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Abstract—The tail assignment problem(TAP), which assigns
flight sequences to specific aircraft, serves as an indispensable
part of airline planning process in terms of safe and efficient
operation. As the airline industry is always faced with numerous
schedule disruptions, there has been a growing focus on taking
uncertainty into account during schedule making. This paper
presents a new stochastic model for TAP in order to provide
robust flight schedules when confronted with operational per-
turbations (e.g. flight delays, airport disclosure). The model is
formulated as integration of a master problem and a recourse
subproblem under the framework of stochastic programming.
The corresponding solution algorithm involves improved column
generation and Benders decomposition with an objective to
minimize both operational cost and expected recovery cost under
a bunch of disruption scenarios. To demonstrate the benefits of
stochastic TAP model, a computational study based on real airline
data is performed to assess the performance of deterministic and
stochastic TAP model respectively.

Index Terms—Airline planning, Robustness, stochastic pro-
gramming

I. INTRODUCTION

The rapid growth of the air transportation has triggered
great pressure on civil aviation stakeholders and infrastruc-
ture. This complex system has interactions with several its
components that make delay or other disruption inevitable [1].
As a consequence, even minor disruptions are likely to cause
cascaded effects on operation efficacy. The year 2018 in US
witnessed a situation that around 18.77% of all arrival flights
were delayed by more than 15 minutes while 1.72% of that
were cancelled. [2] With a predicted growth of air traffic, such
irregular perturbations may exert more impact on air industry.

As one of the important component of aviation industry, air-
line sector has always been a leader in developing and applying
advanced optimization techniques to cope with complex plan-
ning process. While the airline process is usually carried out
under assumptions that operation will be executed as originally
planned. The aforementioned irregular delays or cancellations,
more often than not, disturb schedules and affect on time
performance due to various reasons like convective weather,
propagated delay. Thus, the original schedule is susceptible
to disruption and infeasibility considering various operational
constraints(e.g. maintenance requirements). The considerable
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cost in airline irregularity has spurred great interests in robust
airline planning among industry and academia.

To mitigate the discrepancy between scheduled plan and
actual operation, the robust approaches in research can be
classified as three main categories: (1) domain-specific ap-
proaches, (2) propensity-diminishing approaches and (3) feed-
back approaches. These three categories are widely applied in
airline planning for the following five major sub problems:
• Schedule design problem (SDP). Establish flight

timetable based on market.
• Fleet assignment problem (FAP). Assign proper fleet type

to flights.
• Aircraft routing problem (ARP). Construct a sequence of

flights for aircraft.
• Crew scheduling problem (CSP). Assign crew trips to

execute flights.
• Tail assignment problem (TAP). Close to day of opera-

tion, construct routes for specific aircraft.

A. Background

An overview of different investigations for robust airline
planning is illustrated in TABLE I. Domain-specific ap-
proaches usually identify a particular feature to approximate
robustness in airline planning process. Typical features in-
cludes: reasonable allocation of buffer time [3], [4] which is
expected to absorb delay propagation; short cycles and less
fleet types to provide more opportunities for airline recovery
[5], [6]; isolating disruption in a particular airport to protect
other flights [7] and evaluation criterion like flight service level
[8]. The performance of these approaches mainly depends
on their efficacy gap of robustness and can fluctuate among
datasets with mark difference.

Propensity-diminishing approaches, on the other hand, com-
bine robustness within model formulations to decrease the
probabilty of disruptions and delays occurrance. One represen-
tative thought in this aspects is to minimize the expectation of
propagated delay by retiming the flight schedule. [9] proposed
the delay propagation and rearranged slack time so as to reduce
delay along downstream flights. [12] integrated ARP and CSP
to capture joint reaction for aircraft and crew in minimizing
total delay time. Adopting a new compact formulation, [15]
minimized the propagated delay in the weekly line of flight
(WLOF) network for ARP and partly extended to TAP. Besides



TABLE I
SUMMARY OF LITERATURE FOR ROBUST AIRLINE PLANNING

Papers Approaches Covering aspects Robustness feature
DSA1 PDA2 FBA3

[5] X ARP Aircraft swap opportunities
[3] X CSP Sufficient/tight ground time
[7] X FAP Hub isolation & short sycles
[6] X FAP Station purity
[9] X ARP Retiming to minimize propagated delay
[10] X CSP Crew switching aircraft delay
[11] X FAP Retiming & refleeting for demand uncertainty
[8] X SDP Considering block time uncertainty
[12] X ARP, CSP Minimizing total propagated aircraft & crew delay
[13] X TAP Easing recovery process
[14] X TAP Penalizing maintenance misalignment
[15] X FAP, TAP WLOF model to minimize propagated delay
[16] X ARP Extreme-value paradigm
[17] X SDP, FAP Integrated model under demand uncertainty
[18] X ARP Retiming with Monte-Carlo-based procedure
[19] X ARP chance constraint & extreme-value paradigm
[4] X ARP, CSP Integrated compact model with sufficient buffers
1 DSA: domain-specific approaches
2 PDA: Propensity-diminishing approaches
3 FBA: Feedback approaches

that, [11] solved robust SDP through retiming and refleeting,
considering demand uncertainty. [16] presented a extreme-
value based framework for robust ARP where flight delays
lied in a correlated uncertainty set. [19] set up new models in
extreme-value and chance-constrained paradigms to minimize
delay for ARP which had the potential for more general
resource-allocation problems.

