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Abstract—In this study, we propose an aircraft 4D trajectory
optimization model based on Bezier curve. Many real-world
factors (such as winds, obstacles, uncertainties) and actions (the
modification of departure time, the trajectory shape, aircraft
speed and altitude) are taken into account. To solve the model,
an improved simulated annealing algorithm with two phases was
proposed: the first phase for reducing the number of conflicts
and the second phase for decreasing the total flight time. A
national-size dataset for France which is provided by a fast time
simulator (ΠRATS) is used as a case study. The experimental
results show that the algorithm provides conflict-free trajectories
within a very short time for all instances. For the objective to
deconflict aircraft, the algorithm is almost linearly scalable for
large-scale instances. For a given limited run time (such as 6
hours), the algorithm provides good solutions with small values
of objective function (total flight time, changes of aircraft speed
and obstacles encounters).

Keywords—Aircraft trajectory optimization; Obstacle avoid-
ance; Winds; Uncertainty; Simulated annealing algorithm

I. INTRODUCTION

In recent years, the rapid growth of air transportation
demands result in a high level of congestion at airports
and airspace, which leads to considerable economic losses
and safety problems. Let Nh and Nv be the minimum
distance for separation in the horizontal plane and the vertical
direction. Aircraft are considered to be in conflict if both of
these minimum separation distances are violated. In order to
cope with the increasing demand in air traffic, conflict-free
trajectory operations are applied to Air Traffic Management
(ATM) system. Aircraft will follow its trajectory which is
defined in four dimensions (3D space and time). The goal
for this concept is to design a conflict-free trajectory for each
aircraft and to optimize other properties (such as flight time
and the speed changes) in addition [1].

In this study, we propose a model to address this trajectory
optimization problem. In our model, Bezier curve is used to
generate the shape of a trajectory on the horizontal profile by
using a set of virtual points near the initial en-route segment
of each trajectory. The influences of winds and obstacles
are also taken into account. The real speed of aircraft at
each time is affected by the winds. In addition, the states
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of aircraft are influenced by unexpected events, which causes
the deviation between the real positions of aircraft and the
planned trajectories. Therefore, the uncertainty of aircraft
position is also taken into account in the model. To reduce the
conflicts between aircraft and improve trajectories, we allow
a modification of the departure time, the trajectory shape,
the aircraft speed and the altitude for each trajectory. To
solve the model, we propose an improved simulated annealing
algorithm. The algorithm is divided into two phases: the first
phase for reducing the number of conflicts and the second
phase for decreasing the total flight time. A national-size
dataset which is provided by a fast time simulator (ΠRATS)1

is used as a case study. The major contributions of this paper
are:

1) We propose an aircraft trajectory optimization model
based on Bezier curve. Many real-world factors (such
as winds, obstacles, uncertainties) and actions (the
modification of departure time, trajectory shape, aircraft
speed and altitude) are taken into account.

2) We designed and implemented an improved simulated
annealing algorithm, whose performance is evaluated
on a realistic large-scale data set covering 8,310 trajec-
tories with 19,816 initial conflicts.

3) The experiments show that our algorithm is almost lin-
early scalable for large-scale instances with the objec-
tive of trajectory deconfliction. In addition, when further
optimizing trajectories while preserving the conflict-
free property, our algorithm provides good solutions
within reasonable run time.

The remainder of this paper is organized as follows: We
provide a literature review on aircraft trajectory optimization
in Section II. The mathematical model is presented in Sec-
tion III. The methodology which is used to implement and
solve the model is proposed in Section IV. Experiments on
a national-size dataset are reported in Section V. The paper
concludes with Section VI.

II. LITERATURE REVIEW

In recent years, a number of models and algorithms for
aircraft trajectory optimization problems have been proposed.

1Fast time simulator developed at OPTIM Team.



TABLE I. A summary table for most mentioned references

Allowed actions for modification Considered factors
Ref. Dep. Shape Speed Alti- Wind Obstacle Uncer-

time tude effect avoidance tainties
[2] X
[3] X X X X
[4] X X
[5] X
[6] X X X
[7] X
[8] X
[9] X X

[10] X X X X
[11] X X
[12] X X
[13] X X X
Ours X X X X X X X

Reference [14] proposed a comparison among different op-
timization approaches for traffic flow management. The per-
formance of binary integer programming approach, genetic
algorithm approach and simulated annealing approach were
analyzed. Reference [15] provided a comprehensive review
on meta-heuristic approaches for airside operation research.
Many methods, such as genetic algorithm (GA [16]), variable
neighborhood search (VNS, [17]), light propagation algorithm
(LPA, [18]) and simulated annealing (SA, [6]) were compared
together. It showed that new meta-heuristics should be devel-
oped to solve complicated real-world models.

In the framework of aircraft trajectory optimization, in
order to avoid conflicts between aircraft and improve aircraft
trajectories, several different actions can be used. The first
commonly used action is to modify the departure time for
aircraft [2], [19]. It is very effective to avoid conflicts by
modifying the aircraft departure time locally because it does
not change the route of the flight. However, in the case of
high traffic demand, the delayed aircraft still needs to wait
for many other aircraft to meet the capacity constraints of all
airspace sectors [3].

