998, An et al. 2015, Contreras

et al. 2009a). The lower bound is obtained by solving the relaxed problem. The upper bound is obtained by construct-

ing feasible solutions based on the lower bound. By updating the values of Lagrangian multipliers, the lower bound

and the upper bound converge until termination of the algorithm. In branch-and-cut algorithms, a branch-and-bound

method and a cutting plane method are used to explore the decision tree and compute the bounds, respectively (Labbé

et al. 2005, Rodrı́guez-Martı́n and Salazar-González 2008, Rodrı́guez-Martı́n et al. 2014). In the search tree, a linear

relaxation of the original problem is constructed and the cutting plane method is used to solve the relaxed problem.

The branch-and-bound procedure continues afterwards. Branch-and-price, on the other hand, is a combination of

column generation and branch-and-bound (Thomadsen and Larsen 2007, Contreras et al. 2011b). The original prob-

lem is decomposed into a restricted master problem and a pricing problem. By solving the latter, new columns are

generated and added to the former. If no columns can be found and the solution for the relaxed problem is not integer,

the branch-and-bound is applied. The techniques above have in common that they derive a lower bound and an upper

bound for the problem at hand; once both bounds converge within a predefined threshold, the feasible solution induc-

ing the upper bound is considered as optimal. Finally, Meier and Clausen (2018) proposed a novel method for solving

single allocation hub location problems in the Euclidean data. They transforms the quadratic formulations for single

allocation problems into linear formulations with O(n2) variables. A row generation procedure is applied to improve

the convergence speed of the algorithm.

Meta-heuristics: Given that the computation of exact solutions is inherently difficult for large problems instances,

as most HLPs are NP-hard, a class of solution techniques formally explores (a subset of) feasible solutions, returning

the solution with the minimum costs. The exploration of feasible solution space is driven by a search heuristic.

Depending on the problem type and search heuristic, solutions with acceptable gaps (deviation of costs from the

optimal solution cost) can be obtained. Genetic algorithms (GA) (Azizi et al. 2016), general variable neighborhood

search (GVNS) (Ilić et al. 2010), and Tabu search (TS) (Abyazi-Sani and Ghanbari 2016, Karimi 2018) are some

commonly used heuristics. In genetic algorithms, each solution is encoded to a chromosome (Kratica et al. 2005,

2007, Stanimirović 2012). An initial population of solutions are generated at the beginning of the algorithm. In

each iteration, several solutions are selected as parents. New solutions (called offspring) are generated by applying

selection, crossover and, mutation operators. By generating new offspring and discarding poor solutions, genetic

algorithms often provide good solutions after sufficient number of iterations. General variable neighborhood search

has two phases, i.e., the descent phase and the perturbation phase (Ilić et al. 2010, Todosijević et al. 2017, Brimberg

et al. 2017, Dai et al. 2019). In the descent phase, the algorithm finds the local minimum by searching and changing

the neighborhood of the current solutions. In the perturbation phase, the algorithm gets out of the solution valley by a
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random shake operation. General variable neighborhood search performs well on single allocation HLPs because of

the specific structure of the problems. Tabu search is another type of search method for solving HLPs (Skorin-Kapov

and Skorin-Kapov 1994, Silva and Cunha 2009, Abyazi-Sani and Ghanbari 2016). By using one or more tabu lists,

the algorithm avoids searching the same solution (hub location or spoke allocation) repeatedly unless a better solution

is obtained.

Domain-specific heuristics: In recent years, some novel methods which consider the spatial properties of net-

works have also been proposed. Figueiredo et al. (2014) proposed a two-stage method for HLPs. By solving a

p-median problem in the first stage, p regional hubs are obtained. Based on these p regional hubs, a q-hub location

problem is solved in the original network. Peker et al. (2015) proposed a clustering-based method, which is based on

the spatial properties and travel demands between nodes: A potential hub set is generated, which can help to reduce

the computational complexity of the problems by narrowing the solution space.

Error measures of contraction/aggregation: The concept of contraction is similar to the aggregation of demand

points in some traditional location problems (Plastria 2001). This topic has been well studied by a number of re-

searchers (Francis et al. 2004, Emir-Farinas and Francis 2005). For a general review of the demand point aggregation,

just see Rogers et al. (1991), Francis et al. (2002). Although aggregation decreases the cost for designing the model,

solving the problem and the uncertainty of the data, it increases the error of the model. It is still an open question that

how to make a trade-off between the benefits and the model error (Francis et al. 2009). The aggregation method is

usually applied to non-complex location problems. The bounds of both original problem and the aggregated problem

are obtained by solving a restriction and a relaxation of the aggregated problem. If the bounds are close to each other,

the optimal solution of the aggregated problem can be seen as (nearly) optimal to the original problem. However, in

hub location problems, the bounds usually become loose. Therefore, our contraction method is required in this case.

Regarding the above literature review, exact algorithms cannot scale up to large-scale instances (with hundreds

of nodes) and heuristics do not scale up for further larger instances (with thousands of nodes) or intriguing problem

variants. Although some algorithms may provide good results for a specific problem, the adaption to other problems is

often tedious and requires a significant amount of work. Slightly exaggerated, one could say that each pair of problem

type and solution technique is often studied in an individual piece of publication.

3. EHLC: A novel method for solving hub location problems by network contraction

3.1. Rationale for EHLC on a running example

Before we describe technical implementation details of EHLC, its general idea is introduced first. The methodol-

ogy consists of four distinct steps, as shown in Figure 1, which are described below. A corresponding running example

11



Original 
Network

Contracted 
Network

Contraction Explored 
Pivots

Exploration

GVNS/GA/
Benders/…

Rewritten 
solution

Rewriting Optimized 
solution

Optimization

GVNS/GA/
Benders/…

Figure 1: The general process of EHLC as a flowchart, consisting of four individual steps indicated by horizontal arrows.
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Figure 2: The process of EHLC for a USApHMPC instance on the CAB dataset with ten nodes: The original network with ten nodes is contracted
into a smaller network with only five representative nodes. USApHMPC is solved for the contracted network and the contracted solution is obtained.
The results are rewritten back to the original network and the final solution is obtained by resolving the original problem based on the rewritten
solution. A summarized flowchart is added below the example.

shown in Figure 2:

Step 1. Contraction: Given an original network with n nodes (See Original network in Figure 2) and a given number

k, we define a contraction function f:V → V on the set of nodes V such that | f (V)| = k, where the set of nodes in the

original network is represented by V . Each node i ∈ V is mapped to a node s ∈ V . Let V∗ be the image of function f,

i.e., V∗ = f (V). The elements in set V∗ are called contraction nodes. As shown below the label Contracted networks

in Figure 2, ten nodes in the original network are mapped to five contraction nodes. Then, a contracted network is

constructed with these contraction nodes. For a contraction node s, its travel demand in the contracted network is the

sum over all demands of nodes that are mapped to node s. Thus, the demand from contraction node r to contraction
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node s after contraction is computed by:

w∗rs =
∑

j∈ f −1(s)

wr j +
∑

i∈ f −1(r)

wis − wrs =
∑

i∈ f −1(r), j∈ f −1(s)

wi j,∀r, s ∈ V∗ (44)

where f −1(s) = { j ∈ V : f ( j) = s} is the inverse of f. We define the cost for any pair of contraction nodes (r,s):

c∗rs = crs, ∀r, s ∈ V∗, r , s (45)

The contracted HLPs are formulated by simply replacing c,w and V with c∗,w∗ and V∗ in Equations (1–26). Accord-

ingly the contracted formulation has the same structure with the original formulation. In total, Figure 2 shows four

different contractions, with five nodes each.

Step 2. Exploration: The HLPs in the contracted network can be solved using any method applicable to the original

network, since the type of HLP is the same. Depending on the solution technique, one or more feasible solutions with

the hub set, spoke assignment, and hub links (in case of USApHMPI) for the contracted network are obtained. As

shown below the label Explored pivots in Figure 2, the best hub locations (orange nodes), hub links (orange links),

and spoke allocations (blue links) are obtained for each contracted network.

Step 3. Rewriting: Pivots from the contracted network induce solutions to the original network by reassigning the

nodes in V\V∗. Using USApHMPC as an example, let Assignment represent the solution in the contracted network.

If node i is allocated to hub k, then Assignment[i] = k. We need to reassign nodes in V\V∗ to the hubs in the

contracted solution. For instance, as shown below the label Rewritten solutions in Figure 2, the remaining nodes are

assigned to their closest hubs. The solutions for the original problem are obtained afterwards.

Step 4. Optimization: The rewritten solutions are feasible but not necessarily near-optimal. In order to further im-

prove the quality of solutions, we solve the original problem with the existing method in Step 2, using the rewritten

solutions from the contracted network as the initial solutions. The quality of solutions and the required runtime sig-

nificantly depend on the initial input in many solution techniques, such as general variable neighborhood search (Dai

et al. 2019). Starting from a good initial basis, solution techniques are more likely to terminate earlier and to provide

better solutions. The solution after resolving the original problem in the example instance is shown below the label

Optimized solution in Figure 2.

With a description of the running example in mind, we present the details of EHLC in the following subsections:

Contraction (Section 3.2), exploration (Section 3.3), rewriting (Section 3.4), and optimization (Section 3.5).
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Table 1: Part of travel demands and costs between nodes in the CAB10 network.

BOS DTT HOU MKC LAX MIA NYC SFO SEA WAS

wBOS ,∗ 0 16578 4242 3365 22254 23665 205088 17165 4284 51895
wDTT,∗ 16578 0 4448 5076 22463 24609 79945 13091 4172 19500
wHOU,∗ 4242 4448 0 4370 17267 8602 28080 8455 2868 5616
wMKC,∗ 3365 5076 4370 0 15287 4092 17291 8381 3033 7266
wLAX,∗ 22254 22463 17267 15287 0 15011 105507 92083 32908 24583
wMIA,∗ 23665 24609 8602 4092 15011 0 169397 8064 1840 20937
wNYC,∗ 205088 79945 28080 17291 105507 169397 0 70935 14957 166694
wS FO,∗ 17165 13091 8455 8381 92083 8064 70935 0 35285 19926
wS EA,∗ 4284 4172 2868 3033 32908 1840 14957 35285 0 4951
wWAS ,∗ 51895 19500 5616 7266 24583 20937 166694 19926 4951 0

cS FO,∗ 2703 2087 1650 1506 362 2591 2574 0.00 695 2430

Table 2: The normalized demands and normalized costs for the network in Table 1, given maxi, j∈V ci j = 2725.79.