Within the third category, feedback approaches utilize the
weight information via recourse (second stage) problem under
simulated scenarios. [10] proposed a model for this approach.
Specifically, robust CSP was solved by minimizing delay of
short connection within a set of scenarios. [13] presented a
recoverable TAP model so as to develop a schedule that is
recoverable with limited efforts. Similarly, [14] constructed
single day routes for aircraft under the recoverable robustness
framework. By penalizing the under supply of routes ending
at maintenance stations, they got maintenance plan which is
recoverable from disruption. In [17], the author took market
demand uncertainty into account and proposed a two-stage
mixed integer non-linear model for SDP and FAP jointly. A
key feature of the feedback approaches lies in its dynamic
adjustment of scheduled plan according to the recourse sub-
problem’s feedback on reaction to the plan. Compared with the
other two approaches, feedback approaches are able to build
robustness in a more direct and realistic way.

B. Contributions

In this paper, our focus is on the tail assignment step
of airline planning process. Although robust TAP has been
studied previously, we observe that some aspects ought to be
further addressed. The first aspects is computational tractabil-
ity. Because the feedback approaches often refer to many
recourse subproblems for different scenarios, the correspond-
ing solution algorithms contain 2 or more stages through
benders decomposition. While existing literature deal datasets

with comparatively smaller size or shorter timespan, it is
desirable to have more efficient solution algorithms to tackle
this complex model. The second aspect is realized operational
considerations. Among most existing studies in TAP related
fields, airport capacity, maintenance misalignment instead of
delay are not well studied while they can be quite crucial as
maintenance events tend to be vulnerable towards disruptions
and provide little recourse within the whole schedule. In
addition, the trade-off between maintenance misalignment and
its flexibility for possible swap is expected to better handled to
save recovery cost. In view of these not fully explored aspects,
we summarize our contributions of this work as follows.
First, we establish a column-and-row generation heuristic to
solve the stochastic tail assignment problem with recovery
initiative where improved column generation and benders
decomposition algorithms are adopted to render satisfying
results in short time. In contrast to traditional approaches,
our approach can boost the computation performance by a
factor of 7 at least. Second, operational insights are derived
for airport capacity and maintenance trade-off. Aircraft routes
are generated with lower cost and make allowance to recovery
actions (i.e. aircraft swap, flight cancellation and maintenance
swap). Our recovery model is an extension of [20] and is
able to generate recovery plan efficiently. Because we use
a benders decomposition framework, this subproblem model
explicitly considers deviation from TAP model’s solution in
model formulations to establish the benders cuts.

C. Outline

The paper is organized as follow: Section II illustrates the
mathematical model in detail with emphasis on explaining
how benders decomposition and column generation works
on the original deterministic model. Section 3 presents the
overall improved solution techniques towards this complex set
of models. Section 4 reports on the extensive computational



experience and related features obtained. Finally, Section 5
makes conclusions and indicates the next research steps.

II. THE MATHEMATICAL MODEL

The stochastic tail assignment under disruption recovery
initiative (STAPDRI) can be defined as follows. Given a close
to operation schedule(4-7 days), the objective of STAPDRI is
to assign routes to individual aircraft that minimizes the overall
operational cost and disruption cost subject to 5 operational
constraints [?]. (1) Flight coverage: each flight should be
covered by one aircraft.(2) Equipment continuity: an aircraft
can depart from an airport if it arrives at this airport before.
(3)Initial conditions: every aircraft must depart from its initial
location. (4) Turn time constraints: a minimum time has to
be reserved between 2 consecutive flights. (5) Maintenance
check: mandated by FAA, aircraft type A checks should be
guaranteed at maintenance station after operating for a fixed
time period (flying tions of this work as follows. First, we
establish a column-and-row generation heuristic to solve the
stochastic tail assignment problem with recovery initiative
where improved column generation and benders decomposi-
tion algorithms are adopted to render satisfying results in short
time. In contrast to traditional approaches, our approach can
boost the computation performance by a factor of 7 at least.
Second, operational insights are derived for airport capacity
and maintenance trade-off. Aircraft routes are generated with
lower cost and make allowance to recovery actions (i.e. aircraft
swap, flight cancellation and maintenance swap). Our recovery
model is an extension of [20] and is able to generate recovery
plan efficiently. Because we use a benders decomposition
framework, this subproblem model explicitly considers devi-
ation from TAP model’s solution in model formulations to
establish the benders cuts. time, elapsed time etc). To obtain
robust solution, STAPDRI deal with tail assignment problem
and aircraft recovery problem(ARP) together using stochastic
programming framework through establishing representative
scenarios to simulate realized airline operation routine or
emergencies.