The second action is to modify the shapes [4]–[6]. In [4],
they built a model for the air traffic flow management problem
with restricted capacities in airspace and airports. They proved
that the complexity of the problem is NP hard and solved the
problem on large-scale instances with several thousand flights.
[5] proposed a local continuous method for solving air traffic
conflict problems by using B-splines to modify trajectory
shapes. In their method, only one optimization variable is
needed to determine the trajectory for each aircraft. The
experimental results showed that their method outperforms
genetic algorithm. In addition, their method was shown to
improve the global optimization method because it requires
fewer iterations and fewer function evaluations. [6] proposed a
strategic trajectory planning model to minimize the interaction
between aircraft. The aircraft are separated by modifying the
shapes of trajectories and the aircraft departure times. A set
of virtual waypoints were used to determine the shapes of
en-route trajectories. A heuristic algorithm based on simu-
lated annealing and hill-climbing were proposed to solve the
problem.

The third action is the speed regulation [7]–[9]. In [7] a

mixed-integer optimization model for aircraft deconfliction
based on speed regulation was proposed. A exact solver and a
heuristic method were used to solve the problem. The former
provides global optimality but needs long computation time,
while the latter solves the problem locally but terminates
fast. Based on this work, another model based on mixed-
integer programming for avoiding aircraft conflicts were pro-
posed [8]. The model was based on heading angle deviations
and combined with another model based on aircraft speed reg-
ulation. Two models were solved sequentially by a two-step
method. The experimental results showed the advantages of
combining two maneuvers. [9] proposed an algorithm based
on simulated annealing to detect and solve conflicts between
aircraft. Three maneuvers were taken into account (speed,
turn and altitude changes). Multiple objectives (the number
and magnitude of maneuvers, time delays and deviations at
waypoints) were analyzed.

In models of aircraft trajectory optimization, several factors
are taken into account, such as the effect of winds [10],
[20], [21], the avoidance of obstacles [11], [22] and the
uncertainties of parameters [6], [12]. [13] focused on the
aircraft trajectory planning problem where the obstacle avoid-
ance and winds were taken into account. They proposed
an algorithm based on Ordered Upwind Method based on
Hamilton-Jacobi equation [23]. The optimal path was pro-
vided by their method. In order to be applied to long-path
cases, the algorithm was extended to spherical coordinate
systems. Reference [24] proposed a formulation for a 4D
strategic air traffic management problem with convective
weather uncertainty. A solution approach was provided to
solve the problem. Experimental results on the real regional
air traffic system in China showed the effectiveness of the
approach.

In most previous research, either only few actions for
avoiding conflicts and optimizing aircraft trajectories are used,
or few real-world factors that affect trajectories were taken
into account (see Table I). Therefore, a model that considers
more actions and more factors (such as obstacles and winds)
is proposed in this paper. In order to solve this model, an
improved simulated annealing algorithm is also proposed.

III. MODEL FOR TRAJECTORY OPTIMIZATION

In this section, the mathematical model of trajectory opti-
mization is presented. Bezier curve which is used to generate
the shapes of trajectories is introduced in Section III-A. In
Section III-B, the revised speed of aircraft with the influence
of winds and obstacles is computed. The uncertainty of air-
craft positions is discussed in Section III-C. In Section III-D,
the definition and formulation of conflicts between aircraft are
presented. Finally, the model is formulated in Section III-E.

A. Aircraft route design based on Bezier curve

In most previous research, flight trajectories are designed
with a series of end-to-end routes [10]. However, the non-
smooth points that connect these routes result in longer flight
time and larger probability of conflicts near these points.
Therefore, Bezier curve is used to design trajectories in this
paper.



Figure 1: Allowed position for virtual points.

Bezier curve: Let B(t) (t ∈ [0, 1]) denote the n-
degree Bezier curve that is determined by given n+1 points
{P0, P1, ..., Pn}. Then, we have:

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi (1)

Route design for the en-route segment: In this subsection,
we design the alternative routes for en-route segments on the
horizontal profile for 4D trajectories. First, a set of virtual
points are placed near the initial en-route segment. Then, the
Bezier curves that determine the trajectories are constructed
with these virtual points.

As shown in Figure 1, based on the initial en-route seg-
ment, the tangential axis (x′) and the normal axis (y′) are
constructed. The coordinates of virtual points are defined
using this relative coordinate system. Let wij = (wijx, w

i
jy)

be the relative coordinate of the j-th virtual point for the
i-th trajectory. For each trajectory i, a set of virtual points
{wij , wij = (wijx, w

i
jy)}nj=1 is used to generate the Bezier

curve, where n is the number of virtual points that is given
by the user. Given a value of cruise altitude, the shape of the
en-route segment in 3D space for each flight is determined
based on the above Bezier curve.