BOS DTT HOU MKC LAX MIA NYC SFO SEA WAS wdi f f
S FO,∗ cnorm

S FO,∗

|wnorm
BOS ,∗ − wnorm

S FO,∗| 0.19 0.06 0.07 0.07 0.89 0.03 0.23 0.08 0.36 0.04 0.20 0.99
|wnorm

DTT,∗ − wnorm
S FO,∗| 0.02 0.14 0.04 0.03 0.72 0.22 0.23 0.16 0.33 0.03 0.19 0.77

|wnorm
HOU,∗ − wnorm

S FO,∗| 0.04 0.02 0.09 0.06 0.39 0.22 0.23 0.30 0.28 0.02 0.16 0.61
|wnorm

MKC,∗ − wnorm
S FO,∗| 0.01 0.15 0.16 0.09 0.12 0.15 0.23 0.48 0.21 0.20 0.18 0.55

|wnorm
LAX,∗ − wnorm

S FO,∗| 0.02 0.07 0.07 0.05 1.00 0.05 0.23 0.87 0.07 0.02 0.25 0.13
|wnorm

MIA,∗ − wnorm
S FO,∗| 0.05 0.00 0.04 0.07 0.91 0.09 0.23 0.05 0.37 0.09 0.19 0.95

|wnorm
NYC,∗ − wnorm

S FO,∗| 0.81 0.25 0.05 0.01 0.49 0.74 0.77 0.35 0.31 0.60 0.44 0.94
|wnorm

S FO,∗ − wnorm
S FO,∗| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

|wnorm
S EA,∗ − wnorm

S FO,∗| 0.06 0.02 0.01 0.01 0.07 0.04 0.35 1.00 0.38 0.08 0.20 0.25
|wnorm

WAS ,∗ − wnorm
S FO,∗| 0.12 0.03 0.06 0.05 0.85 0.04 0.23 0.12 0.35 0.22 0.21 0.90

3.2. Contraction (Step 1)

According to Section 3.1, the contracted network is obtained by mapping nodes to contraction nodes. This contrac-

tion function should be designed based on both costs (c) and travel demands (w) between nodes. Intuitively, each node

i tends to be mapped to the node j with smaller value of ci j. In addition, if the distribution of {wix}x∈V and {w jx}x∈V is

similar with each other, node i and node j will also be more likely to be merged together, since the contracted network

should keep the spatial properties and the distribution of travel demands in the original network. We normalize the

travel demand (by computing the quotient of the largest demand from each node) and cost (by computing the quotient

of the largest cost among the whole network) between each pair of nodes, as shown in Equations (46) and (47). The

deviation of normalized demand between each pair of nodes is computed by Equation (48).

cnorm
i j =

ci j

maxi, j∈V ci j
(46)

wnorm
i j =

wi j

maxx∈V wix
(47)
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Algorithm 1 The contraction process by merging nodes
Input: The original network G = (V, E) with the cost ci j and the travel demand wi j between each pair of nodes (i, j), cost
coefficients α, δ1, δ2, the size of the contracted network k.
Output: The contracted network G∗ = (V∗, E∗).

1: Let the current network be the original network, i.e., G current = (V current, E current) = G = (V, E).
2: while |V current| > k do
3: Compute the value of wdi f f

i j and cnorm
i j for each pair of nodes (i, j) for the current network according to Equations (46) and

(48).
4: Sort all node pairs by their values of (wdi f f

i j + cnorm
i j ) ascendingly in a list Pairs.

5: Let S maxcap be the set of top p nodes with the largest capacity in V current (Only for capacitated HLPs).
6: Let S een = ∅ and f current(i) = i,∀i ∈ V current.
7: for (i, j) ∈ Pairs do
8: if i < S een and j < S een and (i < S maxcap or j < S maxcap) then
9: Use i to represent the node with larger value of Oi + Di in set {i, j} and the node with the smaller value is represented

by j (for capacitated HLPs, replace Oi + Di by capacityi).
10: Let f current( j) = i and S een = S een ∪ {i, j}.
11: if |S een|/2 ≥ |V current| − k then
12: break
13: end if
14: end if
15: end for
16: Generate a new contracted network with the mapping function f current on G current = (V current, E current) according

to Equation (44) and (45).
17: Update the current network G current = (V current, E current) with the newly generated network.
18: end while
19: Let the final contracted network be the current network, i.e., G∗ = (V∗, E∗) = G current = (V current, E current).

wdi f f
i j =

∑
x∈V |wnorm

ix − wnorm
jx |

n
(48)

We use variables xi j to represent the map function f : V → V , i.e., xi j = 1 if f (i) = j and xi j = 0 otherwise. The

contraction process is formulated as follows:

min
∑
i∈V

∑
j∈V

(
θ1wdi f f

i j + θ2cnorm
i j

)
xi j (49)

subject to
∑
j∈V

xi j = 1,∀i ∈ V (50)

∑
j∈V

x j j = k (51)

xi j ≤ x j j,∀i, j ∈ V (52)

xi j ∈ {0, 1},∀i, j ∈ V (53)

where θ1 and θ2 are the coefficients for normalizing two terms in the objective function. Based on the above formula-

tion, we design a merging-based contraction strategy. By setting θ1 = θ2 = 1, node i tends to be merged with node j

with smaller value of (wdi f f
i j +cnorm

i j ). For instance, the travel demands and costs between nodes in the CAB10 network

are shown in Table 1. The travel demands between each pair of nodes and the costs from node S FO to all other nodes

are given. Given maxi, j∈V ci j = 2725.79, the normalized demands and normalized costs are computed and the results
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are shown in Table 2. It is straightforward to compute:

wdi f f
S FO,LAX + cnorm

S FO,LAX = 0.25 + 0.13 = 0.38

Therefore, node LAX is more likely to be merged with node S FO, compared to other nodes. By sorting all node pairs

with their values of (wdi f f
i j + cnorm

i j ) in an ascending order and merging appropriate node pairs (in which both nodes are

not in previously merged pairs), the contracted network is constructed. The pseudocode for this process is shown in

Algorithm 1. Since nodes are merged pairwise, the size of the contracted network is at least half size of the original

network in one contraction. In order to obtain a contracted network with a specific size k, one can perform contractions

recursively (See Line 2 in Algorithm 1). In each iteration, after sorting all node pairs, an empty set S een and a self-

mapping function f current are generated (See Lines 3–6 in Algorithm 1). For each node pair in the list, if both nodes

are not in the set S een, then we map the node with smaller total demand (Oi + Di) to the other one (See Lines 7–10

in Algorithm 1). Note that for capacitated HLPs, each pair of nodes that both have the top p largest capacity should

not be merged to avoid the infeasibility caused by contraction (See Lines 5,8–9 in Algorithm 1). Once k nodes are

obtained, the merging operation is terminated (See Lines 11–13 in Algorithm 1). Based on the mapping function

f current, the contracted network is generated. Then, in the next iteration, a new contraction will be performed on the

currently generated network, until the network with the required size k is obtained (See Lines 17–18 in Algorithm 1).

Given an original network with size n and a contraction size k, one needs dlog2( n
k )e times of contraction to obtain the

contracted network. Afterwards, the hub location problem on the contracted network is solved and the solutions are

rewritten to the original network as the initial input.

3.3. Exploration (Step 2)

According to Section 3.1, the hub location problems on the contracted network can be solved by using any

existing method. In this study, we use genetic algorithms and general variable neighborhood search to solve US-

ApHMPC, CSApHMPC, and USApHMPI; and we use Benders decomposition to solve UMApHMPC, CMApHMPC

and UMApHMPI. These methods have mostly been proposed in the literature for these HLPs or highly-similar ones;

for the sake of self-containment and reproducibility, the major steps of these methods are summarized below.

3.3.1. Genetic algorithms

Genetic algorithms (GA) are a class of probabilistic algorithms in which solutions are encoded as chromosomes

and evolutionary rules improve the fitness of a solution population. GA has been successfully used to solve several

types of hub location problems, such as USApHMPC (Kratica et al. 2007), UMAHLPC (Kratica et al. 2005), and
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Figure 3: Several local search operations of general variable neighborhood search on USApHMPC. From left to right in the figure: The initial
assignment, and operations Allocate, Alternate, and Locate. Hubs are highlighted in green color, hub links in red color, and spoke assignments in
blue color.

CSApHMPC (Stanimirović 2012). Here, we introduce the process of GA with USApHMPC as an example; the

process for other HLPs is rather similar. A solution is encoded by a pair of chromosomes, i.e., the hub set (Hub) and

the node assignment (Assignment). We have k ∈ Hub if Ykk = 1 and Assignment[i] = k if Yik = 1. The process of GA

is summarized in the following steps Kratica et al. (2007):

1. Initialization: In this step, pn initial solutions are generated randomly by randomly selecting p hubs for each

solution.

2. Selection: In each generation, several parents are selected to generate new offspring. In general, the solutions with

larger fitness values are more likely to be selected. Therefore, a roulette wheel is used here.

3. Crossover: Given a pair of parents, both their hub sets and assignment lists are swapped. A reassignment for each

spoke is performed to avoid the infeasibility of the offspring.

4. Mutation: For maintaining genetic diversity of the population, offspring undergo a mutation by randomly reas-

signing one or a pair of spoke nodes.

Elitism is applied after each iteration, discarding pn poor solutions. After a sufficient number of iterations, GA

usually provides high-quality solutions for the problem. The above process is for USApHMPC. GA needs some

modifications when solving other types of hub location problems.

1. For CSApHMPC, the structure of chromosome for each solution is the same with that for USApHMPC. However,

the capacity constraint needs to be taken into account in the steps of initialization, crossover, and mutation.