The classical flight string model introduced by [21] and
a flight connection network, where every flight serves as a
vertex in the network and is connected with other vertices if
the aforementioned operational constraint(2)-(4) are satisfied,
are used to develop our STAPDRI model. To facilitate the
discussion, we define the following notations in Table II

A. Deterministic Model

With these parameters and variables, our STAPDRI model
is formulated deterministically as follows:

min
∑
rp

crpxrp +
∑
s∈S

wsφs (1)

φs = min
∑
r∈R

∑
p∈P

csrpx
s
rp +

∑
i∈F

dsiy
s
i +

∑
i∈F

∑
p∈P

g1(

α+
ip + α−ip) +

∑
m∈M

∑
d∈D

∑
p∈P

g2(β+
mdp + β−mdp) (2)

TABLE II
NOTATION USED FOR EXPRESSING THE MODEL

Parameters Description
F the set of flights, i ∈ F
P the set of aircraft, j ∈ P
D the set of days of planning d ∈ D
M the set of maintenance stations, m ∈M
S the set of scenarios, s ∈ S
Rp the set of routes for aircraft p, r ∈ Rp

Rp
s the set of routes for aircraft p in scenario s, r ∈ Rp

s

Cmd the maintenance capacity of airport m on day d
a1ir 1 if flight i is included in route r
a2mdr 1 if route r visits maintenance stationm at dayD
ws weight coefficient for subproblem in scenario s
dsi the delay cost for flight i in scenario s
g1 the cost for flight deviation
g2 the cost for maintenance misalignment

Decision Variables Description
xrp 1 if aircraft p executes route r
xsrp 1 if aircraft p executes route r in scenario s
ysi 1 if flight i is cancelled in scenario s

αs+
ip , α

s−
ip indicate deviation of flight i

executed by aircraft p in scenario s
βs+
mdp, β

s−
mdp indicate deviation of the number of times aircraft p

visits station m for day d in scenario s
φs cost of subproblem in scenario s

s.t.
∑
p∈P

∑
r∈Rp

a1irxrp = 1, ∀i ∈ F (3)∑
r∈Rp

xrp ≤ 1, ∀p ∈ P (4)∑
p∈P

∑
r∈Rp

a2mdrxrp ≤ Cmd, ∀m ∈M,d ∈ D (5)∑
p∈P

∑
r∈Rp

s

a1irx
s
rp + ysi = 1, ∀i ∈ F, s ∈ S (6)

∑
r∈Rp

s

xsrp ≤ 1, ∀p ∈ P, s ∈ S (7)

∑
p∈P

∑
r∈Rp

s

a2mdrx
s
rp ≤ Cmd, ∀m ∈M,d ∈ D, s ∈ S

(8)

αs+
ip − α

s−
ip +

∑
r∈Rp

s

a1irx
s
rp =

∑
r∈Rp

s

a1irxrp,

∀i ∈ F, p ∈ P, s ∈ S (9)

βs+
mdp − β

s−
mdp +

∑
r∈Rp

s

a2mdrx
s
rp =

∑
r∈Rp

s

a2mdrxrp,

∀m ∈M,d ∈ D, p ∈ P, s ∈ S (10)
xrp ∈ {0, 1}, xsrp ∈ {0, 1}, ysi ∈ {0, 1}, φs ≥ 0 (11)

αs+
ip ≥ 0, αs−

ip ≥ 0, βs+
mdp ≥ 0, βs+

mdp ≥ 0 (12)

The objective function of Equation(1) is the sum of flight as-
signment cost (i.e. fuel cost and maintenance cost) along with
a weighted sum of aircraft recovery cost among S scenarios.
To be specific, the recovery cost is comprised of flight delay
dsi , deviation from the original schedule. By using variables



αs+, αs−, differences in one aircraft’s assigned flights can be
observed and penalized. In the same way, misalignment of
aircraft p’s maintenance on station m, day d is expressed with
variables βs+, βs−.

Constraints(3) are the flight coverage constraints which
means each flight is covered by one aircraft route only.
The constraints in Constraints(4) ensure that each aircraft
can choose at most one route to fly. Resource constraints(5)
place a limitation on the number of maintained aircraft in a
maintenance station according to the capacity.