B. The influences of winds and obstacles
The ground speed of aircraft is influenced by its true air

speed and winds. In this paper, we use a 4D distribution
function to represent the speed of the wind at each 3D
coordinate (x, y, z) at time t as follows:

−→vw(x, y, z, t) =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


xyz
t

+

b1b2
b3

 (2)

where aij (i = 1, 2, 3, j = 1, 2, 3, 4) and bj (j = 1, 2, 3) are
given constants.

As shown in Figure 2(a), the ground speed (−→vf ) is the linear
combination of the true air speed of aircraft (−→vo) and the speed
of the wind (−→vw). Thus, we have

−→vf = −→vw +−→vo (3)

The ground speed of aircraft is along the tangent direction of
the Bezier curve. Thus, we use α to denote the angle between−→vf and −→vw. Regarding cosine law, we have

v2f + v2w − v2o = 2vfvwcosα (4)

where vf = ‖−→vf‖. Therefore, the value of the ground speed
with the influence of wind is computed as follows:

vf = vwcosα+
√
v2o − v2wsin2α (5)

In the real-world air transportation, obstacles appear in some
areas (bad weather areas, thunderstorms, etc.). When aircraft
flies through these areas, it is in danger and the trajectory
is penalized. For simplification, we use circles to denote
obstacles. In this paper, we use homotopy to construct the
obstacles that move with time. As shown in Figure 2(b),
we design an initial state (at time ti0) and a final state (at
time ti1) for each obstacle i. The initial state of the obstacle
i is determined by the horizontal coordinate of its center
(Obsi0x, Obs

i
0y), the radius of the (red) inner circle ri0 and

the radius of the (blue) outer circle Ri0. Similarly, the final
state is also determined by (Obsi1x, Obs

i
1y), ri1 and Ri1. Thus,

the state of the obstacle at time t is computed, thanks to a
linear homotopy, as follows:

Obsitx
Obsity
rit
Rit

 =
t1 − t
t1 − t0


Obsi0x
Obsi0y
ri0
Ri0

+
t− t0
t1 − t0


Obsi1x
Obsi1y
ri1
Ri1

 (6)

The area in the inner circle is too dangerous for aircraft to
fly though. If an aircraft j passes through the area between
the inner circle and the outer circle at time t, there is a penal-
ization ξji (x, y, t) of the aircraft trajectory which depends on
the distance between the aircraft and the center of the circle.

ξji (x, y, t) =
(rit)

2

(xj −Obsitx)2 + (yj −Obsity)2
,

(xj −Obsitx)2 + (yj −Obsity)2 ≤ (Rit)
2 (7)

Therefore, the global distribution function ξj(x, y, t) for the
penalization of aircraft trajectory j is denoted by the maxi-
mum value of ξji (x, y, t) among all obstacles encountered by
the aircraft as follows:

ξj(x, y, t) = max{ξji (x, y, t), i ∈ {1, 2, ..., Nobs}} (8)

where Nobs is the number of obstacles. The value of
ξj(x, y, t) is larger than 1 if the aircraft j is inside the inner
circle of any obstacle. The aircraft trajectory will be penalized
with a very large value in this case. If ξj(x, y, t) < 1, the
penalization is the summation of ξj(x, y, t) with time.

Xj =

∫
t

ξj(x, y, t)dt (9)

For simplification, we divide the time into many time steps
with the same size ∆t and discretize Equation (9) as follows:

Xj =
∑
k

ξj(xk, yk, tk)∆t (10)

An example for the influence of winds and obstacles in
the horizontal plane is shown in Figure 3 for which 8,310
flights are assigned in the area. The green arrows are used
to represent the wind at each position and the length of each
arrow is proportional to the speed of the wind. The flight
trajectories prefer to avoid the (red) center areas of obstacles
and follow the directions of winds.



(a) The computation of the ground speed (−→vf ) of aircraft.
(b) One obstacle that moves with time.

Figure 2: The computation of aircraft speed with winds and the construction of moving obstacles. (a) The ground speed (vf )
is the linear combination of the true air speed of aircraft (vo) and the speed of the wind (vw). (b) The obstacle at any time t
is constructed by the given initial state (t0) and the final state (t1).

Figure 3: The influence of obstacles and the winds in the
horizontal plane. The trajectories, virtual points and OD pairs
are represented by blue curves, red points and black dots.
Several circles are used to denote obstacles. The winds are
represented by green arrows. All trajectories avoid the (red)
center areas of obstacles with penalization ξ = 1.

C. The uncertainties of aircraft positions
In the real world, the states of aircraft are influenced by

some unexpected events, which causes the deviation between
the real positions of aircraft and the planned trajectories. In
this paper, we use an uncertainty radius Run to denote the
uncertainties of aircraft positions. Assume that the planned
position of an aircraft at time t is (x, y, z). The possible
position of the aircraft in reality could be any point in a circle
with center (x, y, z) and radius Run in the horizontal:

{(xun, yun, zun) : (xun − x)2 + (yun − y)2 ≤ Run, zun = z}
(11)

where (xun, yun, zun) is the possible position with uncertain-
ties. Let Nh and Nv be the minimum distance for separation
in the horizontal plane and the vertical direction. The modified
parameters with uncertainties are computed as follows:

Nun
h = Nh +Run (12)

Nun
v = Nv (13)

In our experiment, only cruising aircraft have been con-
sidered and no uncertainty has been used in the vertical
dimension.