2. For USApHMPI, in addition to Hub and Assignment, another list Link is required to denote the connected hub

links, i.e., (k,m) ∈ Links if Zkm = 1. To guarantee the feasibility of the solution, we also need to check the

connection of hub networks in the steps of initialization and crossover. Mutation is fixed, since it only changes the

assignment of spoke nodes.

3.3.2. General variable neighborhood search

General variable neighborhood search (GVNS) is a well-performed algorithm for solving single allocation hub

location problems (Ilić et al. 2010). Starting from an initial solution, two phases are perfomed, i.e., the descent phase
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and the perturbation phase (Todosijević et al. 2017). In the descent phase, the algorithm finds the local minimum by

searching and changing the neighborhood of the current solutions. In the perturbation phase, the algorithm gets out of

the solution valley by a random shake operation. In this section, we introduce the process of GVNS with USApHMPC

as an example. We first introduce several local search operations of GVNS (Ilić et al. 2010):

1. Allocate: In operation Allocate, the hub locations are not changed. For each spoke node, we try to assign it to

another hub node. The operation with the largest reduction of cost is performed.

2. Alternate: This operation changes the hub locations. Before performing the operation, all nodes are grouped by

p clusters, i.e., the sets of nodes that are assigned to the same hubs. For each cluster, we try to replace its hub by a

spoke node in it. The operation with the largest reduction of cost is performed.

3. Locate: This operation changes the hub locations to increase the diversity of solutions. For each cluster, we try to

replace its hub by a spoke node which is not in it. All nodes in this cluster are assigned to their closest hub nodes.

4. Shake: The above three operations are performed in the descent phase; while the Shake operation is performed in

the perturbation phase to avoid local minimum solutions.

Based on the above operations, three types of general variable neighborhood search algorithms are designed

for USApHMPC: sequential algorithm (Seq-GVNS), nested algorithm (Nest-GVNS), and mixed algorithm (Mix-

GVNS) (Ilić et al. 2010). Seq-GVNS needs the shortest time but explores the smallest neighborhood. Nest-GVNS

explores a large neighborhood, but its runtime is not acceptable. Mix-GVNS allows a trade-off between the size of

neighborhood and runtime. Therefore, we use Mix-GVNS in this study. Similar with GA, GVNS also needs some

modifications when solving other types of hub location problems.

1. For CSApHMPC, the capacity constraint needs to be considered when generating initial solutions and performing

local search operations. The process for the former is the same with GA. In local search operations, when reassign-

ing a spoke node to a new hub, only the hubs whose remaining capacities are larger than or equal to the out-flow of

this spoke node can be the alternatives. When selecting a spoke node as a new hub, its capacity is also considered.

2. For USApHMPI, the hub links are also determined in the algorithm. There are three modifications in the process of

GVNS: (1) In addition to hub locations and node assignments, the hub links are also determined when generating

new solutions; (2) When replacing an old hub with a new hub node, the vertices of hub links are also replaced

accordingly; (3) A new local search operation Reconnect is designed. In this operation, we remove an existing

hub link and connect a pair of non-connected hub nodes. If the new hub network is still connected, i.e., there exist

paths between each pair of hub nodes, this operation is called “feasible”. Finally, the feasible operation with the

largest reduction of cost is performed.
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3.3.3. Benders decomposition

In Benders decomposition, the original problem is decomposed into a master problem and a sub-problem by

keeping the values of some variables fixed (de Camargo et al. 2008, Contreras et al. 2011a). By solving the dual

problem of the sub-problem, one or more new constraints (called Benders cuts) are added to the master problem in each

iteration. The upper bound and the lower bound of the problem are updated accordingly. The algorithm terminates

when the upper bound and the lower bound converge to the same value. The process of Benders decomposition for

solving UMApHMPC is introduced as an example: Setting variables Yk to fixed values Ŷk, we obtain the sub-problem

(SP) and its dual problem (DSP). By solving the DSP, the Benders cut is constructed based on the obtained solution

and added to the master problem (MP). The upper bound and lower bound are obtained by solving these problems

in each iteration. The complete process of Benders decomposition for solving UMApHMPC is summarized below,

which was proposed by de Camargo et al. (2008):

1. Set UB = +∞ and LB = 0.

2. If LB = UB, terminate the algorithm. The optimal solution of the original problem is obtained.

3. Solve the MP and obtain the optimal values of the objective function ẑMP and variables Ŷk.

4. Let LB = max(LB, ẑMP). Update the values of Ŷk in the new DSP.

5. Solve the new DSP. Obtain the optimal values of the objective function ẑDS P and variables σ̂i j, π̂i jk.

6. Add the new Benders cut to the MP. Let UB = min(UB, ẑDS P)

7. Go back to Step 2.

3.4. Rewriting (Step 3)

By solving hub location problems in the contracted network, the obtained solutions induce the solutions to the

original network by reassigning nodes in V\V∗. Using USApHMPC as an example, let Assignment represent the

solution in the contracted network. If node i is allocated to hub k, then Assignment[i] = k. The rewriting step is

formulated as follows:

min
∑
i∈V

∑
k∈V

cikYik(δ1Oi + δ2Di) +
∑
i∈V

∑
k∈V

∑
m∈V

αckmXi
km (54)

subject to Yi,Assignment[i] = 1,∀i ∈ V∗ (55)∑
k∈V

Yik = 1,∀i ∈ V (56)

∑
k∈V

Ykk = p (57)

Yik ≤ Ykk,∀i, k ∈ V (58)
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∑
m∈V,m,k

Xi
km −

∑
m∈V,m,k

Xi
mk = OiYik −

∑
j∈V

wi jY jk,∀i, k ∈ V (59)

Yik ∈ {0, 1},∀i, k ∈ V (60)

Xi
km ≥ 0,∀i, k,m ∈ V (61)

The above formulation is a variant of USApHMPC with additional constraint (55). The new constraint makes

sure that nodes in the contracted network must be assigned to their hubs in the contracted solution. The above

formulation can be solved by different strategies. Since the rewritten solutions will be further improved in the next

step Optimization, we use the simplest way to reassign the remaining nodes, i.e., assigning the nodes in V\V∗ to their

closest hubs. This rewriting strategy can be applied to three single allocation problems (USApHMPC, CSApHMPC,

and USApHMPI). The rewritten solution for UMApHMPC, CMApHMPC, and UMApHMPI can be obtained by the

hub sets (and sets of hub links) in the contracted network directly. Since the hub network is fully connected, we only

need to select the best hub pair (k,m) with the minimum cost for transporting the travel demands between each pair

of nodes (i, j).

3.5. Optimization (Step 4)

According to Section 3.1, the original hub location problems are solved by using the rewritten solutions as the

initial input. We introduce several input strategies for different solution algorithms:

1. Genetic Algorithms: A type of algorithms based on population of solutions. Multiple initial solutions are

required and multiple solutions are generated in each iteration. We need to select appropriate solutions (high-

quality and high diversity) from a large solution space when solving the contracted problems and rewrite them

back to the original network. The details for selecting these solutions are shown in Algorithm 2 and Ap-

pendix 6.2.

2. General Variable Neighborhood Search: This method requires only one initial solution and generates one

solution in each iteration. When solving the contracted problem, we need to select the best solution with the

minimum value of the objective function on the original network as the initial input solution. However, the best

solution on the contracted network might not be the best solution on the original network. Therefore, we record

all unique solutions in the contracted network and rewrite them. The best rewritten solution with the minimum

value of the objective function on the original network is selected as the initial input for Optimization step. The

details for this selection step are shown in Algorithm 3 and Appendix 6.2.
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Figure 4: Visualizations of five evaluation datasets: TR dataset with 81 nodes, AP dataset with 200 nodes, URAND1000 dataset with 1000 nodes,
WORLDAP dataset with 2602 nodes, and RAND5000 dataset with 5000 nodes.

3. Benders decomposition: Benders decomposition handles only one solution in each iteration. It selects the

initial solution using the same strategy with GVNS. When resolving the original problem, the rewritten solution

is used as the solution for the master problem (MP), i.e., Yk. The value of Yk is used to construct the dual

sub-problem (DSP) for the first iteration.

4. Evaluation

4.1. Datasets and experimental setup

Three well-known datasets and two new datasets are used as case studies in our evaluation of EHLC. The TR

(Turkish Postal) dataset includes 81 cities with pairwise distance and travel demands in the Turkish postal sys-

tem (Çetiner 2003). The AP (Australia Post) dataset provides 200 postcode districts with locations and pairwise

travel demands in Australia (Ernst and Krishnamoorthy 1996). The URAND1000 dataset is a random network with

1,000 nodes generated by Ilić et al. (2010). Two additional large datasets are generated for further evaluation of

scalability. The WORLDAP dataset consists of 2,602 worldwide airports and actual travel demands between them,

with ticket data including direct and indirect flights between airports. The data comes from Sabre Airport Data In-

telligence (Sabre Airlines Solutions 2017). The RAND5000 dataset is generated by placing 5,000 nodes in a 1 × 1

uniformly plane at random, with travel demands randomly distributed in the range [0, 1]. All five datasets are visu-

alized in Figure 4. The self-flows for nodes in the standard AP dataset were set to zero in our study. Because of the

high complexity of CMApHMPC and UMApHMPI, we use TR40 dataset (which is generated by selecting the first 40

Table 3: Time cutoffs (in seconds) for different types of hub location problems, solution techniques, and datasets. A * indicates that the method
was not tested on the dataset.

TR40 TR AP URAND1000 WORLDAP RAND5000
USApHMPC (GA and GVNS) * 100 600 7,200 10,800 10,800
USApHMPI (GA and GVNS) * 100 600 7,200 10,800 10,800
CSApHMPC (GA and GVNS) * 100 600 7,200 10,800 10,800

UMApHMPC (Benders) * 7,200 10,800 * * *
UMApHMPI (Benders) 1,200 * * * * *
CMApHMPC (Benders) 1,200 * * * * *
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nodes from TR dataset, inspired by de Camargo et al. (2017)) for both problems. The cost coefficients of hub location

problems are set to α ∈ {0.3, 0.5, 0.7}, δ1 = δ2 = 1 for the TR/TR40 dataset, and α = 0.75, δ1 = 3, δ2 = 2 for other

datasets. For our major experiments, the contraction size is set as follows: we chose k = 20 for TR40, k = 30 for TR,

k = 50 for AP, k = 200 for URAND1000, k = 500 for WORLDAP, and k = 1000 for RAND5000. These choices

have been made with the goal of finding a trade-off between execution time (small contraction size) and quality (larger

contraction size).