On the side of the aircraft recovery stage, the superscript
s denotes the recovery scenario s that the model belongs to.
Constraints (6) indicate that each flight is either canceled or
covered by one route in scenario s. The restriction on the
number of available aircraft and airport capacity is described in
constraints(7-8) corresponding to constraints(4-5). Constraints
set (9-10) capture the deviation of flight and maintenance from
original plan xrp. As we add the deviation decision variables
α, β with positive objective value, the optimal solution requires
these variables to be strictly constrained by their lower bound.
Moreover, the upper bound of deviation variables are restricted
to 1 in the optimal solution.

From an intuitive view, the deterministic model of STAPDRI
is a large-scale mixed integer program that solves the TAP and
multiple ARPs simultaneously, given a bunch of scenarios.
Such a model is too complex to be solved directly, to ease
the computational burden and tackle some real-life problem,
decomposition techniques shall be applied. As the model is
amenable to the L-shaped method in stochastic programming
[22] and the number of feasible flight routes can increase
exponentially with the problem size, so enumeration is out
of consideration. In this paper, benders decomposition and
column generation are adopted to form our solution algorithm.
The following parts deal with the basic formulation of benders
decomposition and column generation. Improving skill is
introduced in section III.

B. Benders decomposition

Benders decomposition has been successfully applied to
combinatorial optimization problems. Its main idea is to de-
compose a complex model into a master problem (MP) and
sub-problem (SP) [23]. For our STAPDRI model, the decom-
position problem is clear that constraints related to variables
xrp form the master problem while other decision variables
comprise subproblems. The mathematical formulations for
primal subproblems (PSP) and the master problem(MP) are
given as follow

(PSP)

φs = min
∑
r∈R

∑
p∈P

csrpx
s
rp +

∑
i∈F

dsiy
s
i +

∑
i∈F

∑
p∈P

g1(

α+
ip + α−ip) +

∑
m∈M

∑
d∈D

∑
p∈P

g2(β+
mdp + β−mdp) (13)

s.t.
∑
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∑
r∈Rp

s

a1irx
s
rp + ysi = 1, ∀i ∈ F (14)

∑
r∈Rp

s

xsrp ≤ 1, ∀p ∈ P (15)

∑
p∈P

∑
r∈Rp

s

a2mdrx
s
rp ≤ Cmd, ∀m ∈M,d ∈ D (16)

αs+
ip − α

s−
ip +

∑
r∈Rp

s

a1irx
s
rp =

∑
r∈Rp

s

a1irx
∗
rp

∀i ∈ F, p ∈ P (17)

βs+
mdp − β

s−
mdp +

∑
r∈Rp

s

a2mdrx
s
rp =

∑
r∈Rp

s

a2mdrx
∗
rp

∀m ∈M,d ∈ D, p ∈ P (18)
xsrp ∈ {0, 1}, ysi ∈ {0, 1}, φs ≤ 0 (19)

αs+
ip ≥ 0, αs−

ip ≥ 0, βs+
mdp ≥ 0, βs+

mdp ≥ 0 (20)

The optimal solution of the master problem is given as fixed
input x∗ to primal subproblems for further optimization. As
the subproblem’s constraints can be always satisfied by setting
ysi = 1,∀i ∈ F , the solution status of PSP is always feasible.
So, after finding the optimal solution of PSP, optimal benders
cuts can be generated for the master problem. Consider the lin-
ear relaxation of PSP. Let (θsi , γ

s
p, µ

s
md, δ

1s
ip , δ

2s
mdp) be the dual

variable of constraints(14)-(18) respectively. Denote the set of
benders cuts as Ω. Given subproblem s and w ∈ Ω the derived
optimal benders cuts can be expressed as constraints(22).
These constraints can be understood as an estimation of PSP’s
objective function from the view of weak duality theory.
Through iterating between master problem and subproblem,
an optimal solution can be reached by checking the gap of
lower bound and upper bound.

(MP)

min
∑
rp

crpxrp +
∑
s∈S

wsφs (21)

s.t.(3)− (5)

φs ≥
∑
i∈F

θswi +
∑
p∈P

γswp +
∑
m∈M

∑
d∈D

Cmdµ
sw
md+

∑
p∈P

∑
r∈Rp

(∑
i∈F

a1irδ
1sw
ip xrp +

∑
m∈M

∑
d∈D

a2mdrδ
2sw
mdpxrp

)
∀s ∈ S,w ∈ Ω (22)

C. Column generation

In this paper, we use column generation to solve our master
problem(TAP) as well as subproblems(ARP). This methodol-
ogy avoids enumerating decision variables and is efficient in
solving a large-scale optimizing problem. Within each iteration
of column generation, the problem’s LP relaxation is first



Algorithm 1 Multi-label shortest path algorithm for TAP
1: Input Connection Network G(V,A), Dual values

(πi, πa, πmd)
2: Initialize the source node’s label pool as [(−πa, 0, 0)]
3: for each node n in G’s topological sort do
4: for each label l in node n’s label pool do
5: for each node n2 such that (n, n2) ∈ A do
6: l12 = (cn − πn, tn, tn + tn,n2)
7: if the node is a flight then
8: Generate new label l2 = l + l12
9: end if