D. The conflicts between aircraft
Aircraft are in conflict if the minimum separation require-

ment (5NM horizontally and 1000 feet vertically) is not
satisfied, i.e., more than one aircraft compete for the same
space at the same period of time [6]. For the k-th point
Pik of trajectory i, the number of conflicts at this point is
denoted by Φik, which is the total number of times that the

Figure 4: Conflicts Φik = 2 at point Pik of trajectory i.

minimum separation requirement around Pik is violated. For
the example shown in Figure 4, there are Φij = 2 conflicts
in the horizontal plane at point Pik. The number of conflicts
for a trajectory i is computed as follows:

Φi =

Ki∑
k=1

Φik (14)

Each conflict is computed once by both trajectories. Thus, the
total number of conflicts between all trajectories is computed
as follows:

Φtotal =

N∑
i=1

Φi/2 =

N∑
i=1

Ki∑
k=1

Φik/2 (15)

E. Model formulation

In this subsection, we formulate the trajectory optimization
problem. The parameters and variables are summarized in
Table II.

Objective: We need to minimize four components in the
objective function: the total number of conflicts, the total
flight time for all aircraft, the total speed changes for all
aircraft and the total penalization of trajectories by obstacles.

Given data: As input, we have N initial discretized 4D
trajectories, the number of allowed virtual points for gener-
ating Bezier curves (M ), the allowed range for determining
the positions of virtual points (0 ≤ ai ≤ 1, 0 ≤ bi ≤ 1),
the maximum allowed advanced and delayed shifts of the
departure time for flight i (∆tia < 0,∆tid > 0), the maxi-
mum increasing and decreasing ratios of speed for aircraft
(∆via ∈ (−1, 0),∆vid > 0), as well as the highest and lowest
altitude for aircraft (altimax, alt

i
min).

Decision Variables: To optimize aircraft trajectories, we
use the following variables: the shift of departure time for
each flight i (δi), the relative coordinates of a set of virtual
points for each flight i (wi = {wij |wij = (wijx, w

i
jy)}nj=1),

the cruise altitude of each flight i (alti) and the cruise speed
of each flight i (vi). For simplification, we use vectors −→w =

(wi)Ni=1,
−→
δ = (δi)

N
i=1,
−→
alt = (alti)

N
i=1 and −→v = (vi)

N
i=1 to



TABLE II. The parameters and variables for the formulation.

Parameter Description
N,n,Nobs The number of the flights, the allowed virtual points for each trajectory and the obstacles.
Nh, Nv The minimum distance for separation in the horizontal plane and in the vertical direction.

∆tia < 0,∆tid > 0 The maximum allowed advanced and delayed shifts of the departure time for each flight i.
∆via ∈ (−1, 0),∆vid > 0 The maximum increasing and decreasing ratios of speed for aircraft.

altimax, alt
i
min The highest and lowest cruise altitude for aircraft.

Li0 The length of the initial en-route segment of each flight i.
vi0 The initially cruise speed of flight i.
λt The coefficient that standardizes the total flight time in the objective function.
λv The coefficient that standardizes the total changes of aircraft speed in the objective function.

Variable Description
δi The shift of departure time for each flight i.

wi = {wij |wij = (wijx, w
i
jy)}nj=1 The relative coordinates of a set of virtual points for each flight i.

alti The cruise altitude of each flight i.
vi The cruise speed of each flight i.

represent these variables. Therefore, the decision variables of
the problem is denoted by (−→w ,

−→
δ ,
−→
alt,−→v ).

Constraints: The following constraints should be satisfied
in the model.

1) Allowed positions for virtual points: To reduce the
search space and avoid undesirable shapes of trajectories, the
location of each virtual point for Bezier curves are bounded.
Assume that Li0 is the length of the initial en-route segment
of trajectory i. As shown in Figure 1, for each virtual point j
of trajectory i, the relative coordinate (wijx, w

i
jy) is restricted

as follows:

wijx ∈
[
(

j

1 + n
− bi)Li0, (

j

1 + n
+ bi)L

i
0

]
(16)

wijy ∈
[
−aiLi0, aiLi0

]
(17)

where 0 ≤ ai ≤ 1 and 0 ≤ bi ≤ 1. In addition, two areas
must not overlap with each other, i.e.,

(
j

1 + n
+ bi)L

i
0 < (

j + 1

1 + n
− bi)Li0 (18)

Thus, we have bi < 1
2(n+1) . For simplification, we divide

each blue area into (npx + 1) × (npy + 1) grids in Figure 1
and the vertices of these grids are alternative coordinates
for virtual points. The Equations (16–17) are discretized as
follows:

W i
jx :=

{
npx − l
npx

(
j

1 + n
− bi)Li0 +

l

npx
(

j

1 + n
+ bi)L

i
0

}npx

l=0
(19)

W i
jy :=

{
(

2l

npy
− 1)aiL

i
0

}npy

l=0

(20)

where (npx + 1) and (npy + 1) are the numbers of possible
coordinates for each virtual point in the tangential axis and
normal axis.