Given that we perform evaluations on six different HLPs, we have to restrict our implementation of state-of-the-

art. For single allocation problems (USApHMPC, USApHMPI, and CSApHMPC), heuristics have been shown highly

efficient in the literature. Therefore, GA (Kratica et al. 2007, Stanimirović 2012) and GVNS (Ilić et al. 2010)) are

used to solve three types of single allocation problems on all datasets. Each instance of GA and GVNS is run with

ten different seeds, because these algorithms are non-deterministic. For multiple allocation problems (UMApHMPC,

CMApHMPC, and UMApHMPI), the performance of GA and GVNS is not as efficient as in single allocation prob-

lems. Therefore, Benders decomposition (de Camargo et al. 2009) is used to solve them. Given limited scalability of

Benders decomposition, only the TR dataset and the AP dataset are used as case studies for UMApHMPC. Because

of the high complexity of CMApHMPC and UMApHMPI, only the TR40 dataset (which is generated by selecting

the first 40 nodes from TR dataset, inspired by de Camargo et al. (2017)) is used as a case study. Time cutoffs for

different types of hub location problems, solution techniques, and datasets are shown in Table 3. These cutoff values

were determined by initial sensitivity analysis considering the size of the datasets and the convergence of standard

algorithms. All experiments were executed on a server with 40 cores and 430 GB RAM, running Fedora 26.

4.2. Effect of the value of k

The value of k affects the final solution and the convergence speed of the algorithm significantly. Therefore, an

evaluation on different values of k is performed in this subsection. Two datasets TR and TR40 (which is generated

by selecting the first 40 nodes from TR dataset, inspired by de Camargo et al. (2017)) are selected as case stud-

ies. USApHMPC, CSApHMPC, USApHMPI, and UMApHMPC are solved on the TR dataset. CMApHMPC and

UMApHMPI are solved on the TR40 dataset. The gaps of solutions and runtime until the rewriting step with different

values of contraction size k are shown in Figure 5. Note that the gaps are obtained based on the best-known solutions.

For the TR dataset, k = 30 is an appropriate value which keep a trade-off between the qualities of the rewritten

solutions and the runtime after the rewriting step. Although k = 35 further improves the solution qualities, the required

runtime increases significantly as well. For the TR40 dataset, k = 20 is selected because of the same reason. For other

datasets, we choose k = 50 for AP, k = 200 for URAND1000, k = 500 for WORLDAP, and k = 1000 for RAND5000.
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(a) Gaps on TR dataset. (b) Runtime on TR dataset.

(c) Gaps on TR40 dataset. (d) Runtime on TR40 dataset.

Figure 5: The gaps of solutions and runtime until the rewriting step with different values of contraction size k. USApHMPC, CSApHMPC,
USApHMPI, and UMApHMPC are solved on the TR dataset. CMApHMPC and UMApHMPI are solved on the TR40 dataset.
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Figure 6: An example for two time-gap series and computing the speedups. Subfigure a) shows two time-gap series (one in blue color and one in red
color). The speedups at different levels of gaps are indicated with green arrows. Two incomparable regions exist, highlighted in grey. Subfigure b)
reports the frequency distribution of 100 equally-spaced sample speedups in the gap range 0.3 to 1.06. The median speedup is 54.85, as highlighted
by the dashed line.

4.3. Execution time of EHLC compared to non-contraction methods

For our evaluation of EHLC, the major criterion of interest is the execution time for obtaining the same gaps as

standard algorithms. Note that the gaps are obtained based on the best-known solutions. We design a comparison
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Figure 7: The median speedups for obtaining the same gaps by non-contraction methods and EHLC. GA and GVNS are applied for CSApHMPC,
USApHMPC, and USApHMPI on the TR, AP, URAND1000, WORLDAP, and RAND5000 datasets. Benders decomposition is applied for
UMApHMPC on the TR dataset and CMApHMPC, UMApHMPI on the TR40 dataset.

measure for two time-gap curves as visualized in Figure 6. The input consists of two time-gap curves as input, e.g.,

one from EHLC (blue) and one from non-contraction methods (red) for the same problem instance. The curve between

two measure points, i.e., pairs of (time, gap), is interpolated using piecewise linear interpolation (Note that the x-axis

in Figure 6 is log-scale). We identify the comparable region of both curves next, i.e., gap regions, for which both

methods have obtained gap values. In the example, the region is between 0.3% and 1.04%. After discarding the

incomparable regions, a collection of speedups can be obtained by uniform sampling along the gap axis: for each

comparable gap value, we get two interpolated time values; dividing one (red) by the other (blue) yields a speedup.

Computing the median speedup over all gap values gives an estimation of the overall speedup of EHLC (blue) versus

non-contraction methods (red). Figure 6b) visualizes a histogram of all speedups for the given example, yielding a

median speedup of 54.85.

We apply the described speedup estimation methodology for all competitors. The results are reported in Figure 7.

We find that EHLC needs substantially shorter time than non-contraction methods for obtaining the same gaps in the

vast majority of cases. For the largest datasets and more complicated problem formulations, such as USApHMPI and

RAND5000, the median speedup of EHLC is 40x–50x, for both GA and GVNS. It should be noted that the exact

solution technique, Benders decomposition, can be speed-up by a factor of 60x on UMApHMPC as well. Overall,

we conclude that EHLC offers significant median speedups over all datasets and problem domains. Moreover, with

increasing size of the network, the speedup grows substantially larger; a prerequisite for developing more scalable

solution techniques for hub location problems. For further exploration of different speedup values, we analyze their

relationship to the gap difference of EHLC after rewriting and initial solutions of non-contraction methods, i.e., we

measure how much initial advantage we achieve by using the pivots from contraction. The results are reported in
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Figure 8: Correlation between gap difference and the speedup compared to non-contraction methods for USApHMPC. The gap difference is
measured as the initial gap of EHLC (after rewriting step) minus the initial gap of non-contraction methods (based on their initial solution). Smaller
initial gaps of EHLC lead to larger speedups.

Figure 8 for USApHMPC. It can be seen that, in most cases, the gap of EHLC after rewriting is much smaller

compared to initial gaps of non-contraction methods; and larger deviations in the gap difference lead to substantial

speedups. This speedup is much larger than the runtime used for solving the contracted problems. Appendix 6.4

contains additional charts for CSApHMPC and USApHMPI (See Figure 12 and Figure 13), confirming our results for

USApHMPC.

4.4. The comparison on final gaps between EHLC and non-contraction methods

In the previous section, we have shown that EHLC can reach the same gaps as non-contraction methods signifi-

cantly faster. In this subsection, we compare the final gaps obtained by EHLC and non-contraction methods (in the

following abbreviated with NC). Table 4 provides an overview of min/median/max gaps for selected instances using

GA and GVNS. The final min/median/max gaps of EHLC GA and NC GA are in the same magnitude, meaning that

EHLC GA usually finds solutions with similar costs as NC GA. More important is the comparison of EHLC GVNS

with NC GVNS, given that GVNS-based solutions clearly outperform GA-based solutions for all three HLPs. Again,

EHLC GVNS has similar min/median/max gaps as NC GVNS, which means that EHLC does not sacrifice any amount

of quality, given its tremendous speedup. More results can be found in Appendix 6.3; with same trends as those de-

scribed above.

Figure 9 visualizes the final gaps of non-contraction solutions against the gaps of EHLC-based solutions as a

scatterplot. Each data point stands for a combination of NC/EHLC for the same problem instances with different

random seeds. For the majority of datasets, the overall gaps of both methods have a comparable order of magnitude.

GVNS is better than GA for CSApHMPC and USApHMPC, and USApHMPI. Finally, Figure 10 visualizes the
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Table 4: The minimum gaps, median gaps and maximum gaps of solutions (in %) obtained by EHLC GA/GVNS and NC GA/GVNS for US-
ApHMPC/CSApHMPC/USApHMPI. The gaps that are smaller than or equal to 0.05% are highlighted in bold. NC=Non-contraction.

USApHMPC EHLC GA NC GA EHLC GVNS NC GVNS
Dataset α p Min Med Max Min Med Max Min Med Max Min Med Max

TR 0.5 4 0.65 0.65 2.09 0.00 0.11 0.98 0.00 0.10 0.77 0.00 0.03 0.11
TR 0.5 8 1.30 1.47 1.89 0.33 0.93 1.94 0.00 0.36 0.37 0.00 0.20 0.52
AP 0.75 4 0.63 0.63 0.84 0.00 0.01 0.48 0.00 0.00 0.00 0.00 0.00 0.00
AP 0.75 8 0.27 0.82 2.22 1.00 2.24 4.26 0.00 0.06 0.26 0.00 0.00 0.26

URAND1000 0.75 4 0.20 0.56 1.81 0.30 0.81 1.44 0.00 0.00 0.00 0.00 0.00 0.00
URAND1000 0.75 8 2.03 3.72 4.57 2.07 3.71 5.73 0.00 0.01 0.02 0.00 0.00 0.12
WORLDAP 0.75 4 0.88 2.37 5.77 0.48 3.07 4.73 0.00 0.01 0.06 0.00 0.02 3.77
WORLDAP 0.75 8 3.01 5.22 11.41 3.34 6.63 14.14 0.03 2.28 5.25 0.00 3.71 9.08
RAND5000 0.75 4 0.44 1.06 2.02 0.64 0.85 2.09 0.00 0.00 0.00 0.00 0.00 0.00
RAND5000 0.75 8 1.77 3.74 4.82 2.84 3.78 5.85 0.00 0.03 0.20 0.00 0.16 0.63

CSApHMPC EHLC GA NC GA EHLC GVNS NC GVNS
Dataset α p Min Med Max Min Med Max Min Med Max Min Med Max