10: if the node is a maintenance then
11: Generate new label l2 = (l[0], 0, 0) + l12
12: end if
13: if l2 valid, not dominated
14: Insert l2 in n2’s label pool
15: Remove labels in n2 dominated by l2
16: end if
17: end for
18: end for
19: end for
20: Output Sink node’s label set

solved to optimal. Then, based on the dual information, a
pricing subproblem is invoked to check whether variables
with negative reduced cost(if it is a minimizing problem)
exist. Then add this particular variable to the problem or
terminate the process. The pricing problem in this context is
a shortest path problem with resource replenishment to find a
most negative flight route and meet up with the 5 operational
constraints.

As for the TAP, let πi be the dual variable of constraint(3),
πa be the dual variable of constraint(4), and πmd the dual
variable of constraint(5). Then the reduced cost crp of route r
is

crp = crp −
∑
i∈F

πia
1
ir − πa −

∑
m∈M

∑
d∈D

πmda
2
mdr (23)

Similarly. the reduced cost csrp of route r in scenario s in ARP
is expressed as follow:

csrp = csrp −
∑
i∈F

θsi a
1
ir − γsp −

∑
m∈M

∑
d∈D

µs
mda

2
mdr

−
∑
p∈P

∑
r∈Rp

(∑
i∈F

δ1sip a
1
ir +

∑
m∈M

∑
d∈D

δ2smdpa
2
mdr

)
(24)

As described at the beginning of section II, we model our
pricing problem on a directed connection network G=(V, A).
In the network, vertices V are flights and maintenance events.
The arcs A exists if the arrival airport of a previous node is
identical to the current node’s departure airport(maintenance
vertices connect from and to the same airport) while minimum
turn time(maintenance time) need to be reserved as well. To
find such a negative cost path within G, a multi-label shortest
path algorithm is used and summarized in Algorithm 1.

As the connection network is an acyclic graph, the main
loop of this algorithm checks every vertex in topological order.
Initializing the source node with a label l to track the changes
in reduced cost, flying time after last maintenance check and
elapsed time (i.e. flying time and ground time) since last
maintenance check. A new label is generated and validated
by making sure not being dominated by other existing labels
or exceeding maintenance rules. Analogically, we apply the
multi-label setting algorithm to solve ARP by adding one new
label elements as delay time and calculating the reduced cost
based on delay time.

III. ACCELERATING TECHNIQUES

Although section II has introduced two decomposition skills
applied to our STAPDRI model. Their basic implementations
still suffer from slow convergence. In this section, accelerating
techniques are introduced for both benders decomposition and
column generation. Finally, an overall solution framework is
presented with the two improving algorithms.

A. Improving bender decomposition

The speed of benders decomposition is closely related to
the strength of the benders cuts generated. To cope with
the degeneracy of subproblems, where multiple optimal dual
solutions exist, [24] selected the most dominated cuts in
terms of pareto optimality. For the sake of simplicity, we
rewrite the MIP as min c′x + d′y : A1x + A2y ≥ b, x ≥
0, y ∈ Y. All vectors and matrices are of suitable size. Then
introducing the dual variable α to express the dual problem
maxα′(b−A2y) : A′1α ≤ c, α ≥ 0. So Magnanti-Wong made
up an auxiliary problem to get that pareto-optimal cut. The
auxiliary problem get the form as: maxα′(b−A2ŷ) : A′1α ≤
c, α′(b − A2y) = Q(y)α ≥ 0. where Q(y) is the optimal
objective value of the regular dual subproblem. In order to
circumvent the numerical problem of Magnanti-Wong method,
[25] provided a more practical definition of Magnanti-Wong
point and thus changed the direction of cuts with Pareto-
optimal SP: maxα(b−ByMW : A′α ≤ c, α ≥ 0). Here yMW

is the Magnanti-Wong point which can be updated during
every iteration: yMW = (1 − λ)yMW + λy. If y leads to
a bounded solution of SP, then 0.5 is the most effective value
for λ. Recall that our ARP model will always be feasible
for a given TAP model solution, the Magnanti-Wong point
in this case can be obtained from a convex combination:
xMW
rp = 0.5 ∗ xrp + 0.5 ∗ 0. For more researches on benders

decomposition, one may refer to [26] on more comprehensive
view.