2) Allowed shifts of departure time: It is unreasonable
to shift the departure time for a large range. The value of
variable δi is restricted to a range [∆tia,∆t

i
d]. This range is

discretized as follows:

∆i
t = ∆tia +

l

nt
(∆tid −∆tia), l ∈ {0, 1, ..., nt} (21)

where nt is the number of discretization.

3) Allowed shifts of aircraft speed: The shift ratio of
aircraft speed is restricted to a range [∆via,∆v

i
d] and is

discretized with a given number nv:

∆i
v = ∆via +

l

nv
(∆vid −∆via), l ∈ {0, 1, ..., nv} (22)

4) Allowed shifts of cruise altitude: The shift of cruise alti-
tude is restricted to a range [altimin, alt

i
max] and is discretized

with a given number nalt:

∆i
a = altimin +

l

nalt
(altimax − altimin), l ∈ {0, 1, ..., nalt} (23)

Finally, we formulate the aircraft trajectory optimization
problem as follows:

min
(−→w,
−→
δ ,
−→
alt,−→v )

Φ(−→w ,
−→
δ ,
−→
alt,−→v ) + λt

N∑
i=1

Ti(
−→w ,
−→
δ ,
−→
alt,−→v )

+λv

N∑
i=1

|vi/vi0 − 1|+ λo

N∑
i=1

Xi (24)

subject to wijx ∈W i
jx, j = 1, ..., n, i = 1, ..., N (25)

wijy ∈W i
jy, j = 1, ..., n, i = 1, ..., N (26)

δi ∈ ∆i
t, i = 1, ..., N (27)

vi − vi0
vi0

∈ ∆i
v, i = 1, ..., N (28)

alti ∈ ∆i
a, i = 1, ..., N (29)

Here, parameters λt, λv and λo are the weighted coefficients
that transform the total flight time, the total changes of aircraft
speed and the total obstacle penalization into the number of
conflicts in the objective function, respectively. The flight time
of each trajectory i is represented by Ti. Equations (25–26)
are the constraints on the positions of virtual points on the
x-axis and y-axis. Equations (27–29) are the constraints on
the shifts of departure time, shifts of aircraft speed and shifts
of cruise altitude, respectively.

IV. METHODOLOGY

In this section, we propose a methodology to compute the
total number of conflicts between aircraft and the total flight
time for all trajectories, as well as the simulated annealing
algorithm for improving the aircraft trajectories.



A. Method for recording and transforming the shapes of en-
route segments using standard Bezier curves

Regarding Figure 1, the shape of the alternative route is
determined by the relative coordinates of the virtual points.
The number of possible relative coordinates for each virtual
point in the tangential and normal axis is restricted by
Equations (19–20), i.e., (npx + 1)(npy + 1) cases. Therefore,
if the number of virtual points for the Bezier curve is small
enough, a set of standard Bezier curves can be pre-generated
before starting the program and they can be transformed to
design the shape for a particular flight.

Assume that the minimum/maximum values of the
whole area in x-axis and y-axis are represented by
minX/maxX and minY/maxY . We use the coordinates
A = (minX,minY ) and B = (maxX,minY ) as the
standard origin-destination (OD) pair (see Figure 1). The
standard Bezier curves with all possible relative coordinates
are pre-generated between them.

For a given flight with OD pair O = (xO, yO), D =
(xD, yD), assume that the corresponding standard Bezier
curve for the current trajectory is B(s), (s ∈ [0, 1]). The
rotation angle between the standard curve and the required
curve is computed as follows:

β = arccos

−−→
OD ·

−→
AB

|
−−→
OD||

−→
AB|

The absolute coordinate of a waypoint with s = t is
computed as follows:(
x(t)
y(t)

)
=
|
−−→
OD|
|
−→
AB|

(
cosβ − sinβ
sinβ cosβ

)(
B(t)−

(
minX
minY

))
+

(
xO
yO

)

B. Method for computing flight time and constructing grids

The second component of the objective function is the total
flight time of all trajectories. We first discretize the airspace
into a 4D grids (3D space + time). The size of each grid
cell is defined by the minimum separation requirement (Nh
for x-axis and y-axis, Nv for z-axis) and a given time range
with length ∆t. Then, for each trajectory i, we update the
4D coordinate (x, y, z, t) for each point of the grid based
on Bezier curves: First, we compute the position and the
corresponding aircraft speed for the current time; Then, the
next trajectory sample on the Bezier curve is computed
with the updated travel length. The grid cell which contains
the current trajectory samples is recorded. The algorithm
terminates until each aircraft arrives at the destination or gets
into the forbidden area of obstacles (ξ(x, y, z, t) = 1).