TR 0.5 4 0.07 0.07 1.89 0.00 0.07 0.35 0.00 0.00 0.00 0.00 0.00 0.00
TR 0.5 8 0.89 0.89 1.41 0.03 0.64 2.07 0.03 0.03 0.46 0.00 0.03 0.46
AP 0.75 4 0.31 0.31 1.92 0.00 0.38 1.72 0.00 0.00 0.00 0.00 0.00 0.00
AP 0.75 8 0.35 0.35 1.32 0.52 1.64 3.82 0.00 0.46 1.25 0.00 0.12 1.00

URAND1000 0.75 4 1.10 1.65 3.32 0.57 2.37 7.76 0.00 0.02 0.03 0.00 0.02 0.18
URAND1000 0.75 8 2.37 6.16 8.85 2.65 5.73 8.65 0.09 0.21 0.66 0.00 0.22 0.58
WORLDAP 0.75 4 0.75 3.12 4.74 1.26 4.80 8.64 0.00 0.00 0.02 0.00 0.03 2.84
WORLDAP 0.75 8 2.91 6.89 13.59 8.95 15.19 29.91 0.00 3.35 7.70 1.19 2.87 4.78
RAND5000 0.75 4 1.89 2.75 4.63 1.66 2.74 5.02 0.00 0.05 0.38 0.00 0.10 0.37
RAND5000 0.75 8 6.06 7.61 12.99 8.32 10.68 15.76 0.22 1.17 4.52 0.00 1.22 2.73

USApHMPI EHLC GA NC GA EHLC GVNS NC GVNS
Dataset α p, q Min Med Max Min Med Max Min Med Max Min Med Max

TR 0.5 4,5 0.62 0.64 2.30 0.09 0.64 1.18 0.00 0.04 0.10 0.04 0.10 0.74
TR 0.5 8,12 2.00 3.20 4.77 0.85 3.22 5.05 0.00 0.52 2.08 0.07 0.21 0.66
AP 0.75 4,5 0.64 0.83 0.96 0.11 0.46 5.47 0.00 0.00 0.00 0.00 0.00 0.00
AP 0.75 8,12 0.36 2.16 4.94 2.01 5.66 9.18 0.00 0.17 1.84 0.00 0.24 1.84

URAND1000 0.75 4,5 0.48 1.33 2.10 0.80 1.40 2.83 0.00 0.00 0.00 0.00 0.00 0.01
URAND1000 0.75 8,12 3.64 7.51 10.77 5.53 7.84 10.20 0.03 0.13 1.28 0.00 0.28 2.63
WORLDAP 0.75 4,5 0.69 1.48 6.86 0.80 3.81 6.06 0.00 0.01 0.30 0.00 0.06 2.94
WORLDAP 0.75 8,12 8.77 12.25 16.24 6.62 13.13 19.58 0.00 3.32 6.24 0.90 7.08 15.11
RAND5000 0.75 4,5 0.60 1.55 2.26 1.25 1.68 3.09 0.00 0.03 0.04 0.02 0.03 0.18
RAND5000 0.75 8,12 4.93 8.09 9.13 7.51 8.91 12.24 0.00 0.11 1.56 0.02 0.84 1.63

dependency between initial gaps and final gaps of methods. It can be seen that the initial gaps of EHLC (obtained

after rewriting) are significantly smaller than those of standard methods. Moreover, initial gaps of NC GA are smaller

than those of NC GVNS, given the larger random solution population as input.

The gaps of solutions for UMApHMPC, CMApHMPC, and UMApHMPI obtained by EHLC Benders decompo-

sition and NC Benders decomposition are shown in Tables 8–10 in Appendix 6.3. Both methods provide the (nearly)

optimal solutions for the TR dataset and TR40 dataset. However, only EHLC Benders decomposition solves the prob-
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Figure 9: Scatterplot of gaps obtained by non-contraction methods vs gaps obtained by EHLC; results for GA and GVNS are distinguished by
color (GA=blue and GVNS=green). Note that both axes are log scaled and best-known solutions (with gap 0%) are not shown.

Figure 10: Scatterplot of initial gaps vs. final gaps obtained by EHLC and non-contraction methods. The initial gaps of EHLC (obtained after
rewriting) are significantly smaller than those of standard methods. GA has substantially better initial solutions than GVNS, given the initial
population of 200 individuals.

lems on the AP dataset towards optimality. The reason is that the high-quality initial solutions obtained by contraction

speeds up the convergence of Benders decomposition significantly, so that it can solve the problem optimally within

the given limited time on the AP dataset.
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Figure 11: The pairwise distribution of the total error, opportunity cost error and optimality error of the contraction strategy on different types of
hub location problems.

4.5. Error analysis on the contraction strategy

As discussed in Section 2, several error measurements for demand point aggregation (i.e., node contraction) have

been proposed. In this subsection, we select three of them and calculate their (approximate) values based on the exper-

imental results in the above subsections. The selected error measurements are total demand point error, (approximate)

opportunity cost error and (approximate) optimality error. We first explain the definitions of these errors.

Assume that the original network and the contracted network are represented by G and G∗, respectively. Let

F(X,G) and F(X,G∗) represent the models based on corresponding networks, where X is the solution which is mainly

determined by the locations of hub nodes. We assume that the optimal solutions of F(X,G) and F(X,G∗) are X̄ and

X∗, respectively. The selected error measurements are defined as follows:

Total demand point error: Etdp = F(X∗,G∗) − F(X∗,G) (62)

Opportunity cost error: Eoc = F(X̄,G) − F(X∗,G∗) (63)

Optimality error: Eopt = F(X̄,G) − F(X∗,G) (64)
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It would be very interesting to provide a bound which is tight enough for the error, i.e., | f (X,G∗) − f (X,G)| <

EB,∀X. Francis and Lowe (1993) proposed that the error bound of the multi-facility minisum model is
∑

i, j wi jci, f (i),

where node i is contracted to node f (i). Therefore, the error bound of USApHMPC is
∑

i∈V (δ1Oici, f (i) + δ2Dic f (i),i).

Other HLPs have corresponding formulations. Apart from few special datasets in which nodes are distributed in strong

clusters, this error bound could be very loose. This is another reason why we only compute the practical values of the

above three error measures.

The total demand point error can be computed easily and indicates the quality of the approximating function

based on the contracted network G∗ with solution X∗ (Francis et al. 2009). When computing the latter two error

measurements, the optimal solution X̄ cannot be obtained easily (Otherwise, we donot need to do the contraction for

solving the original problem). Therefore, we use the best obtained solution for each instance in Sections 4.3–4.4 as

the approximate value of X̄. The solution obtained in the contracted network (See step Exploration in Section 3.3) is

used as the approximate value of X∗. To show standard values for different types of hub location problems on various

datasets, we normalize the above error measurements by computing their ratios as follows:

Ratio of total demand point error: REtdp =
F(X∗,G∗) − F(X∗,G)

F(X̄,G)
(65)

Ratio of opportunity cost error: REoc =
F(X̄,G) − F(X∗,G∗)

F(X̄,G)
(66)

Ratio of optimality error: REopt =
F(X̄,G) − F(X∗,G)

F(X̄,G)
(67)

The pairwise distribution of REtdp, REoc and REopt for USApHMPC, CSApHMPC, USApHMPI, UMApHMPC,

CMApHMPC, and UMApHMPI on different datasets are shown in Figure 11. The results obtained by GVNS, GA

and Benders decomposition are represented by blue, orange and green dots. There are some observations as follows:

1. Because of the contraction/aggregation of the travel demands, the values of the objective functions are smaller

in the contracted network compared to the original network. Therefore, the ratio of total demand point error

REtdp < 0 in most cases. The other two error measurements are also usually negative because of the high quality

of X̄.

2. There is a significantly positive correlation between REoc and REopt, i.e., the quality of solution X∗ on the

contracted network is highly correlated to that on the original network. It indicates that the contraction strategy

performs well on preserving the properties of the original network on hub location problems.
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5. Conclusions

There is a need to develop scalable algorithms for hub location problems, given that the computation of exact

solutions to these problems is usually NP-hard. We propose a novel view on speeding up standard solution techniques

by the notion of contraction (termed EHLC), which exploits the structural similarities between original networks and

contracted/condensed subnetworks. Using the solutions obtained by contracted networks as input to solvers for the

original network, the solution algorithms can speed up significantly, with few problem-specific modifications.

We have conducted and reported the results of experiments regarding six standard hub location problems (US-

ApHMPC, CSApHMPC, USApHMPI, UMApHMPC, CMApHMPC, and UMApHMPI) and several standard solu-

tion techniques (GA, GVNS, and Benders decomposition). We show that EHLC achieves similar gaps as the standard

solution techniques, but significantly faster. For the largest datasets in our study, WORLDAP and RAND5000, me-

dian speedups of 40x–50x were achieved, compared to GA and GVNS. These results not only hold for constructing

feasible solutions, but also for solving HLPs towards optimality, as our experiments with Benders decomposition for

UMApHMPC, CMApHMPC, and UMApHMPI show, with a median speedup of 20x–60x. The speedup of EHLC

grows with the size of the input network, allowing to compute solutions 1–2 orders of magnitude faster. Our contri-

bution pushes the state-of-the-art boundary on hub location solutions techniques.

There are several directions for future work, based on the results of this study. First, we believe that the concept

underlying EHLC can be adapted to many more types of HLPs. Second, experiments on even larger networks could

lead towards further speedups; making it feasible to solve HLPs at unprecedented scale. Third, EHLC is designed as

one-directional, where the contracted network is used at the initial phase of the solution process. It could be beneficial

to blend the process of solving in contracted and original network further.
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Hoff, A., Peiró, J., Corberán, Á., Martı́, R., 2017. Heuristics for the capacitated modular hub location problem. Computers & Oper-

ations Research 86, 94 – 109. URL: http://www.sciencedirect.com/science/article/pii/S0305054817301144,

doi:https://doi.org/10.1016/j.cor.2017.05.004.
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6. Appendix

6.1. The sub-problems and master problems of Benders decomposition for UMApHPMC, CMApHMPC and UMApHMPI

For the reproduction of Benders decomposition algorithm on UMApHPMC, CMApHMPC and UMApHMPI, we

introduce the sub-problems and master problems of Benders decomposition for these problems.