B. Improving column generation

From a wide range of research, the most significant speed-
ups of column generation come from accelerating the pricing
subproblem [27]. In our case, the multi-label setting algorithm
takes up a great amount of computational effort and is thus
the bottleneck for our overall solution process. Because pre-
processing is proven to be quite effective in boosting the multi-
label setting algorithm [28], we develop our preprocessing



Algorithm 2 Preprocessing algorithm
1: Input Connection Network G(V,A), Dual values
2: Initialize LB = −∞, UB = 0, incumbentpath = ∅
3: Run FSPC and BSPC to get ηfcsi , η

bc
it , path

fc
si , path

bc
si

4: LB = ηfcst
5: if validfcs t then
6: UB = min(UB, ηfcst )
7: incumbentpath = pathfcst , go to Output
8: end if
9: for j in Resource set do

10: Run FSPRj, BSPRj to get ηfrjsi , ηbrjsi , path
frj
si , pathbrjsi

11: if validfrjst &UB > ηfcst then
12: UB = ηfcst , incumbentpath = pathfrjst

13: end if
14: end for
15: for node n ∈ V do
16: if validf∗sn&validb∗nt&UB > ηf∗st + ηb∗ntthen
17: UB = ηf∗st + ηb∗nt
18: incumbentpath = pathf∗sn + pathb∗nt
19: end if
20: end for
21: Output LB,UB, ηbcit
22: * denotes c, rj

method to provide relevant information for the multi-label
setting solver to accelerate the column generation. Our method
is established on the work of [29].

Our method starts from the shortest path algorithms from the
source node to all other nodes and then run it again backwardly
from sink node to other nodes. We refer to this method as
forward shortest path on cost(FSPC) and backward shortest
path on cost(BSPC). Meanwhile, accumulated resources(flying
time etc.) since last maintenance along with validity check(if
the path violates resource limitation) have to be recorded. If
the path from the source node to sink node exist and meet
up with maintenance rules, we accepted as most negative
reduced cost path and no need for multi-label shortest path
algorithm. Otherwise, we need to run 4 more shortest path
algorithm (correspond to 2 resources) on minimizing flying
time or elapsed time both forward and backward (refer to
FSPR1, BSPR1, FSPR2, BSPR2 respectively) and update the
lower bound(LB) as the reduced cost of FSPC from source
node s to sink node t: ηfcst . Check these resource shortest
paths’ reduced cost ηfr1st , ηfr2st with feasibility check to update
the upper bound(UB). Finally, concatenate these forward paths
and backward paths on potential vertex with updated UB after
checking feasibility. The algorithm terminates with global LB,
UB and recorded shortest reduced cost/resource consumption
from every node to the sink node t(ηbcit , η

br1
it , ηbr2it ), as de-

scribed in Algorithm 2. Note that we do not concatenate
all forward paths with the backward path but heuristically
choose to concatenate paths generated, for instance, in FSPC
with those in BSPR1(BSPR2) because they are more likely to
become a feasible paths in terms of resource consumption.

Algorithm 3 Overall solution algorithm
1: Initialize UB=+∞,LB=0, GAP=+∞,yMW .
2: while GAP>0 do
3: LB←Solve MP (21)
4: for scenario s ∈ S
5: PSP ∗ ← Solve PSP (13)-(20)
6: λ∗ = 0.5
7: Update M-W point
8: Add optimal benders cuts (22) to MP
9: Solve Benders Pareto-Optimality PSP

10: Add optimal cuts (22) to MP
11: end for
12: Update UB
13: GAP= (UB−LB)

LB
14: end while
15: Reintroduce integrity requirements for MP
16: Solving MP using dive-and-price

Solution results from Algorithm 2 can help to accelerate
multi-label setting algorithm by removing labels whose re-
duced cost (resource consumption) has or will be larger than
current UB (resource limitations) while not removing any label
that affects the proven optimality.

C. The overall algorithm

In order to solve STAPDRI with the decomposition tech-
niques discussed above, we developed an overall solution
framework for our model. As flight string model for TAP usu-
ally generates a tight linear relaxation. The overall algorithm
will solve the linear relaxation of STAPDRI and introduce
integrality constraint to the TAP model afterwards. Instead
of solving the integral TAP model with precise but time-
consuming branch and price method(with follow on branch-
ing). We adopt a diving heuristic without backtracking to get
the final result. This diving heuristic is also utilized in [28].
The whole algorithm is illustrated in Algorithm 3.

The algorithm starts with a linear relaxation of the mas-
ter problem(MP), and reintroduce the integrity requirements
after the relative gap between upper bound(UB) and lower
bound(LB) meet a given value. The MP and primal subprob-
lem(PSP) are all solved with Algorithm 1 and Algorithm
2. The multi-label setting algorithm is only called when
the preprocessing algorithm can’t find negative variables or
optimality need to be proved. After that, the MIP MP is solved
with dive-and-price algorithm using a branching scheme called
follow-on branching [30]. This strategy differs from traditional
variable fixing and is widely used in scheduling problem which
avoid unbalanced search tree.

IV. COMPUTATIONAL EXPERIMENTS

A. Data description

To validate the performance of the proposed column and
row generation solution framework, computational experi-
ments are carried out and the results are illustrated in this
section. The solution framework is programmed in Python and



run on a laptop with 2.5GHz Intel i7-6500U CPU and Fedora
27 system. SCIP is called to get the integer solution with a
CPLEX 12.6.3 as linear programming solver.