C. Method for computing the number of conflicts

To evaluate the first component of the objective function,
we need to compute the number of conflicts between N air-
craft trajectories. The simplest method is to do the pair-wise
comparisons with a time complexity of O(N2). However, this
method cannot be scaled up. Therefore, we use a grid-based
method which was proposed by [6].

After finishing recording the states of grids for all trajecto-
ries with the method described in Section IV-B, we compute
the conflicts for each trajectory based on these grids. For

each trajectory sample Pik, let (gJx, gJy, gJz, gJt) be the
corresponding grid cell coordinate associated to Pik, where
(Jx, Jy, Jz, Jt) are the corresponding indices of the cell.
Then, we check the (33) neighborhood grid cells in the 3D
space including the original cell itself. Then, all the other
trajectory samples in these 27 grid cells are checked. The
horizontal distance dh and the vertical distance dv between
Pik and these trajectory samples are computed. As shown
in Figure 5(a–b), if dh < Nh and dv < Nv , one conflict
is recorded. In addition, as shown in Figure 5(c–d), some
conflicts between two neighbored trajectory samples may not
be detected. We use an inner-loop algorithm [6] to check
the conflicts in this case. Several trajectory samples are
interpolated in the time dimension. Then, each pair of these
trajectory samples are checked until one conflict is identified.

D. The improved simulated annealing algorithm for improv-
ing aircraft trajectories

In this section, we propose an improved simulated anneal-
ing algorithm to optimize aircraft trajectories (see Figure 6).
For each iteration, we select a trajectory according to its per-
formance (in terms of conflict, etc) and change its associated
decision. We divide the algorithm into two phases: The first
phase for reducing the conflicts when the total number of
conflicts

∑N
i=1 Φi > 0 and the second phase for reducing the

flight time when
∑N
i=1 Φi = 0. The values of parameter Φi

and parameter Weii = Φi +
λtv

i
0Ti

Li
0

+ λv(vi/v
i
0 − 1) + λoXi

are used for the roulette (in the roulette, there is a mutually-
exclusive range proportional to Φi or Weii for each trajectory
i. For each iteration, a value is generated randomly. If the
value is in the i-th range, then trajectory i is selected.). For
the selection of decision variables, four values of probabilities
P0, P1, P2, P3 whose sum is equal to 1 are given initially. A
random number pr in [0, 1] is generated and one decision
variable is selected as follows:

Select −→w , if pr < P0; (30)

Select
−→
δ , if P0 ≤ pr < P0 + P1; (31)

Select
−→
alt, if P0 + P1 ≤ pr < P0 + P1 + P2; (32)

Select −→v , if P0 + P1 + P2 ≤ pr ≤ 1. (33)

We call this strategy for selecting decision variables, Fixed
Strategy.

Note that there is little effect of cruise altitude on the flight
time of an individual trajectory. It is more likely to obtain
better solutions when trajectories are evenly distributed in
different cruise altitudes. We divide the set of cruise altitudes
of all trajectories into several groups. The average number
of trajectories in each group is AveDistri. For a selected
trajectory i, the number of trajectories that are in the same
altitude group as i is represented by Distri(alti). If the value
of Distri(alti) is much larger than AveDistri, it is better to
modify the cruise altitude for trajectory i. The probabilities



(a) Detect the conflicts in the horizon-
tal plane by checking all neighborhood
cells.

(b) Compute the number of conflicts
for one trajectory sample (black dot)
with all other trajectories.

(c) Some conflicts between two neigh-
bored trajectory samples may not be
detected (the red arrow). It is neces-
sary to check them.

(d) Check the conflicts between two
neighbored trajectory samples using
time interpolations. Several trajectory
samples (red crosses) are generated.

Figure 5: The detection of conflicts in the horizontal plane [6].

Figure 6: The flow chart for the improved simulated annealing
algorithm.

for selecting decision variables are updated as follows:

P0new =
(1− λ)P0

P0 + P1 + P3
(34)

P1new =
(1− λ)P1

P0 + P1 + P3
(35)

P2new =λP2 (36)

P3new =
(1− λ)P3

P0 + P1 + P3
(37)

where λ = log(Distri(alti)AveDistri
+ 1) + 1 − log 2. We call this

strategy, Even-Altitudes Strategy.
Next, we compute the new state of grid cells that contain

the samples of trajectory i, as well as the new number of
conflicts of trajectory i and all other trajectories that have
conflicts with trajectory i. The new number of conflicts of
trajectory i is represented by Φci . Then, we compute the new
flight time Ti, the current cruise speed for trajectory i and the
new value of the objective function Objc. We compute the
change of temperature dTem as follows: dTem =

∑N
i=1 Φci−∑N

i=1 Φi if there still exist conflicts and dTem = Objc−Obj
otherwise. If exp(dTemTem ) < Ps (Ps = 2 if

∑N
i=1 Φi > 0 and

Ps = 1 otherwise.) is satisfied, we perform the operation
and update the solutions. Otherwise, we return to the current

Figure 7: The distribution of 19,816 conflicts for the initial
trajectories.

solution. Finally, we update the temperature with Tem =
0.99 ∗ Tem.