UMApHMPC: The Benders decomposition for solving UMApHMPC and similar hub location problems were

proposed by de Camargo et al. (2008, 2009).

Set variables Yk to fixed values Ŷk in Equations (21–26), the sub-problem (SP) is generated:

min
∑
i∈V

∑
j∈V

∑
k∈V

∑
m∈V

(
δ1cik + αckm + δ2cm j

)
wi jXi jkm (68)

subject to
∑
k∈V

∑
m∈V

Xi jkm = 1,∀i, j ∈ V (69)

∑
m∈V

Xi jkm +
∑

m∈V,m,k

Xi jmk ≤ Ŷk,∀i, j, k ∈ V (70)

Xi jkm ∈ {0, 1},∀i, j, k,m ∈ V (71)

Let σi j ∈ R and πi jk ≥ 0 be the dual variables corresponding to Equations (69–70), the dual sub-problem (DSP) is

generated:

max
∑
i∈V

∑
j∈V

(σi j −
∑
k∈V

Ŷkπi jk) (72)

subject to σi j − πi jk − πi jm ≤ (δ1cik + αckm + δ2cm j)wi j,∀i, j, k,m , k ∈ V (73)

σi j − πi jk ≤ (δ1cik + δ2ck j)wi j,∀i, j, k ∈ V (74)

σi j ∈ R,∀i, j ∈ V (75)

πi jk ≥ 0,∀i, j, k ∈ V (76)

Using θi j to represent the cost for OD pair (i, j), the master problem (MP) is formulated as follows:

min
∑
i∈V

∑
j∈V

θi j (77)

subject to
∑
k∈V

Yk = p (78)

Yk ∈ {0, 1},∀k ∈ V (79)
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In each iteration, after obtaining the values of σ̂i j and π̂i jk by solving the DSP, the Benders cuts are generated and

added to MP for the next iteration.

θi j ≥ σ̂i j −
∑
k∈V

π̂i jkYk,∀i, j ∈ V (80)

CMApHMPC: We did not find the appropriate references about Benders decomposition for CMApHMPC. There-

fore, we design this algorithm by ourselves, inspired by de Camargo et al. (2008).

Set variables Yk to fixed values Ŷk in Equations (21–27), the sub-problem (SP) is generated:

min
∑
i∈V

∑
j∈V

∑
k∈V

∑
m∈V

(
δ1cik + αckm + δ2cm j

)
wi jXi jkm (81)

subject to
∑
k∈V

∑
m∈V

Xi jkm = 1,∀i, j ∈ V (82)

∑
m∈V

Xi jkm +
∑

m∈V,m,k

Xi jmk ≤ Ŷk,∀i, j, k ∈ V (83)

∑
i∈V

∑
j∈V

∑
m∈V

Xi jkmwi j ≤ λkŶk,∀k ∈ V (84)

Xi jkm ∈ {0, 1},∀i, j, k,m ∈ V (85)

Let σi j ∈ R, πi jk ≥ 0 and ηk ≥ 0 be the dual variables corresponding to Equations (82–84), the dual sub-problem

(DSP) is generated:

max
∑
i∈V

∑
j∈V

(σi j −
∑
k∈V

Ŷkπi jk) −
∑
k∈V

λkŶkηk (86)

subject to σi j − πi jk − πi jm − wi jηk ≤ (δ1cik + αckm + δ2cm j)wi j,∀i, j, k,m , k ∈ V (87)

σi j − πi jk − wi jηk ≤ (δ1cik + δ2ck j)wi j,∀i, j, k ∈ V (88)

σi j ∈ R,∀i, j ∈ V (89)

πi jk ≥ 0,∀i, j, k ∈ V (90)

ηk ≥ 0,∀k ∈ V (91)

Using θ to represent the cost for all OD pairs, the master problem (MP) is formulated as follows:

min θ (92)
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subject to
∑
k∈V

Yk = p (93)

Yk ∈ {0, 1},∀k ∈ V (94)

In each iteration, after obtaining the values of σ̂i j and π̂i jk by solving the DSP, the Benders cuts are generated and

added to MP for the next iteration.

θ ≥
∑
i∈V

∑
j∈V

(σ̂i j −
∑
k∈V

π̂i jkYk) −
∑
k∈V

λkYkη̂k, if DSP is optimally solved (95)

0 ≥
∑
i∈V

∑
j∈V

(σ̂i j −
∑
k∈V

π̂i jkYk) −
∑
k∈V

λkYkη̂k, if DSP is unbounded (96)

UMApHMPI: The Benders decomposition for solving UMApHMPI was proposed by de Camargo et al. (2017).

Set variables Yk,Zkm to fixed values Ŷk, Ẑkm in Equations (28–43), the sub-problem (SP) is generated:

min
∑
i∈V

∑
j∈V

wi j

∑
k∈V

δ1cikhi jk +
∑
m∈V

δ2cm jti jm +
∑
k∈V

∑
m∈V

αckmXi jkm

 (97)

∑
m∈V,m, j

ti jm + hi j j +
∑

k∈V,k, j

Xi jk j = 1,∀i, j ∈ V (98)

hi jm +
∑

k∈V,k, j,k,m

Xi jkm =
∑

k∈V,k,i,k,m

Xi jmk + ti jm,∀i, j,m ∈ V, i , m, j , m (99)

ti ji +
∑

m∈V,m,i

Xi jim = Ŷi,∀i, j ∈ V (100)

hi jk +
∑

m∈V,m, j,m,k

Xi jmk ≤ Ŷk,∀i, j, k ∈ V, k , i, k , j (101)

hi j j +
∑

k∈V,k, j

Xi jk j = Ŷ j,∀i, j ∈ V (102)

Xi jkm ≤ (Ẑkm if k > m) + (Ẑmk if k < m),∀i, j, k,m ∈ V, k , j,m , i,m , k (103)

Xi jkm ∈ {0, 1},∀i, j, k,m ∈ V (104)

hi jk ∈ {0, 1},∀i, j, k ∈ V (105)

ti jk ∈ {0, 1},∀i, j, k ∈ V (106)

Let θi j ∈ R, γi jk ∈ R, δi j ∈ R, φi jk ≥ 0, βi j ∈ R, τi jkm ≥ 0 be the dual variables corresponding to Equations (98–103),
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the dual sub-problem (DSP) is generated:

max
∑
i∈V

∑
j∈V

θi j − Ŷiδi j − Ŷ jβi j −
∑

k∈V,k,i,k, j

Ŷkφi jk −
∑

k∈V,k, j

 ∑
m∈V,m,i,m<k

Ẑkmτi jkm +
∑

m∈V,m,i,m>k

Ẑmkτi jkm


 (107)

subject to θi j − βi j ≤ δ1ci jwi j,∀i, j ∈ V (108)

γi jk − φi jk ≤ δ1cikwi j,∀i, j, k ∈ V, k , i, k , j (109)

γi jk − δi jk − φi jk − τi jik ≤ αcikwi j,∀i, j, k ∈ V, k , i, k , j (110)

γi jm − γi jk − φi jm − τi jkm ≤ αckmwi j,∀i, j, k,m ∈ V, k , i, k , j,m , i,m , j, k , m (111)

θi j − γi jm − βi j − τi jm j ≤ αcm jwi j,∀i, j,m ∈ V,m , i,m , j (112)

θi j − δi j − βi j − τi ji j ≤ αci jwi j,∀i, j ∈ V (113)

θi j − δi j ≤ δ2ci jwi j,∀i, j ∈ V (114)

θi j − γi jm ≤ δ2cm jwi j,∀i, j,m ∈ V,m , i,m , j (115)

θi j ∈ R,∀i, j ∈ V (116)

γi jk ∈ R,∀i, j, k ∈ V, k , i, k , j (117)

δi j ∈ R,∀i, j ∈ V (118)

φi jk ≥ 0,∀i, j, k ∈ V, k , i, k , j (119)

βi j ∈ R,∀i, j ∈ V (120)

τi jkm ≥ 0,∀i, j, k,m ∈ V, k , j,m , i, k , m (121)

Using ψi j to represent the cost for each OD pair (i, j), the master problem (MP) is formulated as follows:

min
∑
i∈V

∑
j∈V

ψi j (122)

subject to
∑
k∈V

Yk = p (123)

∑
k∈V

Yk = p (124)

∑
k∈V

∑
m∈V,m<k

Zkm = q (125)

Zkm ≤ Yk,∀k,m < k ∈ V (126)

Zkm ≤ Ym,∀k,m < k ∈ V (127)
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Zkm ∈ {0, 1},∀k,m ∈ V,m < k (128)

Yk ∈ {0, 1},∀k ∈ V (129)

In each iteration, after obtaining the values of dual variables by solving the DSP, the Benders cuts are generated

and added to MP for the next iteration.

ψi j ≥ θ̂i j − Yiδ̂i j − Y jβ̂i j −
∑

k∈V,k,i,k, j

Ykφ̂i jk −
∑

k∈V,k, j

 ∑
m∈V,m,i,m<k

Zkmτ̂i jkm +
∑

m∈V,m,i,m>k

Zmkτ̂i jkm

 , if DSP is optimally solved

(130)

0 ≥ θ̂i j − Yiδ̂i j − Y jβ̂i j −
∑

k∈V,k,i,k, j

Ykφ̂i jk −
∑

k∈V,k, j

 ∑
m∈V,m,i,m<k

Zkmτ̂i jkm +
∑

m∈V,m,i,m>k

Zmkτ̂i jkm

 , if DSP is unbounded

(131)

6.2. The selection of rewritten solutions for different solution algorithms

According to Section 3.1, the solutions on the contracted network are rewritten back to the original network.

Several of these rewritten solutions are selected and the original hub location problem is optimized with them as the

initial input. However, some solution algorithms need multiple initial solutions and generate multiple new solutions

in each iteration, while other solution algorithms deal with a single solution every time. Therefore, different selection

strategies should be designed for different types of solution algorithms:

1. For population-based algorithms, such as genetic algorithms: Multiple initial solutions are required and mul-

tiple solutions are generated in each iteration. Therefore, multiple solutions are recorded and rewritten from the

contracted network. The key point is to keep the diversity of solutions. The pseudocode in Algorithm 2 is used to

explain the selection strategy for this type of algorithms.