All the tests are carried out in a single thread for ease of
comparison. The data set is derived from daily operation data
of a China domestic low cost air carrier. Based on this, 4 test
instances are extracted and prepared. The detailed information
of these instances are shown in TABLE III. Information on
flights and fleet are derived from published schedule while the
maintenance stations are derived using an analytical hierarchy
process(AHP).

TABLE III
CHARACTERISTICS OF TEST CASES

Test cases Flights Fleet size Connections Airports Maint stations
1 53 5 428 21 4
2 77 7 517 23 5
3 104 7 853 26 6

To better simulate the circumstance of daily operation,
we generate 56 scenarios. The specifics of these scenar-
ios are presented in TABLE IV. These scenarios cover
common operational situations include flight delay, airport
closure, reduction in maintenance capacity and Aircraft-
on-Ground(AOG). Specifically, delay is classified as slight,
moderate and severe according to three time minutes range
[15, 30), [30, 60), [60, 180) respectively. To generate these de-
lay scenarios, we select delay values randomly from historical
data. Because the data is extracted from a summer schedule.
So, airports are exposed to the risk of afternoon closure due to
thermal thunderstorm. While fog is a comparatively less con-
tributor to the morning closure. We assume the airport closure
scenarios happen in the early afternoon. Also, to reveal the
impact of maintenance capacity reduction, we apply a sharp
drop on maintenance capacity (by half) in one operation day.
Lastly, it is common in operation that an aircraft experiences
an unexpected mechanical failure which requires the aircraft
to receive mending at maintenance stations. This is referred
to Aircraft-on-Ground (AOG) in the airline industry. In our
experiments, AOGs take place for 2 hours and during which
the aircraft can not serve any flight.

B. Numerical results

In this part, we report the computation results of STAP-
DRI for all eight instances. Because the mathematical model
is of large-scale and complexity, we proposed our solution
algorithm and corresponding enhancement in the last two
sections. Two improvements (the pareto optimal cuts and
preprocessing algorithm) are implemented and compared with
implementations where only one or no enhancement happens.
In TABLE V, the different running time results are defined
as (1) Basic: using the standard benders decomposition and
column generation. (2) All enhancements: including pareto
optimal cuts and preprocessing algorithm.

The objective values of both linear relaxation solutions and
integer solutions are also reported with the corresponding
LP relaxation degree. To better represents realized airline

operational situations. We utilize Base of aircraft data family
(BADA2) to calculate the fuel consumption cost for specific
aircraft type on different cruising flight levels (i.e. simulating
short/long range). The average maintenance cost is roughly
estimated using statistics from IATA. As delay cost parameters
in ARP vary from airlines to airlines, we select two penalty
cost values for delay to analyze its impact on the independent
delay and propagated delay.

From the computation result, we observed a very long run
time for instances without enhancements. In contrast, pareto
optimal cuts along with preprocessing boost the performance
very much, reducing the running time by a factor of 7 at
least. As the computation time depends heavily on the pricing
subproblem and the benders decomposition’s iterations, our
improved solution usually takes much fewer iterations to con-
verge. Also, the preprocessing algorithm for ARP is observed
to frequently find the most negative path for pricing. Thus,
the improved algorithm tends to take advantages over average
solution methodology. Moreover, as the last column in TABLE
V indicates, the linear relaxation of our STAPDRI model is
quite tight, with a gap of nearly 0.1% between LP solutions
and IP solutions. Which motivates us to use a quick diving
heuristic for final integer solution.

C. Effects of stochastic solutions

Comparing the result of STAPDRI with that of determin-
istic TAP alone, we find much improvement margin in the
individual ARP objective value across all the scenarios. Take
the test case 3 for instance (delay cost is 20/min), we make a
comparison between the final objective values of ARP models
for all 56 scenarios and those from a deterministic TAP
solution. which is shown in Fig 1. As explained in the figure,
STAPDRI has the advantage to produce robust solution’s
whose weighted ARP objective values will be no worser
than that of the solution to the model used in deterministic
TAP. Recall we category the 56 scenarios into 6 classes. The
first three classes(30 cases shown in subfigure a) relating to
departure delay constitute a larger cost component because
there is much more independent delay at each flight leg.
In contrast, airport closure, maint capacity reduction, and
AOGs are more prone to cause maintenance misalignment
and deviations to planning schedule. When solving ARP, total
delay including independent delay and propagated delay are
aimed to be minimized. We adopt the formulations in [9] to
calculate propagated delay:

PDij = max(TADi − Slackij , 0)

Thus, the propagated delay PD from flight i to j is decided
by both total arrival delay TAD and slack time Slack. In our
experiment robust solutions, aircraft have been assigned to
flight strings with less probability of propagated delay. This
is achieved by leaving more slack time for flights with a long
delay time or under the impact of disrupted airports.