V. COMPUTATIONAL RESULTS

A. Datesets and experimental setup

To evaluate the performance of our model and algorithm,
a national-size dataset which is provided by a fast time sim-
ulator (ΠRATS) is used as a case study. The dataset consists
of 8,310 trajectories over the French airspace corresponding
to the demand of August 17th, 2008. Because only the cruise
phase is considered in our model, we filtered and modified
the initial trajectories in the dataset, i.e., only the flights
with cruise phases are remained and the other phases of
these trajectories are removed. Finally, 8,310 trajectories are
selected for the experiments.

To solve this instance, we implemented our improved sim-
ulated annealing algorithm with Python language on Fedora
system with 2.7 GHz processor and 16 GB RAM. The settings
of parameters in the experiments are shown in Table III. As
shown in Figure 7, there are 19,816 conflicts between the
initial trajectories.

B. The comparison of two strategies for selecting decision
variables

Two strategies (Even-Altitudes Strategy and Fixed Strat-
egy) for selecting decision variables are proposed in Sec-
tion IV-D. In this section, their performance for improving air-
craft trajectories are compared. The dataset with N = 1, 115
trajectories whose departure times are between 10AM and
12AM is used as a case study. Nobs = 4 moving obstacles



TABLE III. The parameter settings

Parameter Value
The number of obstacles, Nobs 4
The minimum distance for separation in the horizontal plane, Nh 5 Miles
The minimum distance for separation in the vertical plane, Nv 1000 feet
The maximum allowed advanced and delayed shifts of the departure time, −∆tia = ∆tid 3600 seconds
The maximum increasing and decreasing ratios of speed for aircraft, −∆via = ∆vid = ∆v 0.1
The coefficient that normalizes the total travel times in the objective function, λt 1
The coefficient that normalizes the total changes of aircraft speed in the objective function, λv 2
The maximum number of virtual points for Bezier curves, M 2
The allowed range for shifting the positions of virtual points, ai = bi 0.25
The number of alternative relative coordinates in tangential axis and normal axis, npx = npy 10
The size of time grid, ∆t 20 seconds
The changed ratio of speed, dv 0.01
The size of altitude grid, da 1000 feet
The probability for modifying the positions of virtual points, P0 0.3
The probability for modifying the positions of departure time, P1 0.3
The probability for modifying the positions of cruising altitude, P2 0.2
The probability for modifying the positions of cruising speed, P3 0.2
The temperature condition Tem ≤ Teminit/10

TABLE IV. The comparison of two strategies for selecting decision variables for solving the instances with moving/fixed
obstacles. The dataset consists of N = 1, 115 trajectories whose departure times are between 10AM and 12AM.

Obstacle type Strategy Initial number Number of iterations Run time for Total number Total run Objective
of conflicts for zero conflicts zero conflicts (s) of iterations time (s) function

Moving obstacles Fixed strategy 2,453 558 50.7 45,022 2,363.7 2,710,839.4
Even-Altitudes Strategy 2,453 448 47.7 47,182 2,484.2 2,708,967.9

Fixed obstacles Fixed strategy 2,453 595 62.8 31,393 1,922.7 2,770,344.2
Even-Altitudes Strategy 2,453 418 55.1 34,748 2,157.1 2,746,639.3
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(a) The instance with moving obstacles.
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(b) The instance with fixed obstacles.

Figure 8: The evolution of conflict numbers and objective functions of two strategies on both instances. It needs short time to
reduce the number of conflicts to zero. Most run time is spent in reducing other criteria when conflicts are already equal to 0.

are generated randomly. We also solve the instance with fixed
obstacles. The results are shown in Table IV. The initial
number of conflicts is 2,453. The number of iterations and
run times for obtaining zero conflicts are shown in columns
4–5. The total number of iterations and the total run times
are shown in columns 6–7. The final values of objective
functions are shown in column 8. The evolution of conflict
numbers and objective functions of the two strategies on
both problem instances is visualized in Figure 8. We have
following observations:

1) Both strategies reduce the number of conflicts to zero
for both problem instances.

2) Only about 1%–2% of iterations and run time are used
for reduce conflicts to zero. Most of the run time is
spent improving trajectories (reducing flight time and
speed changes).

3) Both strategies need similar run time but Even-Altitudes
Strategy provides better solutions.

C. The performance on large-scale instances

TABLE V. Instances in other time ranges with different
numbers of trajectories.

Instance Number of trajectories
10AM-12AM 1,115
10AM-2PM 2,122
10AM-4PM 3,151
10AM-6PM 4,110
0AM-12PM 8,310

In this section, in order to show the scalability of our model
and algorithm, we run the algorithm with Even-Altitudes
Strategy on larger instances. As shown in Table V, the flights
in several time ranges (10AM-12AM, 10AM-2PM, 10AM-
4PM, 10AM-6PM, 0AM-12PM) are selected. Both instances
with moving obstacles and fixed obstacles are used as case
studies. The number of iterations and run time for obtaining
zero conflicts for each instance are shown in Figure 9(a). With
increasing number of trajectories, the number of iterations and



TABLE VI. The results for the instances with moving/fixed obstacles obtained by Even-Altitudes Strategy on the whole dataset
which consists of N = 8, 310 trajectories. The maximum run time is set to 6 hours.