As shown in Line 1, an empty set All S olution is generated initially. Each unique solution in the initial population

or generated in each iteration is recorded in this set (See Lines 2–14). All solutions in the set All S olution are sorted

by the values of their objective functions ascendingly (See Line 15). A new empty set S elected S olution is gener-

ated afterwards (See Line 16). Each solution in All S olution with the hub set appearing less than a given number

of times in S elected S olution will be added to S elected S olution. The loop is terminated until S elected S olution

reaches the size of Init Population.

2. For single-solution algorithms, such as variable neighborhood search algorithm and Benders decomposition:

The algorithms start from one initial solution and generate only one solution in each iteration. The best solution

obtained by the rewriting phase is selected in this case. The selection strategy for this type of algorithms is simpler
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Algorithm 2 The strategy for selecting contracted solutions for population-based algorithms.
Input: The contracted network G∗ = (V∗, E∗), the original network G = (V, E), the set of initial solutions Init Population for
the contracted problem and the maximum times T of repeating hub sets.
Output: The set of rewritten solutions.

1: Let All S olution = ∅ be the set to record all unique solutions.
2: for each solution ∈ Init Population do
3: if solution < All S olution then
4: Let All S olution = All S olution ∪ {solution}.
5: end if
6: end for
7: for each iteration of the solution algorithm do
8: Let New S olution be the set of newly generated solutions.
9: for each solution ∈ New S olution do

10: if solution < All S olution then
11: Let All S olution = All S olution ∪ {solution}.
12: end if
13: end for
14: end for
15: Sort the solutions in All S olution by the values of their objective functions ascendingly.
16: Let S elected S olution = ∅ be the set to record all selected solutions.
17: for each solution ∈ All S olution do
18: if the hub set of solution appears less than T times in S elected S olution then
19: Let S elected S olution = S elected S olution ∪ {solution}.
20: end if
21: if |S elected S olution| == |Init Population| then
22: break
23: end if
24: end for
25: Rewriting all solutions in S elected S olution to the original network.

Algorithm 3 The strategy for selecting contracted solutions for single-solution algorithms.
Input: The contracted network G∗ = (V∗, E∗), the original network G = (V, E), and the initial solution init solu for the
contracted problem.
Output: The selected rewritten solution.

1: Let All S olution = {init solu} be the set to record all unique solutions.
2: for each iteration of the solution algorithm do
3: Let new solu be newly generated solution.
4: if new solu < All S olution then
5: Let All S olution = All S olution ∪ {new solu}.
6: end if
7: end for
8: Rewriting all solutions in All S olution to the original network.
9: Select the rewritten solution with the lowest objective function value on the original network.

than the former one. As shown in Algorithm 3, an initial set All S olution which contains the initial solution is

generated in Line 1. Each unique solution which is generated in each iteration is added to the set All S olution (See

Lines 2–7). After rewriting all solutions in All S olution, the solution with the lowest objective function value on

the original network is selected.
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6.3. The detailed experimental results for USApHMPC, CSApHMPC, USApHMPI, UMApHMPC, CMApHMPC, and

UMApHMPI.

Table 5: The minimum gaps, median gaps and maximum gaps of solutions (in %) obtained by EHLC GA/GVNS and NC GA/GVNS as well as
the median values and the maximum values of the median speedups (MSU) between EHLC and NC methods for USApHMPC. The numbers of in-
stances that Median GapEHLC GA ≤ Median GapNC GA and Median GapEHLC GVNS ≤ Median GapNC GVNS are 9 and 13 out of 21, respectively.
The gaps that are smaller than or equal to 0.05% are highlighted in bold.

USApHMPC EHLC GA Gap EHLC GA MSU NC GA Gap EHLC GVNS Gap EHLC GVNS MSU NC GVNS Gap
Dataset α p Min Med Max Med Max Min Med Max Min Med Max Med Max Min Med Max

TR 0.3 4 0.07 0.07 0.07 3.75 11.52 0.00 0.08 2.45 0.00 0.00 0.00 6.48 19.78 0.00 0.00 0.00
TR 0.3 6 0.26 0.53 2.61 2.55 7.52 0.00 0.17 1.72 0.00 0.00 0.17 3.65 22.61 0.00 0.00 0.17
TR 0.3 8 0.55 0.55 1.35 4.14 12.71 0.13 0.60 1.52 0.00 0.32 0.61 2.63 16.26 0.00 0.00 0.67
TR 0.5 4 0.65 0.65 2.09 0.82 6.59 0.00 0.11 0.98 0.00 0.10 0.77 2.91 17.51 0.00 0.03 0.11
TR 0.5 6 1.60 2.12 2.80 2.31 7.61 0.07 0.54 1.88 0.00 0.71 1.08 2.14 5.78 0.00 0.52 0.71
TR 0.5 8 1.30 1.47 1.89 5.82 14.96 0.33 0.93 1.94 0.00 0.36 0.37 3.26 19.53 0.00 0.20 0.52
TR 0.7 4 1.83 1.83 2.30 1.36 4.79 0.00 0.67 0.69 0.00 0.00 0.00 2.49 5.85 0.00 0.00 0.00
TR 0.7 6 2.52 2.52 3.39 1.65 3.88 0.00 0.27 1.47 0.03 1.02 2.05 1.22 6.43 0.00 0.28 1.02
TR 0.7 8 1.56 1.76 2.50 3.51 7.09 0.15 0.90 1.74 0.00 0.47 1.63 2.45 16.06 0.00 0.01 1.22
AP 0.75 4 0.63 0.63 0.84 11.18 21.63 0.00 0.01 0.48 0.00 0.00 0.00 12.09 104.38 0.00 0.00 0.00
AP 0.75 6 0.32 0.34 1.69 5.45 21.04 0.49 1.19 1.75 0.00 0.04 1.11 7.85 65.69 0.00 0.04 1.13
AP 0.75 8 0.27 0.82 2.22 7.98 35.53 1.00 2.24 4.26 0.00 0.06 0.26 5.19 33.75 0.00 0.00 0.26

URAND1000 0.75 4 0.20 0.56 1.81 24.30 72.42 0.30 0.81 1.44 0.00 0.00 0.00 16.32 105.56 0.00 0.00 0.00
URAND1000 0.75 6 1.33 1.95 2.60 15.12 175.14 0.87 1.84 4.07 0.00 0.00 0.00 11.02 58.34 0.00 0.00 0.05
URAND1000 0.75 8 2.03 3.72 4.57 14.79 49.95 2.07 3.71 5.73 0.00 0.01 0.02 8.82 36.22 0.00 0.00 0.12
WORLDAP 0.75 4 0.88 2.37 5.77 35.84 126.22 0.48 3.07 4.73 0.00 0.01 0.06 12.09 81.36 0.00 0.02 3.77
WORLDAP 0.75 6 1.18 3.06 6.67 25.70 73.72 1.32 2.72 3.96 0.00 0.39 3.46 11.03 112.16 0.00 1.74 4.04
WORLDAP 0.75 8 3.01 5.22 11.41 52.91 112.76 3.34 6.63 14.14 0.03 2.28 5.25 10.27 64.97 0.00 3.71 9.08
RAND5000 0.75 4 0.44 1.06 2.02 49.61 189.67 0.64 0.85 2.09 0.00 0.00 0.00 29.46 137.66 0.00 0.00 0.00
RAND5000 0.75 6 1.40 1.87 2.54 48.26 232.21 1.51 2.45 3.15 0.00 0.03 0.09 13.72 44.31 0.02 0.07 0.20
RAND5000 0.75 8 1.77 3.74 4.82 57.38 395.42 2.84 3.78 5.85 0.00 0.03 0.20 14.91 56.78 0.00 0.16 0.63
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Table 6: The minimum gaps, median gaps and maximum gaps of solutions (in %) obtained by EHLC GA/GVNS and NC GA/GVNS as well
as the median values and the maximum values of the median speedups (MSU) between EHLC and NC methods for CSApHMPC. The numbers
of instances that Median GapEHLC GA ≤ Median GapNC GA and Median GapEHLC GVNS ≤ Median GapNC GVNS are 12 and 17 out of 21,
respectively. The gaps that are smaller than or equal to 0.05% are highlighted in bold.

CSApHMPC EHLC GA Gap EHLC GA MSU NC GA Gap EHLC GVNS Gap EHLC GVNS MSU NC GVNS Gap
Dataset α p Min Med Max Med Max Min Med Max Min Med Max Med Max Min Med Max

TR 0.3 4 0.07 0.07 0.07 0.53 9.97 0.00 0.04 1.63 0.00 0.00 0.00 2.54 10.57 0.00 0.00 0.00
TR 0.3 6 0.09 0.09 2.35 4.28 20.73 0.00 0.00 2.50 0.00 0.00 3.31 2.88 13.69 0.00 0.00 3.31
TR 0.3 8 0.18 0.18 0.89 5.28 26.54 0.18 0.38 1.34 0.00 0.18 0.30 3.03 37.60 0.00 0.18 0.30
TR 0.5 4 0.07 0.07 1.89 1.89 6.83 0.00 0.07 0.35 0.00 0.00 0.00 2.65 9.23 0.00 0.00 0.00
TR 0.5 6 0.66 0.66 1.27 4.04 13.75 0.12 0.78 2.06 0.00 0.12 2.39 2.91 15.58 0.00 0.12 0.12
TR 0.5 8 0.89 0.89 1.41 5.12 16.92 0.03 0.64 2.07 0.03 0.03 0.46 4.00 20.70 0.00 0.03 0.46
TR 0.7 4 1.39 1.50 1.65 2.51 7.79 0.00 0.96 2.67 0.07 0.32 0.34 2.01 9.15 0.07 0.34 0.35
TR 0.7 6 1.06 1.40 1.91 2.61 10.83 0.14 0.32 1.48 0.00 0.52 1.41 2.43 16.62 0.00 0.00 1.89
TR 0.7 8 1.32 1.60 1.82 2.85 7.31 0.00 0.69 1.00 0.01 0.06 1.10 1.84 10.96 0.00 0.38 1.15
AP 0.75 4 0.31 0.31 1.92 5.61 27.52 0.00 0.38 1.72 0.00 0.00 0.00 5.49 28.27 0.00 0.00 0.00
AP 0.75 6 0.25 0.32 0.36 8.87 24.23 0.02 1.32 2.43 0.00 0.30 1.13 5.71 35.29 0.00 0.37 1.66
AP 0.75 8 0.35 0.35 1.32 7.90 22.61 0.52 1.64 3.82 0.00 0.46 1.25 4.19 30.31 0.00 0.12 1.00