Another important part of our analysis is determining the
trade-off between explicit aircraft assignment cost and implicit
predicted delay costs. To have a basic understanding of how



TABLE IV
OPERATION SCENARIOS USED

Type Affected Scenarios
Slight flight delay One scenario for 30% flight legs 0-9

Moderate flight delay One scenario for 15% flight legs 10-19
Severe flight delay One scenario for 5% flight legs 20-29

Airport closure One scenario for each major airport 30-39
Capacity reduction One scenario for each maintenance station 40-45
Aircraft-on-Ground One scenario for each aircraft 46-55

TABLE V
COMPUTATION RESULTS OF STAPDRI WITH ENHANCEMENTS

Test case Delay cost
Running time

LP obj IP obj RelaxationBasic All enhancements

1
20 1052.75 66.65 365282.06 365562.06 0.076
80 1242.50 83.47 376475.02 376752.40 0.073

2
20 1951.39 143.48 490714.95 490731.21 0.004
80 1686.80 133.80 504852.02 505432.40 0.115

3
20 3387.51 342.66 688098.03 688444.14 0.050
80 2318.18 297.67 729977.51 729977.51 0.0
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Fig. 1. Comparison in ARP objective values

our delay penalty cost parameter affect this trade-off, we
analyze the stochastic solution using different delay cost pa-
rameter. TABLE VI demonstrates the sum of propagated delay
and total assignment cost. For all our experiments, the delay
cost parameter has no effects on the final optimal propagated

delay and assignment cost. This indicates our model is quite
robust towards different penalty coefficient which eases the
difficulty in quantifying the delay cost.

TABLE VI
DELAY COST EFFECTS ON SOLUTIONS

Test case Delay cost Propagated delay(s) Assignment cost

1
20 Is this 361600.00
80 table necessary? 361600.00

2
20 since the 485498.23
80 results are the same 485498.23

3
20 5082 678767.68
80 5082 678767.68

D. Comparing airline’s original plan

From the comparison above, STAPDRI takes obvious ad-
vantageous over deterministic TAP model. In this section, we
would like to figure out the strategy used in airline to arrange
their schedules. Because degeneracy is common in airline
optimization problem that many feasible solutions attain the
optimal solution at the same time. Directly comparing the
optimal solution with airline’s original plan is unreasonable.
Instead, the weighted costs of ARP subproblems and other
statistics are used to indicate the operation pattern in airline
and potential benefits of our model.

Specifically, airline’s original timetable is given as input
xrp to solve every subproblems. The weight sum of these
recovery cost are thus calculated and shown in TABLE VII.
The coefficient of delay cost is set to 20, both numeric values
and increasing rates are included.

As is clearly illustrated in the table, the airline’s original
plan has already contains some robustness in constrast to the
solution from deterministic TAP model. For test case 3, the



TABLE VII
COMPUTATION STATISTICS WITH WEIGHTED SUM OF ARP

Test case Original plan TAP solution STAPDRI solution
1 4699.29 6163.56 (+31.16%) 3873.50 (-17.57%)
2 9099.29 7211.67 (-20.74%) 4987.91 (-45.18%)
3 7657.14 47790.0 (+524.12%) 7642.63 (-0.19%)

original plan is close to the optimal solution found by our
STAPDRI model with a gap smaller than 0.2%. But in test
case 2, even TAP solution has a 20 percentage superiority over
the airline’s solution. Currently, the airline’s flight schedule is
mainly determined by flight dispatcher from Airline Operation
Center (AOC) and staffs from Maintenance Department. While
historical operation statistics are taken into consideration,
they decide the final aircraft paths and relating buffer times
empirically. Flights departing from or arriving at congested
airports will be given more buffer times than average airports.
On the other hand, short flight rotations (an aircraft starts and
ends at the same airport) are usually adopted to ensure flow
balance at airports but reduce flexibility during disruption or
delay circumstances. Our STAPDRI models, on the contrary,
is capable to devise good enough robust solution if scenarios
are devised with representativeness. In addition, [31] indicated
that some airlines are willing to experience delay in trade of a
shorter schedule block time. The STAPDRI can trade-off the
overall cost and recovery expense to some extend from the
computational experiences.

V. CONCLUSION

In this paper, we propose a stochastic model for tail as-
signment problem considering recovery reactions. The pro-
posed model hybrid 2 deterministic models(i.e. TAP and
ARP) through a stochastic programming framework. To solve
the model with efficiency, we propose an improved solution
algorithm that combines benders decomposition with column
generation. Our experiments show that the model generates
tight LP relaxation and can be solved quickly using the
presented algorithm. The value of considering robust TAP
is also demonstrated from the gap between the deterministic
solution and stochastic solution.
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