Initial number Number of iterations for Run time for Total number Total run Objective
of conflicts zero conflicts zero conflicts of iterations time (s) function

Moving obstacles 19,816 3,167 636.2 126,763 14,668.3 22,020,868.4
Fixed obstacles 19,816 3,137 701.2 175,660 21,600.1 21,594,453.1
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(a) The number of iterations and run time for obtaining zero conflicts
for instances in Table V with moving/fixed obstacles. The Even-Altitudes
Strategy is used here. With increasing number of trajectories, the number of
iterations and run time for obtaining zero conflicts increase almost linearly
(T = 0.00497×N1.308, R2 = 0.9942, I = 0.409×N0.992, R2 = 0.9996,
where N,T, I are the trajectory number, run time and iteration number,
respectively).
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(b) The evolution of conflict numbers and objective functions for the instances
with moving obstacles and different values of uncertainty radius obtained by
Even-Altitudes Strategy on the whole dataset which consists of N = 8, 310
trajectories. The maximum run time is set to 6 hours.

Figure 9: (a) The performance of the algorithm for obtaining zero conflicts for different instances; (b) The evolution of conflict
numbers and objective functions on the whole dataset with N = 8, 310 trajectories.

TABLE VII. The results for the instances with moving obstacles and different values of uncertainty radius obtained by Even-
Altitudes Strategy on the whole dataset which consists of N = 8, 310 trajectories. The maximum run time is set to 6 hours.

The uncertainty radius Initial number of Number of iterations for Run time for Total number Total run Objective
conflicts zero conflicts zero conflicts (s) of iterations time (s) function

Run = 0 NM 19,816 3,167 636.2 126,763 14,653.6 21,620,868.4
Run = 3 NM 39,110 5,192 889.8 192,760 21,600.1 21,720,092.3
Run = 5 NM 53,512 6,715 1,053.8 75,634 8,446.3 22,498,778.6
Run = 8 NM 80,237 9,046 1,451.3 96,130 10,743.6 22,438,602.7

run time for obtaining zero conflicts increase almost linearly.
In addition, we run the algorithm on the whole dataset with
N = 8, 310 trajectories with the maximum run time setting
to 6 hours. The results are shown in Table VI.

Therefore, on one hand, for the objective to deconflict
aircraft, our algorithm is almost linearly scalable for large-
scale instances; on the other hand, for the objective to further
improve trajectories, our algorithm provides good solutions
with a given limited run time.

D. The uncertainties of aircraft positions

In this section, we take the uncertainty of aircraft positions
into account. The values of Nh and Nv are updated by
the uncertainty radius Run regarding Equations (12–13) in
Section III-C. Here, we still use the whole dataset with N =
8, 310 trajectories and the moving obstacles as a case study.
The values of uncertainty radius are set to Run ∈ {0 NM ,
3 NM , 5 NM , 8 NM}. The maximum run time is still set to
6 hours. The results are shown in Table VII and Figure 9(b).

The initial number of conflicts are shown in column 1.
With increasing values of Run, more conflicts appear between
aircraft initially and more iterations and run time are used to
obtain zero conflicts. Therefore, the algorithm uses up 6 hours
run time to provide good solution for the case with Run =
3 NM . However, for the cases with Run = 5 NM and

Run = 8 NM , the algorithm finds conflict-free trajectories
with more deviations. It shows that the conflicts caused by
the uncertainty radius is so large that trajectories cannot be
improved further.

VI. CONCLUSIONS

In this study, we proposed an aircraft trajectory optimiza-
tion model based on Bezier curve. The influences of winds
and obstacles are also taken into account. The real speed of
aircraft at each time is affected by the winds. In order to
increase robustness of trajectories, the uncertainty of aircraft
position was also considered. To reduce the conflicts between
aircraft and improve trajectories, we can modify the departure
time, the trajectory shape, the aircraft speed and the altitude
for each trajectory. The proposed methodology takes into
account many realistic factors of the airspace (fixed/moving
obstacles, winds, etc.) To solve the model, an improved sim-
ulated annealing algorithm with two phases was proposed. A
national-size dataset with 8,310 trajectories which is provided
by a fast time simulator (ΠRATS) is used as a case study. Our
algorithm provides conflict-free trajectories within very short
time for all instances (for instance, it needs 10-12 minutes for
the instance with 8,310 trajectories without uncertainty). In
addition, for the objective to deconflict aircraft, the algorithm
is almost linearly scalable for large-scale instances. For a



given limited run time, the algorithm provides good solutions
with small values of objective function (total flight time
and changes of aircraft speed). Future work could perform
sensitivity analysis regarding the parameters used in this
study, for instance, spatio-temporal resolution of grids and
probabilities for performing actions/operations. Moreover, in
order to increase the performance of the simulated annealing
algorithm further, several domain-specific search heuristics
could by tried for turning the blind search into a more
informed search.
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