URAND1000 0.75 4 1.10 1.65 3.32 20.57 309.43 0.57 2.37 7.76 0.00 0.02 0.03 13.19 49.64 0.00 0.02 0.18
URAND1000 0.75 6 1.76 4.09 5.64 10.81 38.92 1.55 3.49 6.44 0.03 0.06 0.10 14.87 88.71 0.00 0.04 0.72
URAND1000 0.75 8 2.37 6.16 8.85 9.26 81.06 2.65 5.73 8.65 0.09 0.21 0.66 14.84 75.07 0.00 0.22 0.58
WORLDAP 0.75 4 0.75 3.12 4.74 40.21 446.57 1.26 4.80 8.64 0.00 0.00 0.02 28.64 125.72 0.00 0.03 2.84
WORLDAP 0.75 6 2.25 2.67 6.33 57.12 144.59 3.33 7.86 12.37 0.20 0.38 1.22 16.36 49.19 0.00 1.92 6.55
WORLDAP 0.75 8 2.91 6.89 13.59 43.99 244.98 8.95 15.19 29.91 0.00 3.35 7.70 21.81 69.11 1.19 2.87 4.78
RAND5000 0.75 4 1.89 2.75 4.63 65.59 444.97 1.66 2.74 5.02 0.00 0.05 0.38 21.20 80.04 0.00 0.10 0.37
RAND5000 0.75 6 2.71 4.61 6.84 72.00 361.07 4.18 7.83 12.47 0.00 0.64 1.22 33.70 153.49 0.28 0.86 1.70
RAND5000 0.75 8 6.06 7.61 12.99 44.98 297.32 8.32 10.68 15.76 0.22 1.17 4.52 16.41 82.21 0.00 1.22 2.73

Table 7: The minimum gaps, median gaps and maximum gaps of solutions (in %) obtained by EHLC GA/GVNS and NC GA/GVNS as well as the
median values and the maximum values of the median speedups (MSU) between EHLC and NC methods for USApHMPI. The numbers of instances
that Median GapEHLC GA ≤ Median GapNC GA and Median GapEHLC GVNS ≤ Median GapNC GVNS are 15 and 17 out of 21, respectively. The
gaps that are smaller than or equal to 0.05% are highlighted in bold.

USApHMPI EHLC GA Gap EHLC GA MSU NC GA Gap EHLC GVNS Gap EHLC GVNS MSU NC GVNS Gap
Dataset α p Min Med Max Med Max Min Med Max Min Med Max Med Max Min Med Max

TR 0.3 4,5 0.07 0.07 3.93 1.69 5.53 0.04 0.51 2.52 0.00 0.00 0.00 2.60 10.55 0.00 0.00 0.00
TR 0.3 6,8 0.20 0.83 2.97 2.90 6.14 0.42 2.02 4.78 0.00 0.00 0.25 1.41 4.66 0.00 0.00 0.25
TR 0.3 8,12 2.00 3.11 3.61 2.48 11.46 1.00 2.31 6.80 0.00 0.46 1.18 1.79 5.34 0.08 0.84 1.18
TR 0.5 4,5 0.62 0.64 2.30 1.07 6.87 0.09 0.64 1.18 0.00 0.04 0.10 2.29 12.48 0.04 0.10 0.74
TR 0.5 6,8 1.96 2.95 5.27 1.85 3.85 0.45 1.95 3.41 0.34 0.51 1.66 1.57 4.52 0.00 0.56 0.77
TR 0.5 8,12 2.00 3.20 4.77 1.54 3.40 0.85 3.22 5.05 0.00 0.52 2.08 1.72 4.75 0.07 0.21 0.66
TR 0.7 4,5 1.82 1.82 2.36 2.02 7.23 0.63 0.79 1.74 0.00 0.00 0.59 1.78 6.91 0.00 0.00 0.59
TR 0.7 6,8 1.73 2.82 3.94 1.73 3.98 0.15 1.77 4.53 0.00 0.68 2.02 1.71 7.88 0.00 0.54 1.45
TR 0.7 8,12 2.03 3.31 4.72 2.05 3.27 0.82 2.88 5.69 0.00 0.49 1.95 1.37 3.33 0.00 0.53 4.20
AP 0.75 4,5 0.64 0.83 0.96 4.70 27.34 0.11 0.46 5.47 0.00 0.00 0.00 13.77 85.39 0.00 0.00 0.00
AP 0.75 6,8 0.29 1.51 3.75 3.11 8.52 0.88 2.29 5.00 0.00 0.15 1.17 4.09 40.71 0.00 0.14 0.94
AP 0.75 8,12 0.36 2.16 4.94 4.08 24.33 2.01 5.66 9.18 0.00 0.17 1.84 2.31 18.70 0.00 0.24 1.84

URAND1000 0.75 4,5 0.48 1.33 2.10 19.91 65.83 0.80 1.40 2.83 0.00 0.00 0.00 31.03 85.55 0.00 0.00 0.01
URAND1000 0.75 6,8 2.39 3.56 5.09 18.34 43.91 2.79 3.81 4.82 0.00 0.09 0.59 29.72 162.90 0.00 0.07 0.76
URAND1000 0.75 8,12 3.64 7.51 10.77 11.02 75.04 5.53 7.84 10.20 0.03 0.13 1.28 20.30 142.13 0.00 0.28 2.63
WORLDAP 0.75 4,5 0.69 1.48 6.86 27.05 256.05 0.80 3.81 6.06 0.00 0.01 0.30 41.21 371.62 0.00 0.06 2.94
WORLDAP 0.75 6,8 4.10 5.72 13.11 31.59 120.89 3.89 6.86 10.66 0.00 0.39 4.70 27.08 311.33 0.10 0.58 7.83
WORLDAP 0.75 8,12 8.77 12.25 16.24 36.79 126.83 6.62 13.13 19.58 0.00 3.32 6.24 24.25 221.49 0.90 7.08 15.11
RAND5000 0.75 4,5 0.60 1.55 2.26 47.85 534.43 1.25 1.68 3.09 0.00 0.03 0.04 46.46 188.00 0.02 0.03 0.18
RAND5000 0.75 6,8 3.00 4.81 6.27 49.07 192.76 3.59 4.90 9.03 0.00 0.28 0.44 41.31 116.61 0.02 0.48 0.83
RAND5000 0.75 8,12 4.93 8.09 9.13 44.75 186.24 7.51 8.91 12.24 0.00 0.11 1.56 38.23 144.30 0.02 0.84 1.63
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Table 8: The gaps of solutions obtained by EHLC Benders decomposition and NC Benders decomposition and the median speedup (MSU) between
EHLC and NC method for UMApHMPC.

UMApHMPC EHLC Benders EHLC Benders NC Benders
Dataset α p Gap (%) MSU Gap (%)

TR 0.3 4 0.00 61.93 0.00
TR 0.3 6 0.00 74.78 0.00
TR 0.3 8 0.00 62.26 0.00
TR 0.5 4 0.00 37.97 0.00
TR 0.5 6 0.00 56.81 0.00
TR 0.5 8 0.00 61.28 0.00
TR 0.7 4 0.00 38.22 0.00
TR 0.7 6 0.00 49.78 0.00
TR 0.7 8 0.00 59.5 0.00
AP 0.75 4 0.00 17.07
AP 0.75 6 0.00 41.71
AP 0.75 8 0.00 38.35

Table 9: The gaps of solutions obtained by EHLC Benders decomposition and NC Benders decomposition and the median speedup (MSU) between
EHLC and NC method for CMApHMPC.

CMApHMPC EHLC Benders EHLC Benders NC Benders
Dataset α p Gap (%) MSU Gap (%)
TR40 0.3 4 0.00 23.25 0.00
TR40 0.3 6 0.00 18.43 0.00
TR40 0.3 8 0.00 31.03 0.00
TR40 0.5 4 0.00 13.14 0.00
TR40 0.5 6 0.00 17.45 0.00
TR40 0.5 8 0.00 24.04 0.07
TR40 0.7 4 0.00 20.66 0.00
TR40 0.7 6 0.00 27.37 0.26
TR40 0.7 8 0.04 23.96 0.00

Table 10: The gaps of solutions obtained by EHLC Benders decomposition and NC Benders decomposition and the median speedup (MSU)
between EHLC and NC method for UMApHMPI.

UMApHMPI EHLC Benders EHLC Benders NC Benders
Dataset α p Gap (%) MSU Gap (%)
TR40 0.3 4,5 0.00 28.18 0.00
TR40 0.3 6,8 0.00 0.95 0.00
TR40 0.3 8,12 0.00 29.37 0.00
TR40 0.5 4,5 0.00 40.2 0.00
TR40 0.5 6,8 0.00 38.46 0.00
TR40 0.5 8,12 0.00 28.97 0.00
TR40 0.7 4,5 0.00 33.67 0.00
TR40 0.7 6,8 0.00 34.22 0.00
TR40 0.7 8,12 0.00 38.9 0.00
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6.4. Additional results for initial gap versus speedup.

Figure 12: Correlation between gap difference and the speedup compared to non-contraction methods for CSApHMPC. The gap difference is
measured as the initial gap of EHLC (after rewriting step) minus the gap obtained by non-contraction methods. Smaller initial gaps by EHLC
compared to non-contraction methods lead to larger speedups.

Figure 13: Correlation between gap difference and the speedup compared to non-contraction methods for USApHMPI. The gap difference is
measured as the initial gap of EHLC (after rewriting step) minus the gap obtained by non-contraction methods. Smaller initial gaps by EHLC
compared to non-contraction methods lead to larger speedups.
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